

New Techniques to Access the *x*-dependence of Generalized Parton Distributions

Zhite Yu (Michigan State University)

In collaboration with: Jian-wei Qiu (Jefferson Lab) JHEP 08 (2022) 103, PRD 107 (2023) 014007, arXiv:2305.15397

International Workshop on Hadron Structure and Spectroscopy Jun/27/2023

Hadron Structure -- QCD Femtography

QCD Femtography -- Hard inclusive processes as probes

QCD Femtography -- Hard inclusive processes as probes

QCD Femtography -- Hard **exclusive** processes as probes

QCD Femtography -- Hard exclusive processes as probes

GPD and 3D tomography

Two-scale diffraction probes 3D tomography

Single-diffractive hard exclusive process (SDHEP)

[Qiu & Yu, PRD 107 (2023) 014007]

 $h(p) + B(p_2) \to h'(p') + C(q_1) + D(q_2)$

 $2 \rightarrow 3$: *minimal* kin. configuration!

Single-diffractive hard exclusive process (SDHEP)

[Qiu & Yu, PRD 107 (2023) 014007]

Two-stage process paradigm

Single-diffractive:
$$h(p) \rightarrow h'(p') + A^*(p_1 = p - p')$$

factorize
Hard exclusive: $A^*(p_1) + B(p_2) \rightarrow C(p_3) + D(p_4)$

Single-diffractive hard exclusive process (SDHEP)

[Qiu & Yu, PRD 107 (2023) 014007]

Two-stage process paradigm

Single-diffractive:
$$h(p) \rightarrow h'(p') + A^*(p_1 = p - p')$$

factorize
Hard exclusive: $A^*(p_1) + B(p_2) \rightarrow C(p_3) + D(p_4)$

Necessary condition for factorization:

$$q_T \gg \sqrt{-t} \simeq \Lambda_{\rm QCD}$$
 $t = (p - p')^2$

- C, D are produced in a hard process H ~ q_T
- A* lives much longer than H

Classification of SDHEPs

Electro-production (JLab, EIC, ...)

Classification of SDHEPs

Electro-production (JLab, EIC, ...)

Classification of SDHEPs

Electro-production (JLab, EIC, ...)

Two-stage paradigm and channel expansion

Two-stage paradigm and channel expansion

Two-stage paradigm and channel expansion

MICHIGAN STATE UNIVERSITY

Two-stage paradigm and channel expansion (twist expansion)

Two-parton channel: GPD factorization

[Qiu & Yu, PRD 107 (2023), 014007]

DGLAP region: Glauber pinch

Soft gluons cancel when coupling to (color-neutral) mesons!

Challenge for GPD: x-dependence

□ <u>Amplitude</u> nature: exclusive processes

Challenge for GPD: x-dependence

Challenge for GPD: x-dependence

$$i\mathcal{M} \propto \int_{-1}^{1} \mathrm{d}x \, \frac{F(x,\xi,t)}{x-\xi+i\varepsilon} \equiv "F_0(\xi,t)" \quad \text{``moment''}$$

х

20

K MICHIGAN STATE UNIVERSITY

Enhanced x-sensitivity

K MICHIGAN STATE UNIVERSITY

Enhanced x-sensitivity

Two example processes with enhanced x-sensitivity

Qiu, Yu, JHEP 08 (2022) 103

G. Duplancic et al., JHEP 11 (2018) 179 Qiu & Yu, PRD 107 (2023), 014007 Qiu & Yu, 2305.15397

Enhanced *x*-sensitivity: (1) diphoton production

[Qiu & Yu, JHEP 08 (2022) 103]

In addition to

$$F_0(\xi, t) = \int_{-1}^{1} \frac{dx F(x, \xi, t)}{x - \xi + i\epsilon}$$

 $i\mathcal{M}$ also contains

$$I(t,\xi;z,\theta) = \int_{-1}^{1} \frac{dx F(x,\xi,t)}{x - \rho(z;\theta) + i\epsilon \operatorname{sgn}\left[\cos^{2}(\theta/2) - z\right]}$$
$$\rho(z;\theta) = \xi \cdot \left[\frac{1 - z + \tan^{2}(\theta/2) z}{1 - z - \tan^{2}(\theta/2) z}\right] \in (-\infty, -\xi] \cup [\xi,\infty)$$

Enhanced *x*-sensitivity: (1) diphoton production

[Qiu & Yu, JHEP 08 (2022) 103]

Enhanced *x*-sensitivity: (1) diphoton production

[Qiu & Yu, JHEP 08 (2022) 103]

MICHIGAN STATE UNIVERSITY

 \overleftarrow{x}

x

Enhanced x-sensitivity: (2) γ - π pair production

[Qiu & Yu, arXiv:2305.15397] $i\mathcal{M}$ also contains the special integral $I'(t,\xi;z,\theta) = \int_{-1}^{1} \frac{dx F(x,\xi,t)}{x - \rho'(z;\theta) + i\epsilon}$ N(p) $\rho'(z;\theta) = \xi \cdot \left| \frac{\cos^2(\theta/2) (1-z) - z}{\cos^2(\theta/2) (1-z) + z} \right| \in [-\xi,\xi]$ Complementary sensitivity ξ-*x* // -ξ-*x* x+E // //E-x x+ξ / DGLAP **ERBL** DGLAP -1 0

 $N \pi \rightarrow N' \gamma \gamma$

27

Polarization asymmetries

 $\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta\,d\phi} = \frac{1}{2\pi} \frac{d\sigma}{d|t|\,d\xi\,d\cos\theta} \cdot \left[1 + \lambda_N \lambda_\gamma \,A_{LL} + \zeta \,A_{UT}\cos2\left(\phi - \phi_\gamma\right) + \lambda_N \zeta \,A_{LT}\sin2\left(\phi - \phi_\gamma\right)\right]$ $\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta} = \pi \left(\alpha_e \alpha_s\right)^2 \left(\frac{C_F}{N_c}\right)^2 \frac{1 - \xi^2}{\xi^2 s^3} \Sigma_{UU}$

$$\begin{split} \Sigma_{UU} &= |\mathcal{M}_{+}^{[\widetilde{H}]}|^{2} + |\mathcal{M}_{-}^{[\widetilde{H}]}|^{2} + |\widetilde{\mathcal{M}}_{+}^{[H]}|^{2} + |\widetilde{\mathcal{M}}_{-}^{[H]}|^{2}, \\ A_{LL} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\mathcal{M}_{+}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} + \mathcal{M}_{-}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} \right], \\ A_{UT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\widetilde{\mathcal{M}}_{+}^{[H]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} - \mathcal{M}_{+}^{[\widetilde{H}]} \, \mathcal{M}_{-}^{[\widetilde{H}]*} \right], \\ A_{LT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Im} \left[\mathcal{M}_{+}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} + \mathcal{M}_{-}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} \right]. \end{split}$$

GPD models = **GK** model + **shadow GPDs**

Goloskokov, Kroll, `05, `07, `09 Bertone et al. `21 Moffat et al. `23

30

GPD models = **GK** model + **shadow GPDs**

 $\int_{-1}^{1} \frac{dx \, S(x,\xi)}{x - \xi \pm i\epsilon} = 0$

Goloskokov, Kroll, `05, `07, `09 Bertone et al. `21 Moffat et al. `23

31

Summary

GPD and hadron 3D imaging

Single Diffractive Hard Exclusive Processes (SDHEP)

- Systematic factorization.
- Roadmap for known and more new processes!

GPD *x* dependence is challenging

- Multi-processes, multi-observables approach
- Moment sensitivity is not sufficient
- Enhanced sensitivity
- JLab Hall D (also other halls with good controls of quasi-real photon beams)

Thank you!

Backup slides

SDHEP: soft gluon and factorization

Example: $\pi^-(p_\pi) + P(p) \rightarrow \gamma(q_1) + \gamma(q_2) + N(p')$

Gluons in the Glauber region: $k_s = (\lambda^2, \lambda^2, \lambda) Q$ $\lambda \sim m_\pi/Q$, $Q \sim q_T$

Transverse component contribute to the leading region!

SDHEP: soft gluon and factorization

Example: $\pi^-(p_\pi) + P(p) \rightarrow \gamma(q_1) + \gamma(q_2) + N(p')$

Gluons in the Glauber region: $k_s = (\lambda^2, \lambda^2, \lambda) Q$ $\lambda \sim m_\pi/Q$, $Q \sim q_T$

Transverse component contribute to the leading region!

SDHEP: two-stage paradigm and factorization

□ Factorization for 2-parton channel

<u>Only complication:</u> k_s^- is pinched in Glauber region for DGLAP region.

$$k_s^+ \mapsto k_s^+ \pm i\mathcal{O}(Q)$$

Glauber $\implies h$ -collinear region

Soft gluons cancel for the meson-initialized process

Why *single* diffractive?

Double diffractive process

Glauber pinch for diffractive scattering

Factorizable thanks to pion

Both k_s^+ and $k_s^$ are pinched in Glauber region!

Non-factorizable even with hard scale

Compare: Drell-Yan process at high twist

