

IWHSS 2023 25/June/2023 — 28/June/2023 SPHENIX Cold-QCD Program Genki Nukazuka (RIKEN/RBRC) () on behalf of the sPHENIX Collaboration

- sPHENIX Collaboration
 - Physics Programs
 - Detector
 - Runs
- sPHENIX Cold-QCD program
- sPHENIX Today

2

Relativistic Heavy Ion Collider (RHIC)

- First collisions in 2000
- p+p, Au+Au, O+O, etc
- $p^{\rightarrow(\uparrow)} + p^{\rightarrow(\uparrow)}$
- √s_{NN} ~ 7 500 GeV

ran at RHIC from 2001 to 2016. They contributed to the discovery of Quark-Gluon Plasma (QGP) and the study of proton spin structure. Data analysis is still continuing.

Relativistic Heavy Ion Collider (RHIC)

- First collisions in 2000
- p+p, Au+Au, O+O, etc
- $p^{\rightarrow(\uparrow)} + p^{\rightarrow(\uparrow)}$
- √s_{NN} ~ 7 500 GeV

ran at RHIC from 2001 to 2016. They contributed to the discovery of Quark-Gluon Plasma (QGP) and the study of proton spin structure. Data analysis is still continuing.

- State-of-the-Art Jet Detector at RHIC
- The collaboration was formed in 2016.
- Quark-Gluon Plasma (QGP) and Cold-QCD
- About 400 members from 81 institutions and 14 countries
- Home Page: <u>https://www.sphenix.bnl.gov/</u>

- Jet correlations
- Nuclear Modification Factor
- Jet structure
- Jet flavor dependencies

 Sequential quarkonia melting: Suppression of quarkonium depending on the state

5

sPHENIX has a hadron calorimeter in midrapidity at RHIC first time for jet reconstruction.

It covers full azimuthal angle 2 π and $|\eta| < 1.1$ in $|z_{vtx}| < 10$ cm.

Magnet

Superconducting solenoid magnet from Babar at SLAC provides 1.5 T

Outer and Inner Hcal (Hadronic Calorimeter)

- Inner part: non-magnetic metal and scintillator
- Outer part: Iron and scintillator
- Measurements can be done before multiple scattering of hadron shower by the cryostat for the magnet

EMcal (Electromagnetic Calorimeter)

- consists of tungsten and scintillating fibers
- compact, small segmentation ($\Delta \eta \times \Delta \phi = 0.024 \times 0.024$)

sPHENIX Detector

Tracking detectors

- **TPC** (Time Projection Chamber)
 - r < 80 cm
 - contributes good momentum resolution
- •**TPOT** (TPC Outer Tracker)
 - Micromegas
 - for calibration of beam-induced space charge distortions
- **INTT** (Intermediate Tracker)
 - r < 10 cm
 - tracking between TPC and MVTX with great timing resolution
- MVTX (MAPS-based Vertex Detector)
 - r < 4 cm
 - Monolithic active pixel detector with 30 µm pitch for vertexing

Forward Detectors

- **MBD** (Minimum Bias Detector)
 - 3.51 < | η | < 4.61
 - provides minimum bias trigger, reuse of the PHENIX BBC
- **sEPD** (sPHENIX Event Plane Detector)
 - $-2.0 < |\eta| < 4.9$,
 - contributes to the great event place resolution
- **ZDC** (Zero Degree Calorimeter)
 - z =± 18.5 m
 - works for centrality and luminosity measurements and trigger

sPHENIX Detector

Year	Beam	√snn (GeV)	Data Taking	Luminosity, (z < 10 cm)		
			(Weeks)	Recorded	Samp	
2023	Au + Au	200	9	3.7 nb ⁻¹	4.5 n	
2024	p⁺+ p†	200	12	0.3 pb ⁻¹ (5 kHz)	45 p	
2024	p⁺+ Au	200	5	0.003 pb ⁻¹	11 p	
2025	Au + Au	200	20.5	13 nb ⁻¹	21 nl	

Year	Beam	√snn (GeV)	Data Taking	Luminosity, (z < 10 cm)		
			(Weeks)	Recorded	Samp	
2023	Au + Au	200	9	3.7 nb ⁻¹	4.5 n	
2024	p⁺+ p†	200	12	0.3 pb ⁻¹ (5 kHz)	45 p	
2024	p⁺+ Au	200	5	0.003 pb ⁻¹	11 p	
2025	Au + Au	200	20.5	13 nb ⁻¹	21 nl	

Year	Beam	√snn (GeV)	Data Taking	Luminosity, (z < 10 cm)		
			(Weeks)	Recorded	Samp	
2023	Au + Au	200	9	3.7 nb ⁻¹	4.5 n	
2024	p⁺+ p†	200	12	0.3 pb ⁻¹ (5 kHz)	45 p	
2024	p⁺+ Au	200	5	0.003 pb ⁻¹	11 p	
2025	Au + Au	200	20.5	13 nb ⁻¹	21 nl	

- sPHENIX Collaboration
 - Physics Programs
 - Detector
 - Runs
- sPHENIX Cold-QCD program
- sPHENIX Today

 $Measure presents 0.06 \text{ Interpreting the samp., P=0.57 of etransverse single_0.8 pin asymptotic tries (IFSSA)$ enable us to study $0.1 < x_{r} < 0.2$ 0.02 $x_{r} = 0.20 - 0.25$ p+Au 50-84%

- Transverse-momentum dependent parton distribution (TMDs) p+Au $x_{\rm F} = 0.10-0.15$ 20-50%
- -0.01 Correlators in the colline ar higher-twist PHENIX PRL123, 122001
- Fragmentation functions ($F_{p}F_{G_{evi}}$
- Nuclear dependence

 \bullet

- Nuclear parton distribution function (PDF) \bullet
 - etc. R_{pAl} Yield / 2.5 GeV **SPHENIX** BUP 2022 10 p+p direct photons ----□ Jets Years 1-3 Direct Photons SPHENIX BUP 2022 10 □ Charged Hadrons 10' p+Au Direct Photons Charged Hadrons Year 2: 62 pb⁻¹ p+ 0.11 pb⁻' / 10³ 10² charged hadrons 10 ********** The proje 90 60 30 80 50 10 20 40 70 100 $p_{T}[GeV]$ from p +2p or p

p+p, 6.2 pb⁻¹ rec. p+Au. 10 nb⁻¹ rec.

P = 0.57

inclusive

Table of TMDs

functions		Spin state of nucleon				
p+Au	_	No pol.	Long.	Trans.		
0-20%	parton No pol.	Number density f_1		Sivers f_{1T}^{\perp}		
	state of Long.		Helicity g_{1L}	Worm- Gear g_{1T}		
jets	Spin ans.	Boer- Muldors	Worm-Gear	Transvessity $m{h}_1$		
p		h_1^\perp	h_{1L}^\perp	Pretzelo $sity \ h_{1'}^\perp$		
ected total yield $p + Aquat^{s}$ SPHEN	X.	See J. Zhang's for d	(STAR) and B. Ujva etails of referred s ⁻	ári's (PHENIX) tudies.		

Direct photon $p^{\uparrow} + p \rightarrow \gamma + X$

- Only the initial state effect is involved.
- Tri-gluon correlation function in the collinear twist-3 framework can be studied.
- It's connected with the gluon Sivers TMD PDF.
- PHENIX reported the first measurement of A_N from the direct photon.
- sPHENIX can improve the statistics of the measurement significantly.

Statistical projection of direct photon measurement at sPHENIX.

Open heavy flavor $p^{\uparrow} + p \rightarrow e^{+/-} + X$ **Prompt D**⁰ $p^{\uparrow} + p \rightarrow D^0 / \bar{D^0} + X$

- Tri-gluon correlation function in the collinear
- sphenix can measure not the ave flavor electrons but D^0 . CMS D^0 , p+Pb High-Mult
- D⁰ measurements.

measurement.

Jet, Dijet, and γ -Jet

Inclusive jet $p^{\uparrow} + p \rightarrow \text{jet} + X$

- TSSA has not been measured at central rapidity.
- sPHENIX can provide measurements with uncertainties at the level of 10⁻⁴.
- Flavor separation by tagging leading hadron charge.

Yield (dijet

Jet, Dijet, and

Inclusive jet $p \rightarrow jet + X$

- TSSA has not been measured at central rapidity.
- sPHENIX can provide measurements with uncertainties at the level of 10^{-4} .
- Flavor separation by tagging leading hadron charge.

Dijet $p^{\uparrow} + p \rightarrow j \notin f \neq j \notin X$

- ₀└╌╌<u>╷</u>╸╼╷╷╷╷╷╷╷╷╷╷╴╸ • Direct access to parton intrinsic transverse momentum.
- STAR preliminary results showed a nonzero effect for charge-tagged jets.
- sPHENIX will significantly contribute to dijet measurement. -0.5 0 0.5 1 1.5 2 2.5 3 y_{dijet}

Yield (dijet)

90000 50 GeV < M, GeV

Yield (dijet

Jet, and

Yield (dijet)

90000 50 GeV < M GeV

Inclusive jet $p \rightarrow jet + X$

- TSSA has not been measured at the first rapidity.
- sPHENIX can provide measurements with uncertainties at the level of 10-4.
- Flavor separation by tagging leading hadron charge.

Dijet $p^{\uparrow} + p \rightarrow j \notin f \neq j \notin X$

- Direct access to parton intrinsic transverse momentum.
- STAR preliminary results showed a nonzero effect for charge-tagged jets.
- sPHENIX will significantly contribute to dijet measurement.

y-Jet $p^{\uparrow} + p \rightarrow \gamma + jet + X^{\circ} + X^{\circ}$

- Quark-gluon scattering process isolated at leading order.
- Gluon Sivers effect can be accessed.

Di-hadron $p^{\uparrow} + p \rightarrow h^+ + h^- + X$

• Di-hadron TSSA A_{UT} gives access to Transversity PDF *h*¹ and Interference Fragmentation Function (FF) H_{1a}^{\triangleleft} :

$$d\sigma_{UT} \propto \sin(\phi_{RS}) \int dx_a dx_b f_1(x_a) h_1(x_b) \frac{d\Delta\hat{\sigma}}{d\hat{t}} H_{1,q}^{4}(z, M)$$
 0.0

- The results from STAR agree with the theoretical prediction using SIDIS and e⁺e⁻ data within statistical uncertainty.
- sPHENIX can extract it with great statistical uncertainty.

Nuclear Dependence 0.06 sPHENIX BUP 2022, Years 1-3 • $A_{N} / free m + p^{+} + K, p^{-1} + s + h^{-1} + s + h^{-1} + Au from RHIC:$ PHENIX: Strong nuclear dependency in A_N for ^{持+} in 0.04 the intermediate rapidity range (with $0.10 \times 10^{-1} \times 10$ • STAR: no significant nuclear dependence in A_N for π_0 in 0.03 forward rapidity (with 0.2 < $x_F < 0.7$). 0.0 clear explanation at the moment = 0.10-0.15 • SPHENIX is able to collect much more data in this $x_{F} = 0.05-0.10$ ^{0.01} Annel with fine binning. Showing only points with $\delta(A_{N}) < 1\%$ 10 8 6 p_{τ} [GeV]

Those are a just part of the topics!!

2021/10 Magnet

2022/05 Outer HCAL

2023/01 TPC

2023/03 INTT

2023/03 MVTX

2023/04 MBD

The first beam came in 2023/May!!!

2022/11 EMCAL

SPHENIX Today

DC

Event displays of accumulated events (left) and a single track (right).

Neutron peaks in ADC distribution. Correlation b/w the North and the South parts.

4000

- sPHENIX, a state-of-the-art jet detector at RHIC, studies QGP and Cold-QCD. It consists of
 - Hcal and EMcal
 - Superconducting solenoid magnet
 - Tracking detectors at the central rapidity $|\eta| < 1.1$: TPC, TPOT, INTT, and MVTX
 - Forward detectors: sEPD, MBD, and ZDC
- Measurement with $p^{\uparrow} + p^{\uparrow}$ and $p^{\uparrow} + Au$ collisions in 2024 enables us to study lacksquare
 - Tri-gluon correlator
 - Sivers TMD PDF, Transversity PDF
 - Collins FF, Interference FF
 - Nuclear modification, nuclear PDF,
 - etc.
- The construction was finished. Beam came from 2023/May.
- We are now in the commissioning phase.

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]	
2024	$p^{\uparrow}+Au$	200		5	0.003 pb ⁻¹ [5 kHz]	$0.11 \mathrm{pb}^{-1}$
					0.01 pb ⁻¹ [10%- <i>str</i>]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm
2026	$p^{\uparrow}p^{\uparrow}$	200	28	15.5	1.0 pb ⁻¹ [10 kHz]	80 pb ⁻¹
					80 pb ⁻¹ [100%- <i>str</i>]	
_	O+O	200	_	2	18 nb ⁻¹	37 nb ⁻¹
					37 nb ^{−1} [100%- <i>str</i>]	
_	Ar+Ar	200	_	2	$6 \mathrm{nb}^{-1}$	12 nb ⁻¹
					12 nb ⁻¹ [100%- <i>str</i>]	
2027	Au+Au	200	28	24.5	30 nb ⁻¹ [100%- <i>str</i> /DeMux]	30 nb ⁻¹

