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H1 at HERA
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• H1 Detector at the positron-proton collider, HERA. Hosted in Hamburg Germany 
• Major goal was to study internal structure of the proton through deep inelastic scattering
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Lepton Jet Asymmetry
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•  = Total transverse 
momentum


•   = Transverse Momentum 
Difference


•  = Angle between  and 

q⊥

P⊥

ϕ q⊥ P⊥

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥

⃗P⊥ = ( ⃗kℓ⊥ − ⃗kJ⊥) / 2

cos(ϕ) = ( ⃗q⊥ ⋅ ⃗P⊥ ) / | ⃗q⊥ | | ⃗P⊥ |

ϕ = acos[( ⃗q⊥ ⋅ ⃗P⊥ ) / | ⃗q⊥ | | ⃗P⊥ | ]

Key Ingredients:

Momentum conservation:

Dijet Example

, and therefore  will tend to point in the direction of the jet 
Darker colors indicate probability of gluon emission

ki q⊥

⃗kl⊥

⃗kJ⊥

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥
⃗P ⊥ = ( ⃗kl,⊥ − ⃗kJ⊥)/2 ϕ
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Lepton Jet Measurement

4

• Final state lepton and jet are mostly back-to-back

- Significant interest in studying transverse momentum dependent (TMD) parton 

distributions


• Total transverse momentum of the outgoing system , 
is typically small but nonzero 

• Imbalance can come from perturbative initial and final state radiation 

- e.g. Emission of soft gluon with momentum 

- unrelated to TMDs or intrinsic transverse momentum of target gluons


• Depending on kinematics, soft gluon radiation can dominate

- 

- Radiative corrections enhanced approximately as  

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥

k⊥g

P⊥ ≫ q⊥
(αs ln2 P2

⊥/q2
⊥)n

⃗kl⊥

⃗kJ⊥

− ⃗q⊥ = ⃗ksg⊥
⃗P ⊥ = ( ⃗kl,⊥ − ⃗kJ⊥)/2 ϕ

Description
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Physics Motivation
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1. Probes soft gluon radiation 

• Soft gluon radiation can be the primary contribution to asymmetry for 

certain kinematics

- Hard gluon radiation is present, but is power suppressed


2. Asymmetry is perturbative

- Opportunity to compare unfolded H1 data to soft gluon resumption

- Precision measurements of QCD


1. , as well as relevance to various jet measurements


3. May represent a vital reference for other signals, in 
particular TMD PDF measurements


- In TMD factorization framework, one can factorize contributions from 
transverse momentum dependent (TMD) PDFs and Soft gluon radiation


4. Observable is sensitive to gluon saturation phenomena, 
possibly measurable at the EIC

S(g)

αs
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H1 Data
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• Same data / selection / unfolding as arXiv:2108.12376

- “Measurement of lepton-jet correlation in deep-inelastic scattering with the H1 

detector using machine learning for unfolding”


• H1 Data from 2006 and 2007 periods at 130 

- Positron-proton collisions


• Fiducial Cuts:

- 

- 

-

pb−1

0.2 < y < 0.7
Q2 > 150 GeV2

pjet
T > 10 GeV

- 

- 

- 


-

−1 < ηlab < 2.5
kT, R = 1.0
q⊥/Q < 0.25
q⊥/pT,jet < 0.3

Cut on  to satisfy : q⊥/pT,jet P⊥ ≫ q⊥
pT,jet ≈ P⊥/2

Taking the leading jet

https://arxiv.org/abs/2108.12376
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Detector-level MC
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Truth

Pull 
Weights

Push 
Weights

Step 1: 
Reweight Sim. to Data

Step 2: 
Reweight Gen.

RAPGAP
DJANGOH

PYTHIA

GEANT

Jetp

e e

Jetp

e e

Geant3

Rapgap, 
Djangoh, 

…

MultiFold
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2 step iterative approach

• Simulated events after 

detector interaction are re-
weighted to match the data


• Create a “new simulation” 
by transforming weights to 
a proper function of the 
generated events


Machine learning is used to 
approximate 2 likelihood 
functions:

Reco MC to Data 
reweighting

Previous and new Gen 
reweighting
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (Sim./Gen.), unfolded with OmniFold and compared to IBU.OmniFold matches or exceeds the unfolding performance
of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas unfolding
with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

unfolded distribution of any observable using Eq. (5).
Hence, this procedure can be viewed as simultaneously
unfolding all observables.

Our study is based on proton-proton collisions gener-
ated at

p
s = 14 TeV with the default tune of Her-

wig 7.1.5 [33–35] and Tune 26 [36] of Pythia 8.243 [37–
39] in order to study a challenging setting where the “nat-
ural” and “synthetic” distributions are substantially dif-
ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [40] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [41] implemented in
FastJet 3.3.2 [42, 43]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used

for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [44, 45] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle
�, and particle identification code [46], restricted to the
experimentally-accessible information (PFN-Ex [44]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [44] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [47].
Neural networks are trained with Keras [48] and Tensor-
Flow [49] using the Adam [50] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [51]. The
first four are jet mass m, constituent multiplicity M , the
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (Sim./Gen.), unfolded with OmniFold and compared to IBU.OmniFold matches or exceeds the unfolding performance
of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas unfolding
with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

unfolded distribution of any observable using Eq. (5).
Hence, this procedure can be viewed as simultaneously
unfolding all observables.

Our study is based on proton-proton collisions gener-
ated at

p
s = 14 TeV with the default tune of Her-

wig 7.1.5 [33–35] and Tune 26 [36] of Pythia 8.243 [37–
39] in order to study a challenging setting where the “nat-
ural” and “synthetic” distributions are substantially dif-
ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [40] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [41] implemented in
FastJet 3.3.2 [42, 43]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used

for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [44, 45] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle
�, and particle identification code [46], restricted to the
experimentally-accessible information (PFN-Ex [44]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [44] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [47].
Neural networks are trained with Keras [48] and Tensor-
Flow [49] using the Adam [50] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [51]. The
first four are jet mass m, constituent multiplicity M , the
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (Sim./Gen.), unfolded with OmniFold and compared to IBU.OmniFold matches or exceeds the unfolding performance
of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas unfolding
with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

unfolded distribution of any observable using Eq. (5).
Hence, this procedure can be viewed as simultaneously
unfolding all observables.

Our study is based on proton-proton collisions gener-
ated at

p
s = 14 TeV with the default tune of Her-

wig 7.1.5 [33–35] and Tune 26 [36] of Pythia 8.243 [37–
39] in order to study a challenging setting where the “nat-
ural” and “synthetic” distributions are substantially dif-
ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [40] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [41] implemented in
FastJet 3.3.2 [42, 43]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used

for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [44, 45] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle
�, and particle identification code [46], restricted to the
experimentally-accessible information (PFN-Ex [44]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [44] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [47].
Neural networks are trained with Keras [48] and Tensor-
Flow [49] using the Adam [50] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [51]. The
first four are jet mass m, constituent multiplicity M , the

Generalization the widely studied bayesian iterative unfolding approach 
Does not inherently depend on the accuracy of particle-level simulation

MultiFold Example

arXiv:1911.09107
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H1 Unfolded Data
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• Leading moment is , expected in lepton-jet events

• All harmonics approach 0.0 at higher , may compromise 

• Rapgap and Django, tuned to HERA II data, exhibit good agreement

•Note small absolute value of central values

⟨ cos(ϕ) ⟩
q⊥ P⊥ ≫ q⊥
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ML Unfolding Motivations
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• Multi-dimensional, un-binned 
unfolding result

- Lepton-Proton momentum imbalance

- PhysRevLett.128.132002


• Jet constituent-level unfolding

- Unbinned Deep Learning unfolding of Jet 

Substructure


• Recycling of unfolded event weights

6

order (NNLO) accuracy in QCD (up to O(↵2
s)) was obtained with the Poldis code [121, 122], which is based on the

Projection to Born Method [123]. These calculations are multiplied by hadronization corrections that are obtained with
Pythia 8.3 [124, 125] using its default set of parameters. These corrections are smaller than 10% for most kinematic
intervals and are consistent with corrections derived by an alternative generator, Herwig 7.2 [126, 127], using its
default parameters. The uncertainty of the calculations is given by the variation the factorization and renormalization
scale Q2 by a factor of two [121, 122] as well as NLOPDF4LHC15 variations [128].

The TMD calculation uses the framework developed in Refs. [33, 34] using the same jet radius and algorithm used in
this work3. The inputs are TMD PDFs and soft functions derived in Ref. [129], which were extracted from an analysis
of semi-inclusive DIS and Drell-Yan data. The calculation is performed at the next-to-leading logarithmic accuracy.
This calculation is performed within TMD factorization and no matching to the high qT region is included, where
the TMD approach is expected to be inaccurate. In contrast to pQCD calculations, the TMD calculations do not
require non-perturbative corrections, because such effects are already included. Calculations with the TMD framework
are available for the TMD sensitive cross sections, which are qjet

T /Q and ��jet. Uncertainties are not yet available
for the TMD predictions4. Additional TMD-based calculations are provided by the MC generator Cascade [131],
using matrix elements from KaTie [132] and parton branching TMD PDFs [133–135]. A first setup integrates to
HERAPDF2.0 [136] and a second setup uses angular ordering and pT as the renormalization scale [137, 138].

�1 0 1 20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
�

je
t
d�

/d
�je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

�1 0 1 2

�jet

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
101 102

10�4

10�3

10�2

10�1

1/
�

je
t
d�

/d
pje

t
T

[1
/G

eV
]

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

101 102

pjet
T [GeV]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

1/
�

je
t
d�

/d
�

�
je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

��jet [rad]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

101

1/
�

je
t
d�

/d
qje

t
T

/Q H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

qjet
T /Q

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
�1 0 1 20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
�

je
t
d�

/d
�je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

�1 0 1 2

�jet

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
101 102

10�4

10�3

10�2

10�1

1/
�

je
t
d�

/d
pje

t
T

[1
/G

eV
]

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

101 102

pjet
T [GeV]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

1/
�

je
t
d�

/d
�

�
je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

��jet [rad]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

101

1/
�

je
t
d�

/d
qje

t
T

/Q H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

qjet
T /Q

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity

�1 0 1 20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
�

je
t
d�

/d
�je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

�1 0 1 2

�jet

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
101 102

10�4

10�3

10�2

10�1

1/
�

je
t
d�

/d
pje

t
T

[1
/G

eV
]

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

101 102

pjet
T [GeV]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

1/
�

je
t
d�

/d
�

�
je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

��jet [rad]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

101

1/
�

je
t
d�

/d
qje

t
T

/Q H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

qjet
T /Q

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
�1 0 1 20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
�

je
t
d�

/d
�je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

�1 0 1 2

�jet

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
101 102

10�4

10�3

10�2

10�1

1/
�

je
t
d�

/d
pje

t
T

[1
/G

eV
]

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

101 102

pjet
T [GeV]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

1/
�

je
t
d�

/d
�

�
je

t

H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

��jet [rad]

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity
10�2 10�1 100

10�2

10�1

100

101

1/
�

je
t
d�

/d
qje

t
T

/Q H1
Q2 > 150 GeV2

0.2 < y < 0.7

pjet
T > 10 GeV
kT, R = 1.0

Data

Pythia 8.3

Herwig 7.2

Djangoh

Rapgap

Cascade set 1

Cascade set 2

NNLO � NP

TMD (LO + NLL�)

10�2 10�1 100

qjet
T /Q

0.5

1.0

1.5

M
od

el
/

D
at

a

artificial horizontal marker o�sets added for clarity

Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the measurement; the bars represent the statistical uncertainty of the measurement, which is typically smaller than the
marker size. The error bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical
uncertainties on the MC predictions are smaller than the markers.

Results. The unfolded data and comparisons to predictions are presented in Fig. 2. The pjetT and ⌘jetlab cross sections
are described within uncertainties by the NNLO calculation. Note that while the QED corrections are mostly small,

3 This differs from the original paper [33] using the anti-kT algorithm. The difference is power suppressed at the accuracy of the calculation.
4 The scale variation procedure that is standard in the collinear framework does not translate easily to the TMD framework [130].

Multifold already used to unfold:  
pe

x , pe
y , pe

z , pjet
T , ηjet, ϕjet, Δϕjet, qjet

T /Qpjet
T , ηjet, ϕjetpe

x , pe
y
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Two Sets of Calculations (Compare 2nd)

11

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥⃗P⊥ = ( ⃗kℓ⊥ − ⃗kJ⊥) / 2

R=1.0

 =140 GeV,  = 20 GeV, 
 = 1.5,  = 25 GeV 

Radiative corrections 
enhanced  

s P⊥
yl Q

∝ (αs ln2 P2
⊥/q2

⊥)n

4

f(n) ' ln(b20/n
2) with b0 = 2e��E (�E is the Euler con-

stant). Also note that g(nR) ⇡ n2R2/4 when nR ⌧ 1,
while g(nR) ⇡ ln(n2R2/b20) in the limit nR � 1. This
indicates that cn vanishes when nR � 1.

When R is large ⇠ O(1), we should return to (7). The
Fourier coe�cients can be evaluated numerically as fol-
lows (see (A3))
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where y± = ±
p
R2 � �2. For example, for R = 1, we

have c0 ' �0.25, c1 = 0.78 and c2 = �0.30. As shown in
Fig. 3, cn decreases approximately as ln 1/R2 for small n
values, while oscillations around zero start to appear for
large-n coe�cients.

We now extend the above one-loop results to all orders
in the TMD framework by resumming the double and
single logarithms in Q2/q2?. This is appropriately carried
out in the Fourier transformed b?-space. The resummed
azimuthal averaged cross section reads [33],
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Z
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(2⇡)2
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⇥e� Sudeq(b?,P?,R) , (13)

where µb ⌘ b0/b? with b0 = 2e��E and �E the Euler
constant. Here and in the following, we neglect the high
order corrections to the hard factor in the resummation
formulas. The Sudakov form factor is defined as

Sudeq =

Z Q
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. (14)

To derive the resummation result for the azimuthal angle
dependent di↵erential cross section, we first compute the
Fourier transfer of the soft gluon radiation contribution
at one-loop order from Eq. (4), by applying the Jacobi-
Anger expansion,

eiz cos(�) = J0(z) + 2
1X

n=1

inJn(z) cos(n�) , (15)

and the integration formula,
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0
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n
. (16)

Importantly, the q0?-integral gives a constant although
originally in momentum space the angular dependent
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FIG. 4. Azimuthal asymmetries in lepton-jet production in
ep collisions at

p
s=140 GeV, P? = 20 GeV, yl = 1.5, Q = 25

GeV, g⇤ =0.1GeV with di↵erent jet cone sizes R = 0.4 (top
panel) and R = 1.0 (bottom panel).

terms are singular 1/q2?, see, Eq. (4). At higher orders
there are double logarithmic corrections but they can be
resummed together with the angular-independent term
[34, 35]. After this resummation, we arrive at

d5�ep!e0qX

dy`d2P?d2q?
=

X

n=1

2 cos(n�)
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⇥e� Sudeq(b?,P?,R) . (17)

An important feature of the above result is that the
Fourier coe�cients scale as

hcos(n�)i / qn? , (18)

in the small-q? region [35].
To evaluate (17), following Ref. [90] we employ the so-

called b⇤-prescription to suppress the large-b? region and
introduce non-perturbative form factors associated with
the initial and final state radiations,

Sudeq(b?) ! Sudeq(b⇤)+SudqNP(b?)+SudjetNP(b?) , (19)

where b⇤ = b?/
p

1 + b2?/b
2
max with bmax = 1.5 GeV�1.

The form factor associated with the incoming quark
is [91, 92]

SudqNP(b?) = 0.106 b2? + 0.42 ln(Q/Q0) ln(b?/b⇤) , (20)

arXiv:2106.05307
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FIG. 4. Azimuthal asymmetries in lepton-jet production in
ep collisions at

p
s=140 GeV, P? = 20 GeV, yl = 1.5, Q = 25

GeV, g⇤ =0.1GeV with di↵erent jet cone sizes R = 0.4 (top
panel) and R = 1.0 (bottom panel).

terms are singular 1/q2?, see, Eq. (4). At higher orders
there are double logarithmic corrections but they can be
resummed together with the angular-independent term
[34, 35]. After this resummation, we arrive at
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An important feature of the above result is that the
Fourier coe�cients scale as

hcos(n�)i / qn? , (18)

in the small-q? region [35].
To evaluate (17), following Ref. [90] we employ the so-

called b⇤-prescription to suppress the large-b? region and
introduce non-perturbative form factors associated with
the initial and final state radiations,

Sudeq(b?) ! Sudeq(b⇤)+SudqNP(b?)+SudjetNP(b?) , (19)

where b⇤ = b?/
p

1 + b2?/b
2
max with bmax = 1.5 GeV�1.

The form factor associated with the incoming quark
is [91, 92]

SudqNP(b?) = 0.106 b2? + 0.42 ln(Q/Q0) ln(b?/b⇤) , (20)

⟨n cos(nϕ)⟩ is plotted

arXiv: 2211.01647

Harmonics of saturation with inputs from GBW model and CT18A PDF 

R=0.4

Soft Gluon Resummation 

https://arxiv.org/abs/2211.01647
https://arxiv.org/pdf/hep-ph/9807513.pdf
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H1 Unfolded Data
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•Note: Calculations done  GeV 
•Differences could be due to sample bin average within the fiducial cuts 
•CT18A is also a TMD calculation, disagreement could also be in 

kinematics constraints

q⊥ ≤ 3.0
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H1 Unfolded Data
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• Three harmonics of the azimuthal angular asymmetry between the lepton 
and leading jet as a function of .   
• Predictions from multiple simulations as well as a pQCD calculation are 

shown for comparison. 
• PYTHIA, not tuned to HERA II, performs inconsistently

q⊥
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Conclusions

14

• Promising measurement to probe soft gluon radiation

- Important reference for lepton-jet DIS measurements!

- Test of pQCD calculations

- Comparison to 3 generators, agree within  GeV


• MultiFold

- First recycling of unfolded event weights! Reusability is a key advantage of 

MultiFold

- This work presents a measurement of moments, requiring the unbinned 

unfolding! 
- Model bias may be due regularized unfolding procedure (i.e. IBU may exhibit 

similar bias) 


• Outlook:

- Because of H1’s fantastic data and simulation conservation, we can use 

recent insight and advances in methodology to analyze 15 year old data

- Important Implications for studies at EIC, both in observable and methods

q⊥ < 2.0
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END

15
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Backup
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Backup Further Background

17

• Machine learning (OmniFold) is used to perform an 8-dimensional, 
unbinned unfolding. 


• Use the 8-dimensional result to explore the  dependence and any other 
observables that can be computed from the electron-jet kinematics

Q2

Extracted from the same phase-space as Yao’s analysis, 
but reporting a different observable
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1. ωn(m) = νpush
n−1 (m)L[(1,Data), (νpush

n−1 , Sim.)](m)

• Detector level simulation is weighted to match the data


•   approximated by  classifier trained 
to distinguish the Data and Sim.
L[(1,Data), (νpush

n−1 , Sim.)](m)

• Transform weights to a proper function of the generated events to 
create a new simulation


•  approximated by classifier 
trained to distinguish Gen. with pulled weights from Gen. using

 

L[(ωpull
n , Gen.), (νn−1, Gen.)](t)

weightsold / weightsnew

2. νn(t) = ν0(t)L[(ωpull
n , Gen.), (ν0, Gen.)](t)

Each iteration of step 2 learns the correction from the original  weights 
Advantage: Easier implementation, no need to store previous  model 

Disadvantage: Learning correction from  is more computationally expensive

ν0
νn

ν0

OmniFold

νn−1(t) = νpush
n (m)

ωpull
n (t) = ωn(m)
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Systematic Uncertainties

19

• Model Dependance:

- The bias of the unfolding procedure is determined by taking the difference in the 

result when unfolding using RAPGAP and DJANGO

- The two generators have different underlying physics, thus providing a realistic 

evaluation of the procedure bias


• QED Radiation Corrections

- Difference of correction between RAPGAP and DJANGO

- Take RAPGAP with and without QED corrections

- Take DJANGO with and without QED corrections


• Systematic uncertainties are determined by varying an aspect of 
the simulation and repeating the unfolding

- These values detail the magnitude of variation:

- HFS-object energy scale: 

- HFS-object azimuthal angle:  mrad

- Scattered lepton azimuthal:  mrad

- Scattered lepton energy: 

±1 %
±20

±1
±0.5 − 1.0 %
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Investigation of Model Bias vs.  q⊥ [GeV]
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• Leading uncertainty is model bias in the unfolding for  and 

• Difference in the result when unfolding using RAPGAP and DJANGO

• Reporting Abs. Errors; central values are very close to 0.0

• The Total Uncertainty is quite stable between harmonics

cos(2ϕ) cos(3ϕ)
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Jet Substructure Observables
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IBU Generalization
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Using Classifiers that 
approximate the 
Likelihood ratio

IBU

Continuous 
Generalization

Both converge to maximum likelihood estimate of particle-level distribution
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Cross Section & ϕ

23

Integration over 
emitted gluon 
phase space

Gluon Matrix 
Element

Fourier Coefficient 
(Introduces  
dependance)

ϕ
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Differential Cross Section

24

Credit: Fanyi Zhao
Note: slightly different angle definition, but 

background still applies ]
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