Calculating GPDs in Lattice QCD: Recent developments

Shohini Bhattacharya
RIKEN BNL
27 June 2023

GPDs

GPD correlator: Graphical representation

Definition:

$$
F^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

Motivation for GPD studies

3D imaging (Burkardt, 0005108 ...)

Motivation for GPD studies

Spin sum rule \& orbital angular momentum ($\mathrm{ji}, 9603249$):

$$
J^{q}=\left.\int_{-1}^{1} d x x\left(H^{q}+E^{q}\right)\right|_{t=0}
$$

Motivation for GPD studies

Spin sum rule \& orbital angular momentum ($\mathrm{Ji}, 9603249$):

$$
J^{q}=\left.\int_{-1}^{1} d x x\left(H^{q}+E^{q}\right)\right|_{t=0}
$$

3D imaging (Burkardt, 0005108 ...)

Imprints of chiral/trace anomalies in GPDs (SB, Hatta, Vogelsang, 2305.09431):

Novel avenue Profound physical implication of anomaly poles:
Touches questions on mass generations, Chiral symmetry breaking, ...

Motivation for GPD studies

Physical processes:

See talks by Silvia, Charlotte, Karolina, Marija

Exclusive meson production

Motivation for GPD studies

Physical processes:

Deep Virtual Compton Scattering
See talks by Silvia, Charlotte, Karolina, Marija

Exclusive meson production

Exclusive massive pair production

See Zhite Yu's talk

Access to x-dependence

Motivation for GPD studies

Physical processes:

See talks by Silvia, Charlotte, Karolina, Marija

Exclusive meson production

We need GPD measurements from Lattice QCD

Exclusive massive pair production

See Zhite Yu's talk

Access to x-dependence

Can we extract these quantities from lattice QCD?

Physical processes

Light-cone (standard) correlator $-1 \leq x \leq 1$

$$
\begin{aligned}
F^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)= & \frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z} \\
& \times\left.\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=\vec{z}_{\perp}=0}
\end{aligned}
$$

- Time dependence : $z^{0}=\frac{1}{\sqrt{2}}\left(z^{+}+z^{-}\right)=\frac{1}{\sqrt{2}} z^{-}$
- Cannot be computed on Euclidean lattice

ite Yu's talk

Can we extract these quantities from

 Physi
"Physical" distributions

 lattice QCD?Light-cone (standard) correlator $-1 \leq x \leq 1$

$$
\begin{aligned}
F^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)= & \frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z} \\
& \times\left.\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=\vec{z}_{+}=0}
\end{aligned}
$$

"Auxiliary" distributions

Correlator for quasi-GPDs $(\mathrm{Ji}, 2013) \quad-\infty \leq x \leq \infty$
$F_{Q}^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}$

$$
\left.\times\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}_{\mathrm{Q}}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p, \lambda\rangle \right\rvert\,
$$

- Non-local correlator depending on position z^{3}
- Can be computed on Euclidean lattice

Can we extract these quantities from

 Physi
"Physical" distributions

 lattice QCD?Light-cone (standard) correlator $-1 \leq x \leq 1$
$\begin{aligned} & F^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)= \frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z} \\ & \times\left.\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=\vec{z}_{+}=0} \\ &\end{aligned}$

- Time dependence : $z^{0}=\frac{1}{\sqrt{2}}\left(z^{+}+z^{-}\right)=\frac{1}{\sqrt{2}} z^{-}$
- Cannot be computed on Euclidean lattice

Correlator for quasi-GPDs $(\mathrm{Ji}, 2013) \quad-\infty \leq x \leq \infty$
$F_{Q}^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}$

$$
\times\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}_{\mathrm{Q}}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p, \lambda\rangle
$$

- Non-local correlator depending on position z^{3}
- Can be computed on Euclidean lattice

Can we extract these quantities from

"Physical" distributions lattice QCD?
"Auxiliary" distributions
Physi
\square
Light-cone (standard) correlator $-1 \leq x \leq 1$

```
Correlator for quasi-GPDs (Ji, 2013)
``` \(-\infty \leq x \leq \infty\)

\[
\begin{array}{r}
q_{\mathrm{Q}}\left(x ; P_{3}\right)=\int_{-1}^{+1} \frac{d y}{|y|} C\left(\frac{x}{y}\right) q(y)+\mathcal{O}\left(\frac{1}{P_{3}^{2}}\right) \\
(\text { Scale dependence omitted) }
\end{array}
\]

LQCD calculations of \(x\)-dependence of PDFs \& related quantities, Using Euclidean correlators (compilation by K. Cichy, 2110.07440)
‘Ph

First Lattice QCD results of the x-dependent GPDs

First Lattice QCD results of the x-dependent GPDs

First Lattice QCD results of the x-dependent GPDs

ERBL/DGLAP: Qualitative differences
As \(x \rightarrow 1\), qualitative behavior in agreement with power counting analysis (F. Yuan, 0311288)

First Lattice QCD results of the x-dependent GPDs

\section*{ERBL/DGLAP: Qualitative differences}

As \(x \rightarrow 1\), qualitative behavior in agreement with power counting analysis

At \(x= \pm \xi\), matching formalism breaks down

First Lattice QCD results of the x-dependent GPDs

First Lattice QCD results of the x-dependent GPDs

First Lattice QCD results of the x-dependent GPDs

First Lattice QCD results of the x-dependent GPDs

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Resolution:}

- Perform Lattice QCD calculations of GPDs in asymmetric frames

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

Our contribution in a nutshell:
All
momentum transfer to source

This talk

Generalized Parton Distributions from Lattice QCD

\section*{with Asymmetric Momentum Transfer: Unpolarized Quarks \\ Key findings: : e QCD calculations of GPDs in as〕 Shohini Bhattacharya, \({ }^{1, *}\) Krzysztof Cichy, \({ }^{2}\) Martha Constantinou, \({ }^{3, \dagger}\) Jack Dodson, \({ }^{3}\) Xiang Gao, \({ }^{4}\) Andreas Metz, \({ }^{3}\) Swagato Mukherjee, \({ }^{1}\) Aurora Scapellato, \({ }^{3}\) Fernanda Steffens, \({ }^{5}\) and Yong Zhao \({ }^{4}\)}
- Lorentz covariant formalism for calculating quasi-GPDs in any frame
- Elimination of power corrections potentially allowing faster convergence to light-cone GPDs

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

Symmetric \& asymmetric frames

\section*{Approach 1: Can we calculate a quasi-GPD in symmetric frame through an asymmetric frame?}

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

Yes, since symmetric \(\mathcal{\&}\) asymmetric frames are connected via Lorentz transformation

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

Case 1: Lorentz transformation in the z-direction
\[
\left.\begin{array}{r}
\left(\begin{array}{c}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & 0 & -\gamma \beta \\
0 & 1 & 0 \\
-\gamma \beta & 0 & \gamma
\end{array}\right)
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right)
\]

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

Case 2: Transverse boost in the x-direction
\[
\begin{array}{r}
\left(\begin{array}{c}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & -\gamma \beta & 0 \\
-\gamma \beta & \gamma & 0 \\
0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right) \\
\bar{\psi} \uparrow \bar{\uparrow} \psi \\
-z^{z} / 2 \quad z^{z} / 2
\end{array}
\]

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

Related via
Lorentz transformation?

What kind?

Case 2: Transy Approach 1: Can we calculate a quasi-GPD in symmetric frame through an asymmetric frame?

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

Can we come up with a
manifestly Lorentz invariant definition of quasi-GPDs for finite values of momentum?

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Lorentz covariant formalism}

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)
\[
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} \boldsymbol{A}_{1}+\frac{z^{\mu}}{M} \boldsymbol{A}_{\mathbf{2}}+\frac{\Delta^{\mu}}{M} \boldsymbol{A}_{3}+\frac{i \sigma^{\mu z}}{M} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{M} \boldsymbol{A}_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{8}\right] u(p, \lambda)
\]

Vector operator \(F_{\lambda, \lambda^{\prime}}^{\mu}=\left.\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{q}(-z / 2) \gamma^{\mu} q(z / 2)|p, \lambda\rangle\right|_{z=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}\)

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Lorentz covariant formalism}

Novel parameterization of position-space matrix element:
\(F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} \boldsymbol{A}_{1}+\frac{z^{\mu}}{M} \boldsymbol{A}_{2}+\frac{\Delta^{\mu}}{M} \boldsymbol{A}_{3}+\frac{i \sigma^{\mu z}}{M} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{M} \boldsymbol{A}_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{8}\right] u(p, \lambda)\)

\section*{Features:}
- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures
- 8 Lorentz-invariant amplitudes (or Form Factors) \(A_{i} \equiv A_{i}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)\)

\section*{Validating the frame-independence of A's from Lattice QCD}

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Re-exploring historical definitions of quasi-GPDs}

Mapping amplitudes to the historical definitions of quasi-GPDs: (Sample results)

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

Re-exploring historical definitions of quasi-GPDs

\section*{Frame-dependent expressions: Explicit non-invariance from kinematics factors}

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Light-cone GPDs}

Mapping amplitudes to the light-cone GPDs: (Sample results)

Definition of light-cone GPD H:
\[
H(x, \xi, t) \rightarrow \int \frac{d(P \cdot z)}{4 \pi} e^{i x P \cdot z} \frac{1}{P \cdot z}\left\langle p^{\prime}\right| \bar{q} \not \approx q|p\rangle
\]

Relation between light-cone GPD H \& amplitudes:
\[
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
\]

Lorentz-invariant expression

\section*{Lattice QCD calculations of GPDs in acummotrin framac}

\section*{Relation between light-cone GPD H \& amplitudes:}

Lattice QCD calculations of GPDs in acummotrin framace
Relation between light-cone GPD H \& amplitudes:

In the large-momentum limit, these expressions reduce to light-cone results

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Relation between light-cone GPD H \& amplitudes:}
Interlude:
Mappiny ampintuues to the historical definitions of quasi-GP

\section*{Let's go back to PDFs}

\section*{arXiv: 1705.01488}
Quasi-PDFs, momentum distributions and pseudo-PDFs
A. V. Radyushkin
Old Dominion University, Norfolk, VA 23529, USA and
Contal
Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

In thi
\(\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle\)
(12)
type, where \(\hat{E}(0, z ; A)\) is the standard \(0 \rightarrow z\) straightline gauge link in the quark (fundamental) representation. These matrix elements may be decomposed into \(p^{\alpha}\) and \(z^{\alpha}\) parts:
\[
\begin{aligned}
& \text { arts: } \\
& \begin{aligned}
\mathcal{M}^{\alpha}(z, p)= & 2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right) \\
& +z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
\end{aligned}
\end{aligned}
\]
\[
2 \text { Amplitudes }
\]
(13)

The \(\mathcal{M}_{p}\left(-(z p),-z^{2}\right)\) part gives the twist-2 distribution when \(z^{2} \rightarrow 0\), while \(\mathcal{M}_{z}\left((z p),-z^{2}\right)\) is a purely highertwist contamination, and it is better to get rid of it.
hese expressions reduce to light-cone results

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Relation between light-cone GPD H \& amplitudes:}

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Relaton between light-cone GPD H \& amplitudes:}
Interlude:
Mappiny ampituues to the historical definitions of quasi-GP

\section*{Let's go back to PDFs}

\section*{arXiv: 1705.01488}
Quasi-PDFs, momentum distributions and pseudo-PDFs

Old Dominion University, Norfolk, VA 23529, USA and
Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

\section*{ower corrections}

In thi
\[
\begin{equation*}
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \tag{12}
\end{equation*}
\]
type, where \(\hat{E}(0, z ; A)\) is the standard \(0 \rightarrow z\) straightline gauge link in the quark (fundamental) representation. These matrix elements may be decomposed into \(p^{\alpha}\) and \(z^{\alpha}\) parts:
\[
\begin{aligned}
& \mathcal{M}^{\alpha}(z, p)= \\
& 2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right) \\
& \\
& \\
& +z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
\end{aligned}
\]

The \(\mathcal{M}_{p}\left(-(z p),-z^{2}\right)\) part gives the twist-2 distribution when \(z^{2} \rightarrow 0\), while \(\mathcal{M}_{z}\left((z p),-z^{2}\right)\) is a purely highertwist contamination, and it is better to get rid of it.

If one takes \(z=\left(z_{-}, z_{\perp}\right)\) in the \(\alpha=+\) component of \(\mathcal{M}^{\alpha}\), the \(z^{\alpha}\)-part drops out, and one can introduce a

formula (6). For quasi-distributions, the easiest way to remove the \(z^{\alpha}\) contamination is to take the time component of \(\mathcal{M}^{\alpha}\left(z=z_{3}, p\right)\) and define
\[
\begin{equation*}
\mathcal{M}^{0}\left(z_{3}, p\right)=2 p^{0} \int_{-1}^{1} d y Q(y, P) e^{i y P z_{3}} . \tag{14}
\end{equation*}
\]

Therefore, \(\gamma^{0}\) is better behaved than \(\gamma^{3}\) with respect to power corrections

\section*{Lattice QCD calculations of GPDs in asymmetric frames}

\section*{Relaton between light-cone GPD H \& amplitudes:}
Interlude:
Mappiny ampituues to the historical definitions of quasi-GP

\section*{Let's go back to PDFs}

\section*{arXiv: 1705.01488}
Quasi-PDFs, momentum distributions and pseudo-PDFs
Old Domini
Statement needs a qualifier: Situation more complicated for quasi-GPDs Thomas Jefferson Natio
 whe \(E(0, z, A)\) is the standard \(0 \rightarrow z\) straig tion. These matrix elements may be decomposed into \(p^{\alpha}\) and \(z^{\alpha}\) parts:

\[
+z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
\]
The \(\mathcal{M}_{p}\left(-(z p),-z^{2}\right)\) part gives the twist-2 distribution when \(z^{2} \rightarrow 0\), while \(\mathcal{M}_{z}\left((z p),-z^{2}\right)\) is a purely highertwist contamination, and it is better to get rid of it.

\section*{Lattice QCD calculations of GPDs in acummotrin framac}

Relation between light-cone GPD H \& amplitudes:
Novel definition of quasi-GI
\[
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
\]

Contrary to quasi-PDFs, \(\gamma^{0}\) operator for quasi-GPDs is contaminated with additional amplitudes or power corrections

Asymmetric frame:

\section*{Lattice QCD calculations of GPDs in acummotrin framac}

\section*{Relation between light-cone GPD H \& amplitudes:}

Novel definition of quasi-G
\[
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
\]

Contrary to quasi-PDFs, \(\gamma^{0}\) operator for quasi-GPDs is contaminated with additional amplitudes or power corrections

In spirit of what's done for PDFs:
You can think of eliminating additional amplitudes by the addition of other operators:

\section*{Asymmetric frame:}
\[
\left(\gamma^{1}, \gamma^{2}\right)
\]

\section*{Lattice QCD calculations of GPDs in acummotrin framac}

Relation between light-cone GPD H \& amplitudes:
Novel definition of quasi-G
\[
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
\]

Contrary to quasi-PDFs, \(\gamma^{0}\) operator for quasi-GPDs is contaminated with additional amplitudes or power corrections

\section*{In spirit of what's done for PDFs:}

\section*{Asymmetric frame:}
\[
\left(\gamma^{1}, \gamma^{2}\right)
\]

Lorentz-invariant definition of quasi-GPDs: Main finding:
\[
\text { Schematic structure: } \quad H_{\mathrm{Q}} \rightarrow c_{0}\left\langle\bar{\psi} \gamma^{0} \psi\right\rangle+c_{1}\left\langle\bar{\psi} \gamma^{1} \psi\right\rangle+c_{2}\left\langle\bar{\psi} \gamma^{2} \psi\right\rangle
\]

\section*{Same functional forms QCD calculations of GPDs in asymmetric frames}

\section*{Same functional forms QCD calculations of GPDs in asymmetric frames}

Relaton between light-cone GPD H \& amplitudes:

Sa Numerical comparison between Lorentz invariant and historical definitions of quasi-GPDs:
ight-cone GPD H \& amplitudes:

Lorentz invariant definition leads to more precise results for \(\mathbf{E}\)

\section*{Revisiting GPD calculations for all cases from asymmetric frames}

\section*{First exploration of twist-3 GPDs}

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya \({ }^{1,2}\), Krzysztof Cichy \({ }^{3}\), Martha Constantinou \({ }^{1}\), Jack Dodson \({ }^{1}\), Andreas Metz \({ }^{1}\), Aurora Scapellato \({ }^{1}\), Fernanda Steffens \({ }^{4}\)
(So far, from symmetric frames)

\section*{First exploration of twist-3 GPDs}

Definition:
\[
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
\]
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

\section*{First exploration of twist-3 GPDs}

Definition:
\[
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m^{2}} F_{\tilde{\sim}}\left(r, \xi, t, P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)\left(\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right)\right. \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
\]
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

[S. Bhattacharya et al., PRD 102 (2020) 11]

\section*{PRD 102 (2020) 11, 111501 [Editor's suggestion]}

New insights on proton structure from lattice QCD: the twist-3 parton distribution function \(g_{T}(x)\)

Shohini Bhattacharya, \({ }^{1}\) Krzysztof Cichy, \({ }^{2}\) Martha Constantinou, Andreas Metz, \({ }^{1}\) Aurora Scapelato, \({ }^{2}\) and Fernanda Steffens \({ }^{3}\)
\begin{tabular}{|l|c|c|}
\hline Twist-3 PDF & Processes & Data \\
\hline\(g_{T}(x)\) & \(e \rightarrow e^{\prime}\) & For instance: \\
Hall A, 2016/ \\
Hall C, 2018
\end{tabular}

\section*{First exploration of twist-3 GPDs}

First exploration of twist-3 GPDs

First exploration of twist-3 GPDs

First exploration of twist-3 GPDs

Definition:
\[
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{p_{0}^{0} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)}\right.} \\
& +\underbrace{\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right)}_{\perp} \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{5} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
\]
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

\section*{First exploration of twist-3 GPDs}

Definition:
\[
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.
\]
\[
+\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}(x, \xi, \gamma \text { GPD } \widetilde{E} \text { can not be accessed at zero skewness because it simply }
\] does not contribute to the matrix element at this point

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

\section*{First exploration of twist-3 GPDs}

\section*{First exploration of twist-3 GPDs}

\section*{First exploration of twist-3 GPDs}

Definition:
\[
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.
\]
\[
+\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{\sigma}_{2}}\left(x, \xi, t ; P^{3}\right)
\]
\[
+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right) u\left(p_{i}, \lambda\right)
\]
[D. Kiptily and M. Polyakov, Eur. Phys. J. Cot arxiv:hep-ph/0212372]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

\section*{GPD \(\widetilde{G}_{4}\) very small}

No theoretical argument to be zero:
\[
\int_{-1}^{1} d x x \widetilde{G}_{4}(x, \xi, t)=\frac{1}{4} G_{E}
\]

\section*{First exploration of twist-3 GPDs}

Matching formula:

As discussed in the context of twist-2 GPDs, matching at \(\xi=0\) coincides with those for PDFs

We use the simplified matching coefficient for the twist-3 PDF \(g_{T}(x)\)
Matching coefficient

0
\[
+\frac{\alpha_{s} C_{F}}{2 \pi}\{
\]
arXiv:2005.10939
\[
\left\{\begin{array}{l}
{\left[\frac{-\xi^{2}+2 \xi+1}{1-\xi} \ln \frac{\xi}{\xi-1}+\frac{\xi}{1-\xi}+\frac{3}{2 \xi}\right]_{+}} \\
{\left[\frac{-\xi^{2}+2 \xi+1}{1-\xi} \ln \frac{4 \xi(1-\xi)\left(x P_{3}\right)^{2}}{\mu^{2}}+\frac{\xi^{2}-\xi-1}{1-\xi}\right]_{+}^{0}} \\
{\left[\frac{-\xi^{2}+2 \xi+1}{1-\xi} \ln \frac{\xi-1}{\xi}-\frac{\xi}{1-\xi}+\frac{3}{2(1-\xi)}\right]_{+}}
\end{array}\right.
\]

One-loop matching for the twist-3 parton distribution \(g_{T}(x)\)
Shohini Bhattacharya, \({ }^{1}\) Krzysztof Cichy, \({ }^{2}\) Martha Constantinou, \({ }^{1}\) Shohini Bhattacharya, \({ }^{1}\) Krzysztof Cichy, \({ }^{2}\) Martha Constantinou \({ }^{1}\) Andreas Metz, \({ }^{1}\) Aurora Scapellato, \({ }^{1}\) and Fernanda Steffens \({ }^{3}\)

\section*{First exploration of twist-3 GPDs}

\section*{First exploration of twist-3 GPDs}

\section*{Summary}

Connecting dots: Ending with what I started with

\section*{Summary}

\section*{Summary}

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

\section*{Summary}

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?
arted with

All

are not manifestly Lorentz invariant
Key findings: e QCD cal definitions of \(H\) \& Equasi-GPDs

\section*{Summary}

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

\section*{arted with}

All
momentum transfer to source
\(-z / 2 \quad z / 2\) element: (Vector operator)
2) Novel parameterization of position-spren \(\left.i \sigma^{\mu \Delta} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{8}\right] u(p, \lambda)\)

Key findings: e QCD calculations of

\section*{Summary}

Approach 2: Why does it matter in which frame quasi-GPDs are calculated? All
momentum transfer to source

3)

\section*{Key findings: \\ QC}

- Lorentz covariant formalism for calculating quasi-GPDs in any frame
- Elimination of power corrections potentially allowing faster convergence to light-cone GPDs

\section*{Summary}

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?
arted with

All
momentum transfer to source
3)

Key findings:
- Lorentz covarianit ionmanimin ior caicuratniy quá
- Elimination of power corrections potentially all

\section*{Summary}
```

