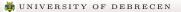


Highlights from PHENIX


IWHSS 2023

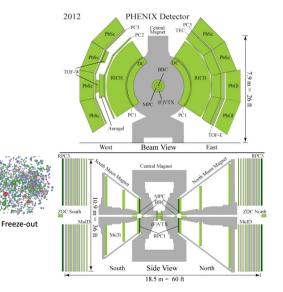
Ujvári Balázs

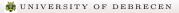
ujvari.balazs@inf.unideb.hu

UNIVERSITY OF DEBRECEN

Initial State

Incoming Nuclei


- 1. PHENIX stopped data taking after 2016
- 2. Ongoing analyses of large data sets taken in 2014, 2015, and 2016

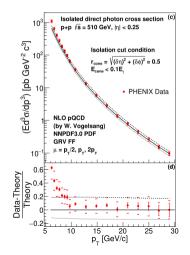

OGP

Hydrodynamic expansion

Hadronization

3. Data and Analysis Preservation

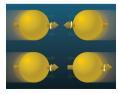
- 1. Polarized p+p $\sqrt{S_{NN}}$ =510 GeV
- 2. Small systems p+Al, p+Au, d+Au, 3 He+Au $\sqrt{S_{NN}}$ =200 GeV
- 3. Large system Au+Au $\sqrt{S_{NN}}$ =200 GeV

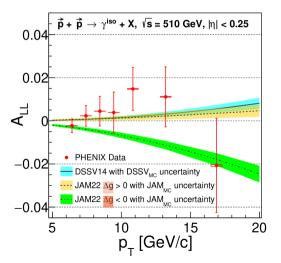


p + p

The quark-gluon Compton process sensitive to polarized gluon distribution

in proton-proton collisions at RHIC is the dominant contributor to the direct photons with $p_T>5~\text{GeV}$ arXiv:2202.08159



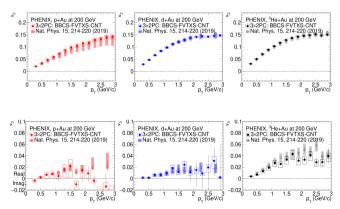

The double-helicity asymmetry is defined as:

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

Our data are well consistent with the **positive gluon-spin contributions** and strongly disfavor the negative gluon-spin scenario, that the previously published data were unable to resolve.

arXiv:2202.08159

Small Systems – flow with event plane (EP) method


 $\mathsf{v}_2: \ \mathsf{p} + \mathsf{A}\mathsf{u} < \mathsf{d} + \mathsf{A}\mathsf{u} \sim \ ^3\mathsf{H}\mathsf{e} + \mathsf{A}\mathsf{u} \qquad \mathsf{v}_3: \ \mathsf{p} + \mathsf{A}\mathsf{u} \sim \mathsf{d} + \mathsf{A}\mathsf{u} < \ ^3\mathsf{H}\mathsf{e} + \mathsf{A}\mathsf{u}$

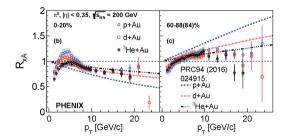
Anisotropy of charged particle production **consistent with hydrodynamic** expansion. Nature Phys. 15 (2019) 214 – QGP droplets even is small systems?

Small Systems - flow cross-checked with 2-particle correlations

Three sets of detector combinations to extract two-particle correlations \to 3×2PC Less sensitive to non-flow effects

PRC 107 (2023) 024907 - consistent with EP results

If QGP droplets, do we also see initial/final state effects?

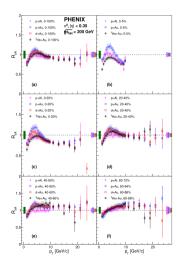

What about nuclear modification factor $(R_{\times A})$?

QGP droplets may or may not cause suppression (parton energy loss needs path-length)

Suppression observed in central, but enhancement seen in peripherals – no obvious explanation

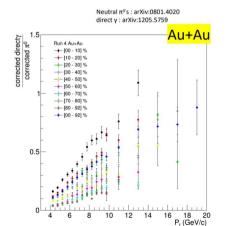
obvious explanation

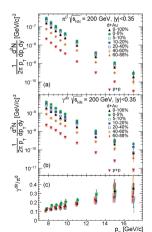
Possible p_T -dependent bias in centrality categorization?


Data PRC 107 (2023) 024907 Theory curves PRC 94 (2016) 024915 – fluctuating nucleon size: predicted ordering with system size not observed

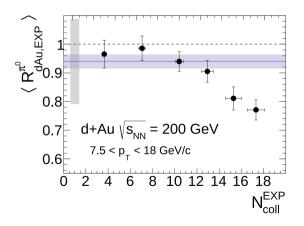
R_{xA} evolution with centrality in small systems

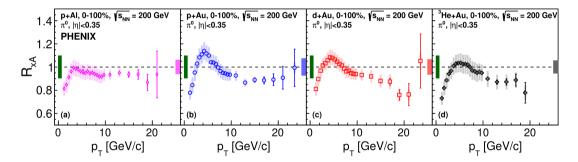
- 1. $p_T > 8 \text{ GeV/c}$ constant for the same centrality selection from different collision systems
- 2. Central the Cronin peaks height value shows a clear system size dependence $p \rightarrow d \rightarrow {}^{3}He$
- 3. **Peripheral** 15 % enhancement unexplained.


Potential bias in centrality determination?

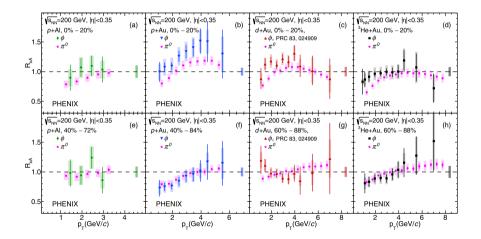

PRC 105 (2022) 064902

Use direct photons (not sensitive to QGP) to normalize hadron spectra?


 γ/π^0 ratios: in case of Au+Au clear separation with centrality, but overlapping for d+Au (except for extremely central collisions)


No enhancement in peripherals, but still signs of suppression in most central collisions

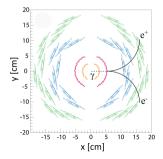
High p_T direct photons are used to experimentally estimate the number of binary collisions. $R_{dAu,EXP}^{\pi^0}$ for 0-100% Further studies of the system size dependence with p+Au, d+Au, and 3He+Au collisions may shed more light on the existence of droplets of QGP in small systems

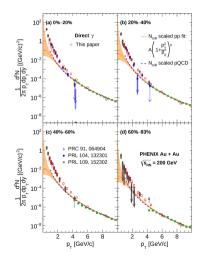

System-size dependence of R_{xA} in 0-100% centrality

Cronin peaks, around 4 GeV/c, increase with the target size and broadening with projectile. At high p_T data consistent with unity.

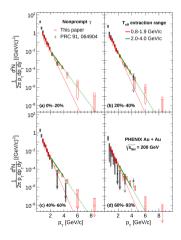
No or minimal modification of the hard scattering component in small systems for 0-100%. PRC 105 (2022) 064902

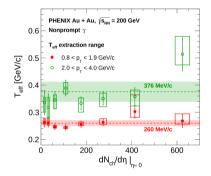
Strangeness enhancement should be another sign of QGP


PRC 106, 014908 (2022) strangeness enhancement cannot be concluded


Au + Au

direct photons with conversion method


 $p_{T}>5~GeV/c$ well described by $\mathsf{N}_{coll}\text{-scaled}$ p+p results and pDQC calculation


 $p_T < 5~GeV/c$ direct-photon excess becoming larger towards lower p_T

Photon effective temperatures vs $dN/d\eta$ in different p_T ranges

late QGP stage until freeze-out contributions from the pre-equilibrium phase arXiv 2203.17187

Summary

Small step in 'spin crysis', waiting for EIC

Small systems: more and more questions

Au+Au more results after finishing the Run14 and Run16

Direct photon puzzle: more analyses to solve

 N_{coll} , centrality, need new methods

UNIVERSITY OF DEBRECEN

Thank you for your attention!

Thanks to the National Research, Development and Innovation Office (Hungary) OTKA-131991.

million in the last