Pion GPDs: Theory, modeling and experimental access

Jose Manuel Morgado Chávez

International Workshop on Hadron Structure and Spectroscopy 2023 Prague, Czech Republic June 26-28th 2023

Email: jose-manuel.morgadochavez@cea.fr

Generalized parton distributions

Generalized parton distributions (GPDs)

(GPD) – Generalized parton distributions: Non-local quark and gluon operators, evaluated between hadron states in non-forward kinematics and projected onto the light front.

[Phys.Rev.D:55(1197)7114]

Example: Leading twist chiral-even GPDs of a spinless hadron.

$$H^{q}_{\pi}(x,\xi,t) = \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle \pi(p') | \bar{\psi}^{q}(-\lambda n/2) \gamma^{\mu} \psi^{q}(\lambda n/2) | \pi(p) \rangle n_{\mu},$$

$$H^{g}_{\pi}(x,\xi,t) = \int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle \pi(p') | G^{\mu\alpha}(-\lambda n/2) G^{\nu}_{\alpha}(\lambda n/2) | \pi(p) \rangle n_{\mu} n_{\nu}$$

GPDs: Definition and properties

- x: Momentum fraction of P.
- ξ : Fraction of momentum longitudinally transferred.
- t: Momentum transfer.

GPDs: Definition and properties

• Support:

[Phys.Lett.B:428(1998)359]

$$(x,\xi) \in [-1,1] \otimes [-1,1]$$

• Polynomiality:

[X.Ji-JPG:1181(24)1998, A.Radyushkin-PLB:81(449)1999]

$$\int_{-1}^{1} dx x^{m} H(x,\xi,t) = \sum_{\substack{k=0\\k \text{ even}}}^{m+1} c_{k}^{(m)}(t) \xi^{k}$$

• Positivity:

[P.V.Pobylitsa-PRD:114015(65)2002, B.Pire et al.-EPJC:103(8)1999]

$$|H^q(x,\xi,t=0)| \le \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)} \quad , \qquad |x| \ge \xi$$

• Low energy soft-pion theorem

[M.V.Polyakov-NPB:231(555)1999, C.Mezrag et al.-PLB:190(741)2015]

PCAC/Axial-Vector WTI

Positivity of Hilbert space norm

Lorentz invariance

Analyticity/Causality

3/15

GPDs: Definition and properties

Probabilistic interpretation:

Probability amplitude of finding a parton at a given position in transverse plane carrying a momentum fraction "x" of the hadron's aver-

aged light-cone momentum. [Phys.Rev.D:66(2002)119903]

Striking properties:

- PDFs as forward limit.
- Electromagnetic and gravitational FFs as Mellin moments.
- Connection with energy-momentum tensor: Angular momentun, pressure... [Phys.Lett.B:555(2003)57, Phys.Rev.Lett.:28(1997)610]
- Parametrize DVCS amplitudes through CFFs. [e.g. Phys.Rev.D:59(1999)07009, Phys.Rev.D:56(1997)2982]

GPDs: Pion structure and generalized parton distributions

Hadron structure

How do quarks and gluons combine to make hadrons up?

PIONS

- 1. "Simpler" than baryons
- 2. Connected with DCSB

GPDs

- 1. Connection with elementary degrees of freedom
- 2. "3D" picture of hadrons
- 3. Experimentally accessible
- 1. Can we obtain "theoretically complete" pion GPDs?
- 2. What can we learn about actual pions?

GPD modeling

GPD modeling

Question: Can we build pion GPDs fulfilling all these constraints?

2. Double Distribution representation [Fortsch.Phys.:42(1994)101, hep-ph/0101225]

Relying on Radon transform, \mathcal{R}

 $\begin{array}{c} \text{Polynomiality} \checkmark \\ \text{Positivity} \end{array}$

Problem: Different modeling strategies and different issues.

GPD modeling

Question: Can we build pion GPDs fulfilling all these constraints?

1. Overlap representation [Nucl.Phys.B596(2001)33] Based on LFWFs, $\Psi^{q}(x, k_{\perp}^{2})$ Polynomiality ? Positivity \checkmark

2. Double Distribution representation [Fortsch.Phys.:42(1994)101, hep-ph/0101225]

Relying on Radon transform, ${\cal R}$

Polynomiality \checkmark Positivity ?

Problem: Different modeling strategies and different issues.

Solution

Covariant extension: Given a DGLAP GPD, the covariant extension allows computing the ERBL GPD such that polynomiality is satisfied. [Eur.Phys.J.C:77(2017)12,906]

GPD modeling: DSE

GPD modeling: DSE Ansätze

1. "Factorization" of LFWFs: DSE-PTIRs.

[Phys. Lett. B 815 (2021) 136158, Chin. Phys. C 46 (2022) 1, 013105]

$$\Psi_{\pi}^{\lambda_{1}\lambda_{2}}\left(x,k_{\perp}^{2}\right) = \sqrt{q_{\pi}\left(x\right)} \frac{i^{\lambda_{1}\lambda_{2}}M^{2}}{\left(k_{\perp}^{2}+M^{2}\right)^{2}}$$

2. Overlap representation: Positive pion GPD [Phys. Rev. D 105 (2022) 9, 094012]

$$H_{\pi}^{q}(x,\xi,t)|_{\text{DGLAP}} = \frac{\sqrt{q_{\pi}(x_{-})q_{\pi}(x_{+})}}{(1+z^{2})^{2}} \left[3 + \frac{1-2z}{1+z} \frac{\operatorname{arctanh}\left(\sqrt{\frac{z}{1+z}}\right)}{\sqrt{\frac{z}{1+z}}} \right], z = \frac{-t(1-x)^{2}}{4M^{2}(1-\xi^{2})}$$
2.0 Two models:

x

Two models:

• Algebraic model

$$q_{\pi}^{\text{Alg.}}\left(x\right) = \mathcal{N}_{q} x^{2} \left(1-x\right)^{2}$$

• Realistic model (DSE) [Phys.Rev.D:101(2020)5,054014]

$$q_{\pi}(x) = q_{\pi}^{\text{Alg.}}(x) \left[1 + \gamma x (1-x) + \rho \sqrt{x (1-x)} \right]$$

GPD modeling: DSE Ansätze

Continuity (but non-differentiability) along the $x = \xi$ line, as expected in DVCS amplitudes

Phenomenology of pion GPDs

Phenomenology of pion GPDs

Hadron structure

How do quarks and gluons combine to make hadrons up?

Hard kernel \mathcal{K}^p : perturbative information Generalized Parton distributions H^p : non perturbative QCD

Phenomenology of pion GPDs: Sullivan process

 $Sullivan\ process\ {\tiny [Phys.Rev.D:5(1972)1732}$

Deep inelastic electron-proton scattering with πn fixed final states.

One-pion-exchange approximation: [Eur.Phys.J.C:58(2008)179]

• $|t|^{\text{Max.}} = 0.6 \text{ GeV}^2$ • Factorization: $\sigma_L^{\gamma^*} >> \sigma_1^{\gamma^*}$ Met at EIC [arXiv[phys.ins-det]2103.05419]

Employed for EFFs [Phys.Rev.C:78(2008)045203]

Provide access to pion GPDs

Phenomenology of pion GPDs: The path towards DVCS

- 1. Start from state-of-the-art models for pion GPDs.
- 2. Leading order scale evolution for GPDs.
- 3. Convolution with coefficient functions: CFFs.

Phenomenological study of pion's structure

Phys. Rev. Lett. 128 (2022) 20, 202501

Phenomenology of pion GPDs: Scale evolution

- Non-zero gluon distribution generated by scale evolution.
- Uncertainty band narrowed.
- Continuity along $x = \xi$ lines.

Phenomenology of pion GPDs: Compton Form Factors

- Small effect of NLO corrections to quark amplitudes.
- Dominant effect of gluons.

Gluon dominance makes essential at least NLO accuracy in any phenomenlogical analysis of DVCS at an EIC.

Phenomenology of pion GPDs: Generating events

[Phys. Rev. Lett. 128 (2022) 20, 202501]

Monte Carlo event generation

- Pick events compatible with detector geometry and performance: EIC and EicC. [arXiv[phys.ins-det]2103.05419, arXiv[nucl-ex]2102.09222]
- Add kinematical cuts: [Eur.Phys.J.C:58(2008)179]
 - DVCS kinematics and one pion exchange approximation:

$$s_{\pi}^{\text{Min}} = 4 \text{ GeV}^2$$

$$* |t_{\pi}|^{\text{Max.}} = 0.6 \text{ GeV}^2$$

- Reduce contamination of resonances (Δ): $M_{n\pi}^2 \gtrsim 4 \,\text{GeV}^2$
- Integrated one-year luminosity.

[[]Phys. Rev. Lett. 128 (2022) 20, 202501]

The cross-section can be written as: [Phys.Rev.D:79(2009)014017s]

$$\left|\mathcal{M}_{e\pi \to e\gamma\pi}\right|^{2} = C_{\rm BH}F_{\pi}^{2}\left(t_{\pi}\right) \pm \frac{F_{\pi}}{Q}\left(C_{\rm int}\left(\psi\right)\operatorname{Re}\mathcal{H}_{\pi} + \lambda S_{\rm Int}\left(\psi\right)\operatorname{Im}\mathcal{H}_{\pi}\right) + \frac{1}{Q^{2}}C_{\rm DVCS}\left|\mathcal{H}_{\pi}\right|^{2}$$

[[]Phys. Rev. Lett. 128 (2022) 20, 202501]

The cross-section can be written as: [Phys.Rev.D:79(2009)014017s]

$$\left|\mathcal{M}_{e\pi\to e\gamma\pi}\right|^{2} = C_{\rm BH}F_{\pi}^{2}\left(t_{\pi}\right) \pm \frac{F_{\pi}}{Q}\left(C_{\rm int}\left(\psi\right)\operatorname{Re}\mathcal{H}_{\pi} + \lambda S_{\rm Int}\left(\psi\right)\operatorname{Im}\mathcal{H}_{\pi}\right) + \frac{1}{Q^{2}}C_{\rm DVCS}\left|\mathcal{H}_{\pi}\right|^{2}$$

$$\left|\mathcal{H}_{\pi}\right|^{2} = \operatorname{Re}^{2}\left(\mathcal{H}_{\pi}\right) + \operatorname{Im}^{2}\left(\mathcal{H}_{\pi}\right) \sim \operatorname{Re}^{2}\left(\left|\mathcal{H}_{\pi}^{q,\operatorname{LO}}\right| - \left|\mathcal{H}_{\pi}^{g}\right|\right) + \operatorname{Im}^{2}\left(\left|\mathcal{H}_{\pi}^{q,\operatorname{LO}}\right| - \left|\mathcal{H}_{\pi}^{g}\right|\right)$$

[[]Phys. Rev. Lett. 128 (2022) 20, 202501]

The cross-section can be written as: [Phys.Rev.D:79(2009)014017s]

$$\left|\mathcal{M}_{e\pi\to e\gamma\pi}\right|^{2} = C_{\rm BH}F_{\pi}^{2}\left(t_{\pi}\right) \pm \frac{F_{\pi}}{Q}\left(C_{\rm int}\left(\psi\right)\operatorname{Re}\mathcal{H}_{\pi} + \lambda S_{\rm Int}\left(\psi\right)\operatorname{Im}\mathcal{H}_{\pi}\right) + \frac{1}{Q^{2}}C_{\rm DVCS}\left|\mathcal{H}_{\pi}\right|^{2}$$

$$\begin{aligned} |\mathcal{H}_{\pi}|^{2} &= \operatorname{Re}^{2}\left(\mathcal{H}_{\pi}\right) + \operatorname{Im}^{2}\left(\mathcal{H}_{\pi}\right) \sim \operatorname{Re}^{2}\left(\left|\mathcal{H}_{\pi}^{q,\mathrm{LO}}\right| - |\mathcal{H}_{\pi}^{g}|\right) + \operatorname{Im}^{2}\left(\left|\mathcal{H}_{\pi}^{q,\mathrm{LO}}\right| - |\mathcal{H}_{\pi}^{g}|\right) \\ & \text{Low energy, } Q^{2} < 2 \text{ GeV}^{2} & \text{Intermediate energies} \\ |\mathcal{H}_{\pi}|_{Q^{2}<2 \text{ GeV}^{2}}^{2} \sim \left|\mathcal{H}_{\pi}^{g}\right|_{Q^{2}<2 \text{ GeV}^{2}}^{2} > \left|\mathcal{H}_{\pi}^{q,\mathrm{LO}} - \mathcal{H}_{\pi}^{g}\right|_{2$$

[[]Phys. Rev. Lett. 128 (2022) 20, 202501]

The cross-section can be written as: [Phys.Rev.D:79(2009)014017s]

$$\left|\mathcal{M}_{e\pi \to e\gamma\pi}\right|^{2} = C_{\rm BH}F_{\pi}^{2}\left(t_{\pi}\right) \pm \frac{F_{\pi}}{Q}\left(C_{\rm int}\left(\psi\right)\operatorname{Re}\mathcal{H}_{\pi} + \lambda S_{\rm Int}\left(\psi\right)\operatorname{Im}\mathcal{H}_{\pi}\right) + \frac{1}{Q^{2}}C_{\rm DVCS}\left|\mathcal{H}_{\pi}\right|^{2}$$

$$\left|\mathcal{H}_{\pi}\right|^{2} = \operatorname{Re}^{2}\left(\mathcal{H}_{\pi}\right) + \operatorname{Im}^{2}\left(\mathcal{H}_{\pi}\right) \sim \operatorname{Re}^{2}\left(\left|\mathcal{H}_{\pi}^{q,\mathrm{LO}}\right| - \left|\mathcal{H}_{\pi}^{g}\right|\right) + \operatorname{Im}^{2}\left(\left|\mathcal{H}_{\pi}^{q,\mathrm{LO}}\right| - \left|\mathcal{H}_{\pi}^{g}\right|\right)$$

Low energy, $Q^{2} < 2 \ \operatorname{GeV}^{2}$ Intermediate energies

Quark-gluon "interference": Modulates expected number of events

Summary and perspectives

Summary and perspectives

- 1. Can we obtain "theoretically complete" pion GPDs? YES!
 - Positivity: "Factorization hypothesis"
 - Polynomiality: Covariant extension
 - Support and soft-pion theorem
 - Continuity along $x = \xi$
- 2. What can we learn from them about actual pions?
 - GPDs might be accessible in future experiments
 - Crucial role of gluons within pions
 - Modulate expected statistics
 - Manifest themselves through beam-spin asymmetries

Summary and perspectives

- 1. Can we obtain "theoretically complete" pion GPDs? YES!
 - Positivity: "Factorization hypothesis"
 - Polynomiality: Covariant extension
 - Support and soft-pion theorem
 - Continuity along $x = \xi$
- 2. What can we learn from them about actual pions?
 - GPDs might be accessible in future experiments
 - Crucial role of gluons within pions
 - Modulate expected statistics
 - Manifest themselves through beam-spin asymmetries

Future work

- "Incomplete" covariant extension: Trigger Lattice efforts (In preparation)
- Refine evolution
- Neutral pions: Direct window to GPDs?

Thank you!

Phenomenology of pion GPDs: EIC beam-spin asymmetries

[Phys. Rev. Lett. 128 (2022) 20, 202501]

$$\mathcal{A}\left(\psi\right) = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \sim s_{\mathrm{Int}}^{1} \mathrm{Im} \mathcal{H}_{\pi} \sin \psi$$

 $\mathrm{Im}\left(\mathcal{H}_{\pi}\right) = \mathrm{Im}\left(\mathcal{H}_{\pi}^{q,\mathrm{LO}}\right) + \mathrm{Im}\left(\mathcal{H}_{\pi}^{q,\mathrm{NLO}}\right) + \mathrm{Im}\left(\mathcal{H}_{\pi}^{g}\right) \sim \mathrm{Im}\left|\mathcal{H}_{\pi}^{q,\mathrm{LO}}\right| - \mathrm{Im}\left|\mathcal{H}_{\pi}^{g}\right|$

Phenomenology of pion GPDs: EIC beam-spin asymmetries

[Phys. Rev. Lett. 128 (2022) 20, 202501]

Sign inversion: Smoking gun for gluon dominance

$$H\left(x,\xi,t\right) = \int_{\Omega} d\beta d\alpha \delta\left(x-\beta-\alpha\xi\right) h\left(\beta,\alpha,t\right) + \frac{1}{|\xi|} D^{+}\left(\frac{x}{\xi},t\right) + sign\left(\xi\right) D^{-}\left(\frac{x}{\xi},t\right)$$

- $\bullet\,$ DGLAP GPDs receive ${\bf NO}$ D-term contributions.
- The inverse Radon transform exists, is unique and can be evaluated.
- Soft-pion theorem tames D-term contributions to the ERBL region.

GPD properties			
Support	/	Positivity	/
[Diehl-PLB(1998)]	V	[PobyPRD(2002), Pire- EPJC(1999)]	V
Polynomiality		Soft-pion	
[Ji-JPG(1998), Radyu PLB(1999)]	V	[PolyNPB(1999), Mezr PLB(2015)]	V

DGLAP

$$H\left(x,\xi,t\right) = \int_{\Omega} d\beta d\alpha \delta\left(x-\beta-\alpha\xi\right) h\left(\beta,\alpha,t\right) + \frac{1}{|\xi|} D^{+}\left(\frac{x}{\xi},t\right) + sign\left(\xi\right) D^{-}\left(\frac{x}{\xi},t\right)$$

- The inverse Radon transform exists, is unique and can be evaluated.
- Soft-pion theorem tames D-term contributions to the ERBL region.

GPD properties			
Support	/	Positivity	/
[Diehl-PLB(1998)]	V	[PobyPRD(2002), Pire- EPJC(1999)]	V
Polynomiality		Soft-pion	
[Ji-JPG(1998), Radyu PLB(1999)]	V	[PolyNPB(1999), Mezr PLB(2015)]	V

$$H\left(x,\xi,t\right) = \int_{\Omega} d\beta d\alpha \delta\left(x-\beta-\alpha\xi\right) h\left(\beta,\alpha,t\right) + \frac{1}{|\xi|} D^{+}\left(\frac{x}{\xi},t\right) + sign\left(\xi\right) D^{-}\left(\frac{x}{\xi},t\right)$$

- DGLAP GPDs receive **NO** D-term contributions.
- The inverse Radon transform exists, is unique and can be evaluated.
- Soft-pion theorem tames D-term contributions to the ERBL region.

GPD properties			
Support	/	Positivity	/
[Diehl-PLB(1998)]	V	[PobyPRD(2002), Pire- EPJC(1999)]	V
Polynomiality		Soft-pion	
[Ji-JPG(1998), Radyu PLB(1999)]	\checkmark	[PolyNPB(1999), Mezr PLB(2015)]	V

$$H\left(x,\xi,t\right) = \int_{\Omega} d\beta d\alpha \delta\left(x-\beta-\alpha\xi\right) h\left(\beta,\alpha,t\right) + \frac{1}{|\xi|} D^{+}\left(\frac{x}{\xi},t\right) + sign\left(\xi\right) D^{-}\left(\frac{x}{\xi},t\right)$$

- $\bullet\,$ DGLAP GPDs receive ${\bf NO}$ D-term contributions.
- The inverse Radon transform exists, is unique and can be evaluated.
- Soft-pion theorem tames D-term contributions to the ERBL region.

GPD properties			
Support	_	Positivity	/
[Diehl-PLB(1998)]	V	[PobyPRD(2002), Pire- EPJC(1999)]	V
Polynomiality		Soft-pion	
[Ji-JPG(1998), Radyu PLB(1999)]	\checkmark	[PolyNPB(1999), Mezr PLB(2015)]	

$$H\left(x,\xi,t\right) = \int_{\Omega} d\beta d\alpha \delta\left(x-\beta-\alpha\xi\right) h\left(\beta,\alpha,t\right) + \frac{1}{|\xi|} D^{+}\left(\frac{x}{\xi},t\right) + sign\left(\xi\right) D^{-}\left(\frac{x}{\xi},t\right)$$

- $\bullet\,$ DGLAP GPDs receive ${\bf NO}$ D-term contributions.
- The inverse Radon transform exists, is unique and can be evaluated.
- Soft-pion theorem tames D-term contributions to the ERBL region.

GPD properties			
Support		Positivity	/
[Diehl-PLB(1998)]	V	[PobyPRD(2002), Pire- EPJC(1999)]	V
Polynomiality		Soft-pion	
[Ji-JPG(1998), Radyu PLB(1999)]	\checkmark	[PolyNPB(1999), Mezr PLB(2015)]	

Covariant extension: Allows to overcome challenges of known modeling strategies. Input: (part of) DGLAP GPD

Covariant extension: Given a DGLAP GPD, the covariant extension allows for computing the corresponding ERBL GPD such that polynomiality is satisfied. [Eur.Phys.J.C:77(2017)12,906]

$$H(x,\xi) = \mathcal{R}\left[h\left(\beta,\alpha\right)\right] + \frac{1}{|\xi|}D^{+}\left(\frac{x}{\xi}\right) + sign\left(\xi\right)D^{-}\left(\frac{x}{\xi}\right)$$

2. Covariant extension: ERBL GPD

1. Build positive DGLAP GPD

3. Soft pion theorem: fix $D^{\pm}(\alpha, 0)$

Covariant extension: Given a DGLAP GPD, the covariant extension allows for computing the corresponding ERBL GPD such that polynomiality is satis-fied.[Eur.Phys.J.C:77(2017)12,906]

$$H(x,\xi) = \mathcal{R}\left[h\left(\beta,\alpha\right)\right] + \frac{1}{|\xi|}D^{+}\left(\frac{x}{\xi}\right) + sign\left(\xi\right)D^{-}\left(\frac{x}{\xi}\right)$$
1. Build positive DGLAP GPD
2. Covariant extension: ERBL GPD
4. Covariant extension: ERBL GPD
5. Covariant extension: ERBL GPD
6. Covariant extension: ERBL GPD
7. Covariant extens

Question: Can we evaluate the inverse Radon transform?

$$H(x,\xi)|_{|x|\geq|\xi|} = \int_{\Omega} d\beta d\alpha \delta(x-\beta-\alpha\xi) h(\beta,\alpha)$$

Uniqueness theorem

(Boman and Todd-Quinto [D.Math.J.:943(55)1987, Eur.Phys.J.C:77(2017)12,906])

If $H(x,\xi) = 0 \ \forall (x,\xi) \in [-1,1] \otimes [-1,1] / |x| \ge |\xi|$ Then, $h(\beta, \alpha) = 0 \ \forall (\beta \ne 0, \alpha) \in \Omega$

Question: Can we evaluate the inverse Radon transform?

$$H(x,\xi)|_{|x|\geq|\xi|} = \int_{\Omega} d\beta d\alpha \delta(x-\beta-\alpha\xi) h(\beta,\alpha)$$

Uniqueness theorem

(Boman and Todd-Quinto [D.Math.J.:943(55)1987, Eur.Phys.J.C:77(2017)12,906])

If $H(x,\xi) = 0 \ \forall (x,\xi) \in [-1,1] \otimes [-1,1] / |x| \ge |\xi|$ Then, $h(\beta, \alpha) = 0 \ \forall (\beta \neq 0, \alpha) \in \Omega$

Although it exists, \mathcal{R}^{-1} is a non-continuous operator: ILL-POSED PROBLEM (HADAMARD)

> Numerical solution of the inverse Radon transform [Phys. Rev. D 105 (2022) 9, 094012]

GPD modeling: Factorized LFWFs

1. Overlap representation [Nucl.Phys.B596(2001)33]

$$H^{q}(x,\xi,t)|_{|x|\geq\xi} = \int \frac{d^{2}k_{\perp}}{16\pi^{3}}\Psi^{q*}(x_{-},k_{\perp,-}^{2})\Psi^{q}(x_{+},k_{\perp,+}^{2})$$

2. Assume factorization of the LFWF

$$\Psi^{q}\left(x,k_{\perp}^{2}\right) \propto \varphi\left(x\right)\phi\left(k_{\perp}^{2}\right)$$

$$\Psi^{(\text{Overalp rep.})}$$

$$H^{q}\left(x,\xi,t\right)|_{|x|\geq\xi} = \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)}\Phi\left(x,\xi,t\right)$$

$$\Psi^{(t=0)}$$

$$H^{q}\left(x,\xi,0\right)|_{|x|\geq\xi} = \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)}$$
[Phys. Rev. D 105 (2022) 9. 094012]

PDF Non-perturbative QCD DGLAP GPD Positivity ERBL GPD Polynomiality ERBL

PDFs are the sole ingredient needed to build positive DGLAP GPD

Scale evolution

[Eur. Phys. J. C 82 (2022) 10, 888]

$$H\left(x,\xi,t;\mu^{2}\right) = \int \frac{d\lambda}{2\pi} e^{i\lambda x} \left\langle p'\right| \mathcal{O}\left(-\lambda n,\lambda n\right) \left|p\right\rangle$$

Light-cone operator product expansion:

$$\mathcal{O}(-\lambda n, \lambda n) \xrightarrow{n^2=0} \sum_i c_i n^{2i} \mathcal{O}_i$$

Renormalization group equations for the operators \mathcal{O}_i yield scale evolution for GPDs:

[Phys.Rev.D:55(1997)7114, Eur.Phys.J.C:82(2022)10,888]

$$\frac{dH^{(\pm)}\left(x,\xi,t;\mu^{2}\right)}{d\log\mu^{2}} = \frac{\alpha_{\rm s}\left(\mu^{2}\right)}{4\pi} \int_{x}^{\infty} \frac{dy}{y} \mathcal{P}^{(\pm)}\left(y,\kappa,\alpha_{\rm S}\left(\mu^{2}\right)\right) H^{(\pm)}\left(\frac{x}{y},\xi,t;\mu^{2}\right)$$

"Splitting functions":
$$\mathcal{P}^{(\pm)}\left(y,\kappa;\alpha_{\mathrm{S}}\left(\mu^{2}\right)\right) = \sum_{n=1}^{\infty} \frac{\alpha_{\mathrm{S}}\left(\mu^{2}\right)}{4\pi} \mathcal{P}_{n}^{(\pm)}\left(y,\kappa\right) \; ; \; \kappa = \frac{\xi}{x}$$

Scale evolution: Hadron scale

Renormalization group equations for GPD operators yield: [Phys.Rev.D:55(1997)7114, Eur.Phys.J.C:82(2022)10.888]

$$\frac{dH^{(\pm)}\left(x,\xi,t;\mu^{2}\right)}{d\log\mu^{2}} = \frac{\alpha_{\rm s}\left(\mu^{2}\right)}{4\pi} \int_{x}^{\infty} \frac{dy}{y} \mathcal{P}^{(\pm)}\left(y,\kappa,\alpha_{\rm S}\left(\mu^{2}\right)\right) H^{(\pm)}\left(\frac{x}{y},\xi,t;\mu^{2}\right)$$

Scale evolution: PDFs

