# **Calculating GPDs in Lattice QCD: Recent developments**



# **Shohini Bhattacharya**

**RIKEN BNL** 

27 June 2023

GPDs





**GPD correlator: Graphical representation** 

#### **Definition:**

$$F^{[\Gamma]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \,\Gamma \,\mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$





**Spin sum rule & orbital angular momentum** (Ji, 9603249):

$$J^{q} = \int_{-1}^{1} dx \, x (H^{q} + E^{q})|_{t=0}$$





















| 14 |
|----|

























• Perform Lattice QCD calculations of GPDs in asymmetric frames





- Lorentz covariant formalism for calculating quasi-GPDs in any frame
- Elimination of power corrections potentially allowing faster convergence to light-cone GPDs



#### Symmetric & asymmetric frames z/2z/2 $P_s - \frac{\Delta_s}{\Delta_s}$ $P_s +$ $P_a - \Delta_a$ 2 $P_a$ GPDs GPDs $t = \Delta_a^2$ $t = \Delta^2_s$ **<u>Approach 1</u>**: Can we calculate a quasi-GPD in symmetric frame through an asymmetric frame?



#### Symmetric & asymmetric frames



Yes, since symmetric & asymmetric frames are connected via Lorentz transformation



#### Symmetric & asymmetric frames



**Case 1: Lorentz transformation in the z-direction** 

$$\begin{pmatrix} z_s^0 \\ z_s^x \\ z_s^z \end{pmatrix} = \begin{pmatrix} \gamma & 0 & -\gamma\beta \\ 0 & 1 & 0 \\ -\gamma\beta & 0 & \gamma \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ z_a^z \end{pmatrix}$$
$$\frac{\psi}{-z^z/2} \quad \psi$$



#### Symmetric & asymmetric frames z/2z/2**Related via Lorentz transformation?** $P_s + \frac{\Delta_s}{2}$ $P_s - \frac{\Delta_s}{2}$ $P_a - \Delta_a$ $P_a$ GPDs GPDs What kind? $t = \Delta^2_s$ $t = \Delta_a^2$ **Case 1: Lorentz transformation in the z-direction Results:** $\begin{pmatrix} z_s^0 \\ z_s^x \\ z^z \end{pmatrix} = \begin{pmatrix} \gamma & 0 & -\gamma\beta \\ 0 & 1 & 0 \\ -\gamma\beta & 0 & \gamma \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ z_a^z \end{pmatrix}$ $z_s^{\mathsf{o}} = -\gamma\beta z_a^z$ **Operator distance** $z_s^z = \gamma z_a^z$ develops a non-zero temporal component

 $z^z/2$ 

 $-z^{z}/2$ 



#### Symmetric & asymmetric frames



#### **Case 2: Transverse boost in the x-direction**

$$\begin{pmatrix} z_s^0 \\ z_s^x \\ z_s^z \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta & 0 \\ -\gamma\beta & \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ z_a^z \end{pmatrix}$$
$$\frac{\psi}{-z^z/2} \quad \psi$$



#### Symmetric & asymmetric frames



#### **Case 2: Transverse boost in the x-direction**

$$\begin{pmatrix} z_s^0 \\ z_s^x \\ z_s^z \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta & 0 \\ -\gamma\beta & \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ z_s^z \end{pmatrix}$$
$$\frac{\psi}{-z^z/2} \quad \psi$$

**Results:** 



Operator distance remains spatial (& same)





<u>Transverse boost</u>: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

















$$H(x,\xi,t) \to \int \frac{d(P \cdot z)}{4\pi} e^{ixP \cdot z} \frac{1}{P \cdot z} \langle p' | \bar{q} \neq q | p \rangle \quad \text{Arbitrary light-like } z$$

GPDs on the light-cone can be defined in a Lorentz-invariant way

Transverse boost: This Lor

Case 2: Trai



 $\psi$ 



si-GPDs in symmetric frame



#### **Definitions of quasi-GPDs**



#### **Definition of quasi-GPDs in symmetric frames: (Historical)**

$$F_{\lambda,\lambda'}^{0}|_{s} = \langle p_{s}',\lambda'|\bar{q}(-z/2)\gamma^{0}q(z/2)|p_{s},\lambda\rangle\Big|_{z=0,\vec{z}_{\perp}=\vec{0}_{\perp}}$$
$$= \bar{u}_{s}(p_{s}',\lambda')\bigg[\gamma^{0}H_{Q(0)}(z,P_{s},\Delta_{s})\big|_{s} + \frac{i\sigma^{0\mu}\Delta_{\mu,s}}{2M}E_{Q(0)}(z,P_{s},\Delta_{s})\big|_{s}\bigg]u_{s}(p_{s},\lambda)$$



#### **Definitions of quasi-GPDs**



#### Definition of quasi-GPDs in symmetric frames: (Historical)

$$F_{\lambda,\lambda'}^{0}|_{s} = \langle p_{s}',\lambda'|\bar{q}(-z/2)\gamma^{0}q(z/2)|p_{s},\lambda\rangle\Big|_{z=0,\vec{z}_{\perp}=\vec{0}_{\perp}}$$
$$= \bar{u}_{s}(p_{s}',\lambda')\bigg[\gamma^{0}H_{Q(0)}(z,P_{s},\Delta_{s})\big|_{s} + \frac{i\sigma^{0\mu}\Delta_{\mu,s}}{2M}E_{Q(0)}(z,P_{s},\Delta_{s})\big|_{s}\bigg]u_{s}(p_{s},\lambda)$$

### Historic definitions of H & E quasi-GPDs are not manifestly Lorentz invariant

Think about how  $\gamma^0$  transforms under Lorentz transformation



#### **Definitions of quasi-GPDs**



Definition of quasi-GPDs in symmetric frames: (Historical)

$$F_{\lambda,\lambda'}^{0}|_{s} = \langle p_{s}',\lambda'|\bar{q}(-z/2)\gamma^{0}q(z/2)|p_{s},\lambda\rangle\Big|_{z=0,\vec{z}_{\perp}=\vec{0}_{\perp}}$$
$$= \bar{u}_{s}(p_{s}',\lambda')\bigg[\gamma^{0}H_{Q(0)}(z,P_{s},\Delta_{s})\big|_{s} + \frac{i\sigma^{0\mu}\Delta_{\mu,s}}{2M}E_{Q(0)}(z,P_{s},\Delta_{s})\big|_{s}\bigg]u_{s}(p_{s},\lambda)$$

Historic definitions of H & E quasi-GPDs are not manifestly Lorentz invariant

Can we come up with a

manifestly Lorentz invariant definition of quasi-GPDs for finite values of momentum?



#### Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

$$F_{\lambda,\lambda'}^{\mu} = \bar{u}(p',\lambda') \left[ \frac{P^{\mu}}{M} \mathbf{A_1} + \frac{z^{\mu}}{M} \mathbf{A_2} + \frac{\Delta^{\mu}}{M} \mathbf{A_3} + \frac{i\sigma^{\mu z}}{M} \mathbf{A_4} + \frac{i\sigma^{\mu \Delta}}{M} \mathbf{A_5} + \frac{P^{\mu}i\sigma^{z\Delta}}{M^3} \mathbf{A_6} + \frac{z^{\mu}i\sigma^{z\Delta}}{M^3} \mathbf{A_7} + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{M^3} \mathbf{A_8} \right] u(p,\lambda)$$

**Vector operator**  $F^{\mu}_{\lambda,\lambda'} = \langle p', \lambda' | \bar{q}(-z/2) \gamma^{\mu} q(z/2) | p, \lambda \rangle \Big|_{z=0, \vec{z}_{\perp} = 0}$ 



#### Lorentz covariant formalism

Novel parameterization of position-space matrix element:

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \bigg[ \frac{P^{\mu}}{M} \mathbf{A_1} + \frac{z^{\mu}}{M} \mathbf{A_2} + \frac{\Delta^{\mu}}{M} \mathbf{A_3} + \frac{i\sigma^{\mu z}}{M} \mathbf{A_4} + \frac{i\sigma^{\mu \Delta}}{M} \mathbf{A_5} + \frac{P^{\mu}i\sigma^{z\Delta}}{M^3} \mathbf{A_6} + \frac{z^{\mu}i\sigma^{z\Delta}}{M^3} \mathbf{A_7} + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{M^3} \mathbf{A_8} \bigg] u(p,\lambda)$$

**Features:** 

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures
- 8 Lorentz-invariant amplitudes (or Form Factors)  $A_i \equiv A_i(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2)$

## Validating the frame-independence of A's from Lattice QCD





**Re-exploring historical definitions of quasi-GPDs** 

Mapping amplitudes to the historical definitions of quasi-GPDs: (Sample results)



#### **Re-exploring historical definitions of quasi-GPDs**

Frame-dependent expressions: Explicit non-invariance from kinematics factors

#### **Symmetric frame:**



# $H_{\mathbf{Q}(0)}(z, P_s, \Delta_s)\Big|_s = \mathbf{A_1} + \frac{\Delta_s^0}{P_s^0}\mathbf{A_3} - \frac{\Delta_s^0 z^3}{2P_s^0 P_s^3}\mathbf{A_4} + \left(\frac{(\Delta_s^0)^2 z^3}{2M^2 P_s^3} - \frac{\Delta_s^0 \Delta_s^3 z^3 P_s^0}{2M^2 (P_s^3)^2} - \frac{z^3 \Delta_{\perp}^2}{2M^2 P_s^3}\right)\mathbf{A_6}$ $+\left(\frac{(\Delta_s^0)^3 z^3}{2M^2 P_s^0 P_s^3} - \frac{(\Delta_s^0)^2 \Delta_s^3 z^3}{2M^2 (P_s^3)^2} - \frac{\Delta_s^0 z^3 \Delta_{\perp}^2}{2M^2 P_s^0 P_s^3}\right) \mathbf{A_8}$

#### **Asymmetric frame:**



$$\begin{split} H_{\mathbf{Q}(0)}\Big|_{a}(z,P_{a},\Delta_{a}) &= \mathbf{A_{1}} + \frac{\Delta_{a}^{0}}{P_{avg,a}^{0}}\mathbf{A_{3}} - \left(\frac{\Delta_{a}^{0}z^{3}}{2P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{\Delta_{a}^{0}\Delta_{a}^{3}z^{3}}{4P_{avg,a}^{0}(P_{avg,a}^{3})^{2}}\right)\mathbf{A_{4}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{2}z^{3}}{2M^{2}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{4M^{2}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{P_{avg,a}^{0}\Delta_{a}^{0}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}}{2M^{2}P_{avg,a}^{3}}\right)\mathbf{A_{6}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{3}z^{3}}{2M^{2}P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{3}\Delta_{a}^{3}z^{3}}{4M^{2}P_{avg,a}^{0}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}\Delta_{a}^{0}}{2M^{2}P_{avg,a}^{0}}\right)\mathbf{A_{6}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{3}z^{3}}{2M^{2}P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{3}\Delta_{a}^{3}z^{3}}{4M^{2}P_{avg,a}^{0}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}\Delta_{a}^{0}}{2M^{2}P_{avg,a}^{0}}\right)\mathbf{A_{6}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{3}z^{3}}{2M^{2}P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{3}\Delta_{a}^{3}z^{3}}{4M^{2}P_{avg,a}^{0}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}\Delta_{a}^{0}}{2M^{2}(P_{avg,a}^{3})^{2}} -$$



#### **Light-cone GPDs**

Mapping amplitudes to the light-cone GPDs: (Sample results)



**Definition of light-cone GPD H:** 

$$H(x,\xi,t) \to \int \frac{d(P \cdot z)}{4\pi} e^{ixP \cdot z} \frac{1}{P \cdot z} \langle p' | \bar{q} \not\geq q | p \rangle$$

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = \mathbf{A_1} + \frac{\Delta_{s/a} \cdot z}{P_{avg, s/a} \cdot z} \mathbf{A_3}$$

Lorentz-invariant expression





**Relation between light-cone GPD H & amplitudes:** 

#### Novel definition of quasi-Gl

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = \mathbf{A_1} + \frac{\Delta_{s/a} \cdot z}{P_{avg, s/a} \cdot z} \mathbf{A_3}$$

Mapping amplitudes to the historical definitions of quasi-GP

#### Symmetric frame:



$$\begin{split} H_{\mathbf{Q}(0)}(z,P_{s},\Delta_{s})\big|_{s} &= \mathbf{A_{1}} + \frac{\Delta_{s}^{0}}{P_{s}^{0}}\mathbf{A_{3}} - \frac{\Delta_{s}^{0}z^{3}}{2P_{s}^{0}P_{s}^{3}}\mathbf{A_{4}} + \left(\frac{(\Delta_{s}^{0})^{2}z^{3}}{2M^{2}P_{s}^{3}} - \frac{\Delta_{s}^{0}\Delta_{s}^{3}z^{3}P_{s}^{0}}{2M^{2}(P_{s}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}}{2M^{2}P_{s}^{3}}\right)\mathbf{A_{6}} \\ &+ \left(\frac{(\Delta_{s}^{0})^{3}z^{3}}{2M^{2}P_{s}^{0}P_{s}^{3}} - \frac{(\Delta_{s}^{0})^{2}\Delta_{s}^{3}z^{3}}{2M^{2}(P_{s}^{3})^{2}} - \frac{\Delta_{s}^{0}z^{3}\Delta_{\perp}^{2}}{2M^{2}P_{s}^{0}P_{s}^{3}}\right)\mathbf{A_{8}} \end{split}$$

#### **Asymmetric frame:**



$$\begin{split} H_{\mathbf{Q}(0)}\Big|_{a}(z,P_{a},\Delta_{a}) &= \mathbf{A_{1}} + \frac{\Delta_{a}^{0}}{P_{avg,a}^{0}}\mathbf{A_{3}} - \left(\frac{\Delta_{a}^{0}z^{3}}{2P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{\Delta_{a}^{0}\Delta_{a}^{3}z^{3}}{4P_{avg,a}^{0}(P_{avg,a}^{3})^{2}}\right)\mathbf{A_{4}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{2}z^{3}}{2M^{2}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{4M^{2}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{P_{avg,a}^{0}\Delta_{a}^{3}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}}{2M^{2}P_{avg,a}^{3}}\right)\mathbf{A_{6}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{3}z^{3}}{2M^{2}P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{3}\Delta_{a}^{3}z^{3}}{4M^{2}P_{avg,a}^{0}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}\Delta_{a}^{0}}{2M^{2}P_{avg,a}^{3}}\right)\mathbf{A_{6}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{3}z^{3}}{2M^{2}P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{3}\Delta_{a}^{3}z^{3}}{4M^{2}P_{avg,a}^{0}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}\Delta_{a}^{0}}{2M^{2}P_{avg,a}^{0}}\right)\mathbf{A_{6}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{3}z^{3}}{2M^{2}P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{3}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}\Delta_{a}^{0}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z$$



### In the large-momentum limit, these expressions reduce to light-cone results











**Relation between light-cone GPD H & amplitudes:** 











# Same functional forms QCD calculations of GPDs in asymmetric frames



### Same functional forms **QCD** calculations of GPDs in asymmetric frames









#### Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya<sup>1,2</sup>, Krzysztof Cichy<sup>3</sup>, Martha Constantinou<sup>1</sup>, Jack Dodson<sup>1</sup>, Andreas Metz<sup>1</sup>, Aurora Scapellato<sup>1</sup>, Fernanda Steffens<sup>4</sup>

(So far, from symmetric frames)































#### Connecting dots: Ending with what I started with





<u>Transverse boost</u>: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame









Elimination of power corrections potentially allowing faster convergence to light-cone GPDs



