Hadron Spectroscopy Today

Nils Hüsken Johannes Gutenberg-Universität Mainz

International Workshop on Hadron Structure and Spectroscopy 2023 Prague - June 26, 2023

> JOHANNES GUTENBERG UNIVERSITÄT MAINZ

6/26, 14:35: P. Rossi, Jefferson Lab, A look into the future 6/28, 11:10: P. Hurck, Hadron spectroscopy at GlueX 6/28, 11:40: P. Haas, Light-meson spectroscopy at COMPASS 6/28, 12:10: Z. Xu, Hadron spectroscopy at LHCb

ATLAS

6/28, 10:45: B. Liu, Hadron Spectroscopy at BESIII

BESI

+ many other contributors

- hadron spectroscopy is a global effort with a large community
- this talk is from an experimental point of view...

LHCD ГНСЭ

 ...but the theory community is large, active and just as important (scattering theory, lattice-QCD, phenomenology, ...)

HADRONS...

- color charged quarks and gluons are the fundamental degrees of freedom of QCD
- confinement: quarks and gluons bind and form color-neutral hadrons

 hadron spectrum is one access to study the strong interaction in the non-perturbative regime

Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.

... AND EXOTIC HADRONS

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

We then refer to the members u^2_3 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q q \bar{q})$, etc., while mesons are made out of $(q \bar{q} \bar{q}, (q q \bar{q} \bar{q}), \text{etc.}$ It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

3

... AND EXOTIC HADRONS

PRL 110 (2013) 252001

QUARKONIUM(-LIKE) STATES

QUARKONIUM PRODUCTION

₿€SⅢ • in e^+e^- machines: Belle T (γ_{ISR}) $e^$ *c*,*b* annihilation: \sim $J^{PC} = 1^{--}$ $-\overline{c},\overline{b}$ e^+ e h two-photon fusion: C = +1hr. e^+ `e+

• in weak *b* decays:

+ prompt production+ photo-production

. . .

IGU

6

QUARKONIUM

Nature Rev. Phys. 1 (2019) no.8, 480-494

- QCD-analogue to hydrogen atom / positronium
- spectrum from potential models:

$$V_{q\bar{q}} = -\frac{4}{3} \cdot \frac{\alpha_s(r)}{r} + k \cdot r$$

+ spin-dependent terms

see e.g.: Godfrey & Isgur, PRD 32 (1985) 189-231 Barnes, Godfrey, Swanson, PRD 72 (2005) 054026 Godfrey & Moates, PRD 92 (2015) 054034

 good agreement with experiments (BaBar, Belle, BESIII, CLEO, ...) for charmonium and bottomonium

QUARKONIUM

IGU

Въ.

9

JG

66.

π⁺π⁻J/ψ) (pb)

٨

σ(e⁺e

χ(σ)

IGU

14

16

 $Z_c(3900) \rightarrow J/\psi\pi$

+ many other new, exciting results...

18

DOUBLY OPEN-CHARM TETRAQUARK T_{cc}

- LHCb observe narrow peak in $D^0D^0\pi^+$ just under $D^{*+}D^0$ threshold (in prompt production)
- minimal quark content $cc\bar{u}\bar{d}$
- no indication of isospin partners \rightarrow isoscalar state
- decay via off-shell D^*
- first observation of a state of $QQ\bar{q}\bar{q}$ nature

FULLY-CHARMED $T_{cc\overline{c}\overline{c}}$

fully-heavy tetraquark ($cc\bar{c}\bar{c}$) candidate $T_{cc\bar{c}\bar{c}}$ (X(6900)), first observed by LHCb in $T_{cc\bar{c}\bar{c}} \rightarrow J/\psi J/\psi$ ٠

(Belle preliminary)

- since then: observation of similar structures in both CMS and ATLAS
- consistent with fully-charmed tetraguark interpretation ٠

PENTAQUARKS

• 2015: first LHCb P_c in $\Lambda_b^0 \rightarrow J/\psi p K^-$

• another P_c in $B_s^0 \to J/\psi p\bar{p}$

• strange P_{cs} in $B^- \rightarrow J/\psi \Lambda \bar{p}$

IGL

are these genuine pentaquark states, cusp effects, caused by triangles?

PENTAQUARKS

B-14-1-1

strange P_{cs} in $B^- \rightarrow J/\psi \Lambda \bar{p}$

IGU

PENTAQUARKS

• 2015: first LHCb P_c in $\Lambda_b^0 \rightarrow J/\psi p K^-$

IGL

• are these genuine pentaquark states, cusp effects, caused by triangles?

HYBRID MESONS

HYBRID MESONS

 $q\bar{q}$ meson:

 $P = (-1)^{L+1}$ $C = (-1)^{L+S}$

 $\rightarrow J^{PC} = 0^{--}, odd^{-+}, even^{+-}$ not possible for $q\bar{q}$ mesons

JGU

ISOVECTOR $\pi_1(1600)$

ISOVECTOR $\pi_1(1600)$

• $\pi_1(1600)$ decays predicted from lattice-QCD

IG

- dominantly to $b_1(1235)\pi$, discovery modes rather small
- COMPASS (and others) studying other decay modes

IGU

• $\pi_1(1600)$ in photo-production?

AN ISOSCALAR HYBRID $\eta_1(1855)$?

study of $I/\psi \rightarrow \gamma \eta \eta'$ radiative decays using 10B I/ψ at BESIII

- observation of $J^{PC} = 1^{-+} \eta_1(1855)$
- could be one of two iso-scalar partner ٠ states to the $\pi_1(1600)$

for 1.7 GeV $\leq m(\eta \eta') \leq 2.0$ GeV

decay angles

0.5

are key!

0

 $\cos\theta_n$

more information needed (decay modes, production processes, ...) ٠

SO, WHERE DO WE STAND?

- modern, high statistics experiments reveal many new, interesting structures (hadrons?)
- some of them clearly go beyond the naive qq
 q
 q, qqq
 picture of mesons and baryons
- complementarity of experiments around the world is important
- \rightarrow try to confirm new states in different production processes or decay modes wherever possible!
- joint effort with theory is key!
 - Lattice-QCD predictions for masses, decay modes, …
 - rigorous theoretical frameworks to interpret data

LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, LHCb-FIGURE-2021-001, 2021, and 2023 updates

Thank you for your attention!

