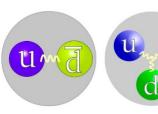
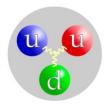


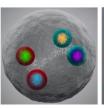
Hadron Spectroscopy at LHCb

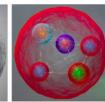
Zehua Xu<u>On behalf of the LHCb</u> collaboration

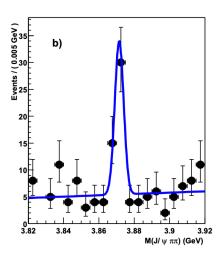
Université Clermont Auvergne, LPC-Clermont, IN2P3/CNRS

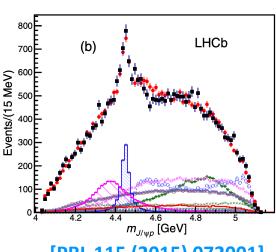

2023.06.28

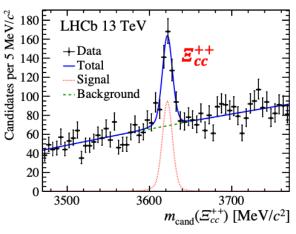

@ Prague, Czechia (remotely)


International Workshop on Hadron Structure and Spectroscopy 2023

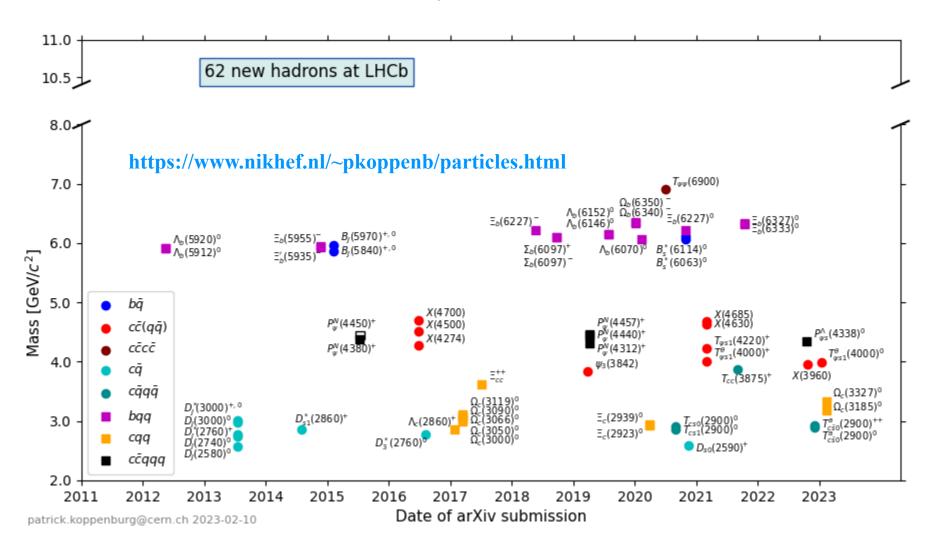

Introduction


- QCD describing strong interaction between quarks and gluons is not well understood due to its nonperturbative nature at low energy scale
- > Hadron spectroscopy allow to test the knowledge of QCD and it effective models
 - e.g. lattice QCD, diquark model, potential model ...
- Exotic states provide unique probe for QCD

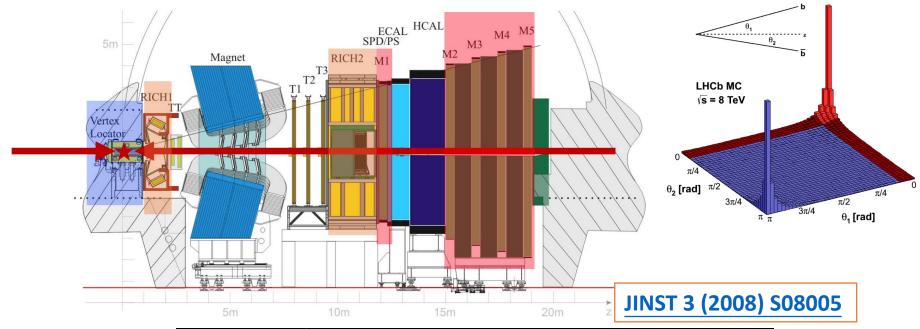




[PRL 91 (2003) 262001]


[PRL 115 (2015) 072001]

[PRL 117 (2017) 112001]


Hadrons observed at LHCb

➤ 62 new hadrons observed at LHCb, 20+ are exotics

The LHCb detector

- > LHCb is a dedicated heavy flavor physics experiment at LHC
 - \sim 20,000/s $b\bar{b}$ generated at LHCb point in Run2
 - A single-arm forward region spectrometer covering $2 < \eta < 5$


```
Vertex: \sigma_{IP} = 20~\mu m

Time: \sigma_{\tau} = 45~fs for B_s^0 \rightarrow J/\psi \phi or D_s^+ \pi^-

Momentum: \Delta p/p = 0.4 \sim 0.6\%~(5-100~GeV/c)

Mass: \sigma_m = 8~MeV/c^2 for B \rightarrow J/\psi X (constrainted m_{J/\psi})

Hadron ID: \varepsilon(K \rightarrow K) \sim 95\% mis-ID \varepsilon(\pi \rightarrow K) \sim 5\%

Muon ID: \varepsilon(\mu \rightarrow \mu) \sim 97\% mis-ID \varepsilon(\pi \rightarrow \mu) \sim 1-3\%

ECAL: \Delta E/E = 1 \oplus 10\%/\sqrt{E~(GeV)}
```

Incomplete list of recent results

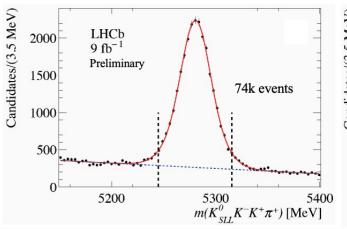
Cover just a small set of very recent results since last year

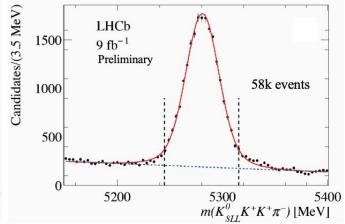
LHCb Talk in IWHHS2022

> Conventional

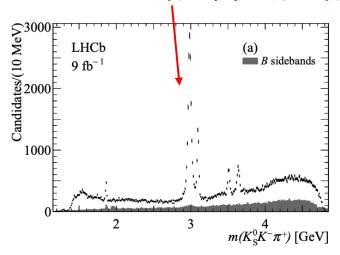
- Charmonia decaying to $K_S K \pi$
- New excited Ω_c^0 states
- New excited \mathcal{Z}_b^0 states
- Amplitude analysis of $D_{(s)}^+ \to \pi\pi\pi$

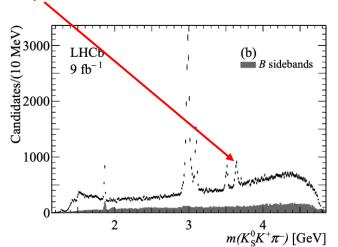
[arXiv:2304.14891]

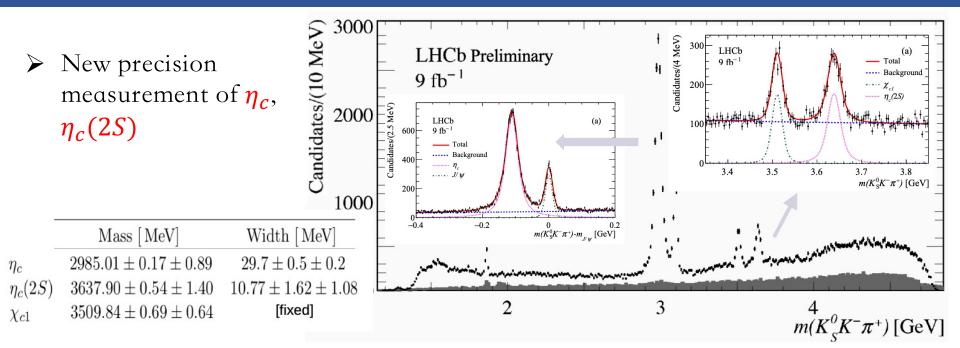

[arXiv:2302.04733]

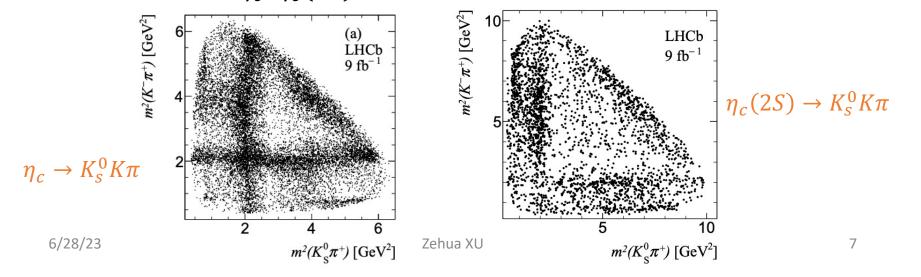

[LHCB-PAPER-2023-008 in preparation]

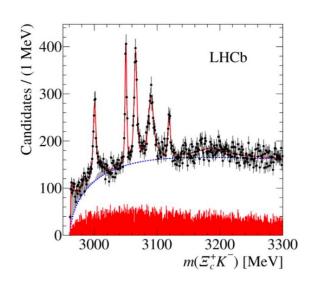
[arXiv:2209.09840, arXiv:2208.03300]


- \triangleright Exotic (hadrons beyond $q\overline{q}$ and qqq)
 - Evidence of $T_{\psi S1}^{\theta}(4000)$

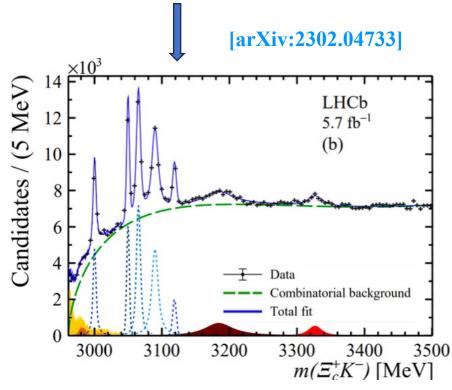

- \blacktriangleright High-statistic signals with $B^+ \to K_S^0 K^+ K^- \pi^+$ and $B^+ \to K_S^0 K^+ K^+ \pi^-$
 - Two K_s^0 reconstruction methods (LL, DD)




 \triangleright Obvious peaks of η_c , J/ψ , χ_{c1} , $\eta_c(2S)$

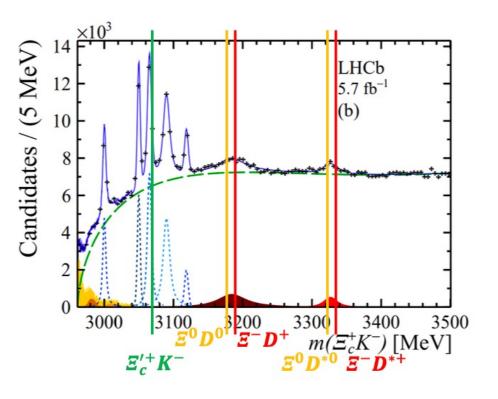


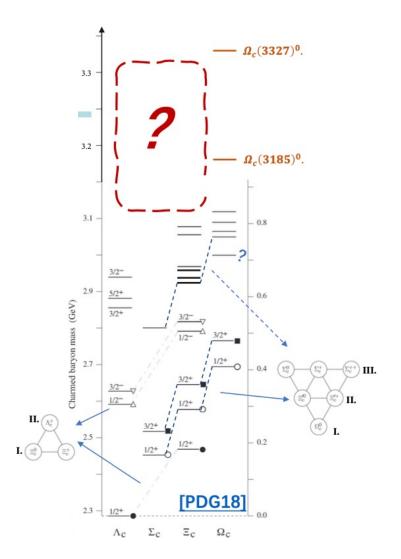
 \triangleright Dalitz analyses of η_c , $\eta_c(2S)$ decays provide information on kaon spectroscopy

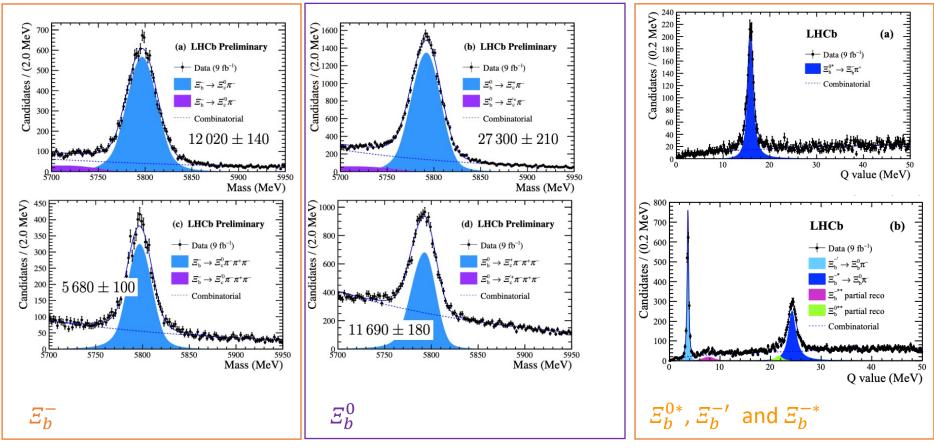


New excited Ω_c^0 states

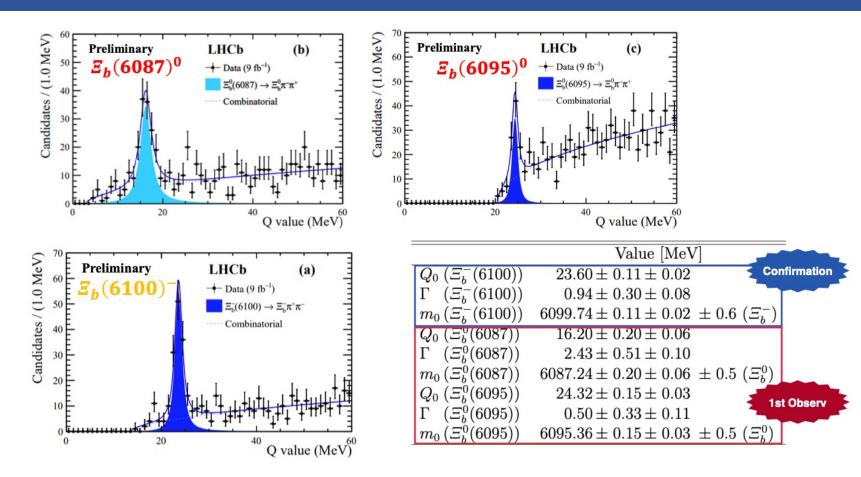
 \triangleright $\mathcal{E}_c^+K^-$ in 2017, five excited Ω_c^0 observed; updated with Run1+2 dataset




[PHYS. REV. LETT. 118(2017) 182001]


- \triangleright New states: $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$
- ➤ All previous states confirmed

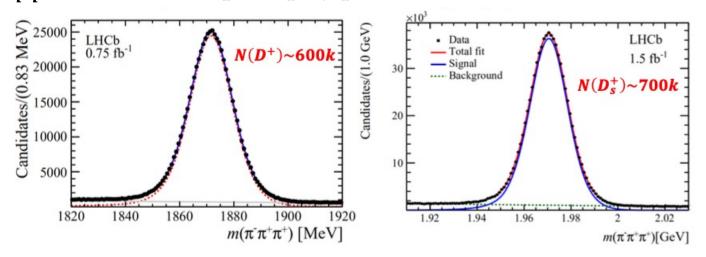
 $\triangleright \Omega_c(3185)^0$ and $\Omega_c(3327)^0$ near \varXi^0D^{*0} and $\varXi^+_cK^-$ thresholds



First investigation in LHCb of the final states $\mathcal{Z}_h^-\pi^+\pi^-$ and $\mathcal{Z}_h^0\pi^+\pi^-$

- \triangleright Charged and neutral \mathcal{E}_h states reconstructed
- $\triangleright \Xi_h^{0*}, \Xi_h^{-\prime}$ and Ξ_h^{-*} reconstructed from $\Xi_h^{-}\pi^+$ or $\Xi_h^{0}\pi^-$

6/28/23

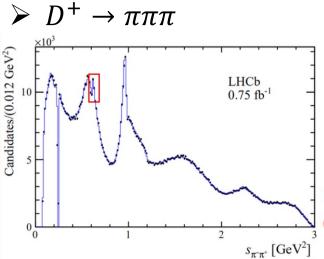


- \triangleright Observation of two new excited baryons: $\mathcal{E}_b(6087)^0$, $\mathcal{E}_b(6095)^0$
- $\triangleright \Xi_b(6100)^-$ is confirmed

6/28/23 Zehua XU 11

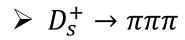
[arXiv:2209.09840, arXiv:2208.03300]

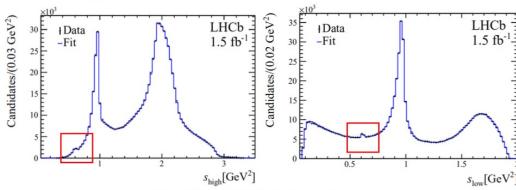
> 2012 pp dataset used; promptly produced D mesons


- Methodology for amplitude construction:
 - S-wave: Quasi-Model Independent approach (QMIPWA)

$$A_S(s_{12}, s_{13}) = A_S(s_{12}) + A_S(s_{13})$$
 $A_S^k(s_{\pi^+\pi^-}) = c_k e^{i\phi_k}$

- c_k , ϕ_k : Generic functions determined by fit to data
- Isobar model for spin-1, spin-2 components

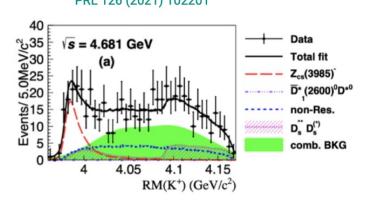

Amplitude analysis of $D_{(s)}^+ \to \pi\pi\pi$

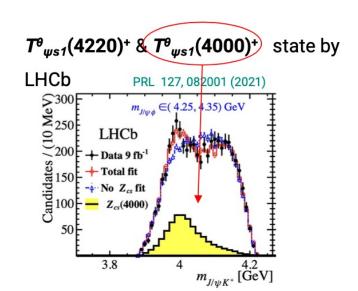


Component	Magnitude	Phase [°]	Fit fraction [%]			
$\rho(770)^{0}\pi^{+}$	1 [fixed]	0 [fixed]	26.0	± 0.3	± 1.6	± 0.3
$\omega(782)\pi^{+}$	$(1.68 \pm 0.06 \pm 0.15 \pm 0.02) \times 10^{-2}$	$-103.3 \pm 2.1 \pm 2.6 \pm 0.4$	0.10	3 ± 0.008	8 ± 0.01	4 ± 0.002
$\rho(1450)^0\pi^+$	$2.66 \pm 0.07 \pm 0.24 \pm 0.22$	$47.0 \pm 1.5 \pm 5.5 \pm 4.1$	5.4	± 0.4	± 1.3	± 0.8
$\rho(1700)^0\pi^+$	$7.41 \pm 0.18 \pm 0.47 \pm 0.71$	$-65.7 \pm 1.5 \pm 3.8 \pm 4.6$	5.7	± 0.5	± 1.0	± 1.0
$f_2(1270)\pi^+$	$2.16 \pm 0.02 \pm 0.10 \pm 0.02$	$-100.9 \pm 0.7 \pm 2.0 \pm 0.4$	13.8	± 0.2	± 0.4	± 0.2
S-wave			61.8	± 0.5	± 0.6	± 0.5
$\sum_{i} FF_{i}$	A		112.8			
$\chi^2/\text{ndof (range)}$	[1.47 - 1.78]		$-2\log \mathcal{L} = 805622$			

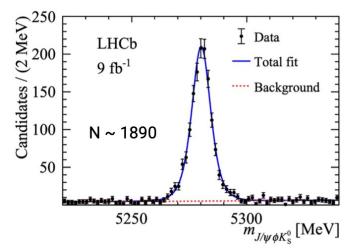
Dominated by S-wave, followed by $\rho(770)^0\pi^+$ and $f_2(1270)^0\pi^+$ Contribution from $(\omega(782) \to \pi^+\pi^-)\pi^+$ observed for the first time

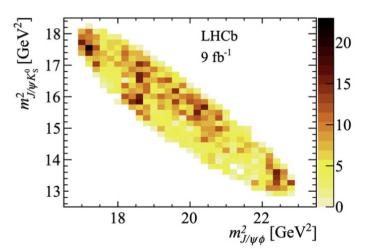
Resonance	Magnitude	Phase [°]	Fit fraction (FF) $[\%]$
S-wave			84.97 ± 0.14
$\rho(770)^0$	0.1201 ± 0.0030 0.04001 ± 0.00090	79.4 ± 1.8 -109.9 ± 1.7	1.038 ± 0.054 0.360 ± 0.016
$\omega(782)$			
$ ho(1450)^0 \ ho(1700)^0$	1.277 ± 0.026 0.873 ± 0.061	-115.2 ± 2.6 -60.9 ± 6.1	3.86 ± 0.15 0.365 ± 0.050
combined	-	-00.9 ± 0.1 -	6.14 ± 0.27
$f_2(1270)$	1 (fixed)	0 (fixed)	13.69 ± 0.14
$f_2'(1525)$	0.1098 ± 0.0069	178.1 ± 4.2	0.0455 ± 0.0070
sum of fit fractions			104.3
$\chi^2/\text{ndof (range)}$	[1.45 - 1.57]		

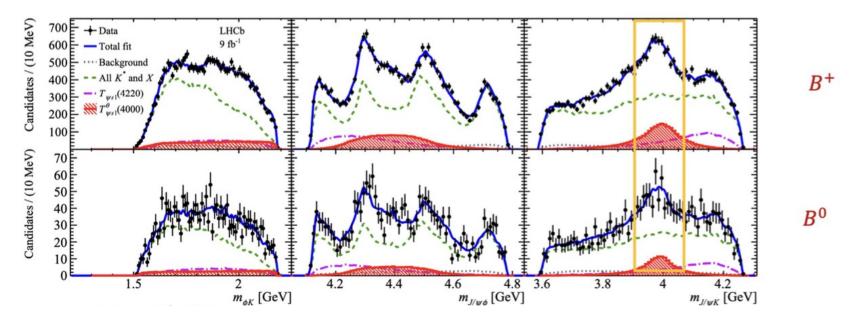

Dominated by S-wave, followed by spin-2 resonances


Contribution from $(\omega(782) \rightarrow \pi^+\pi^-)\pi^+$ observed for the first time

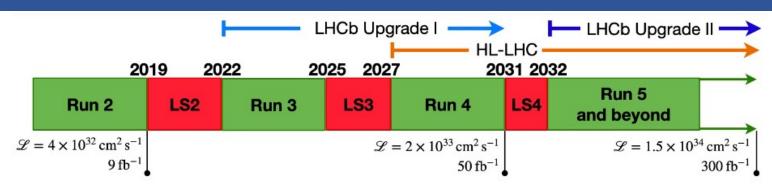
[arXiv: 2301.04899]


 $\succ T_{\psi S1}^{\theta}$ observed at BESIII and LHCb


 $T^{\theta}_{\psi s1}$ (3985)+ in $D_s^-D^{*0} + D^0D_s^{*-}$ by BESIII PRL 126 (2021) 102201



 \triangleright Search for $T_{\psi S1}^{\theta}$ in $B^0 \to J/\psi \phi K^0$


 \triangleright Joint fit with B^+ and B^0 channels

 \triangleright Joint Evidence for new tetraquark state with 4σ

6/28/23 Zehua XU 15

Summary and Prospects

> Some recent interesting results presented:

- Charmonia decaying to $K_s K \pi$
- New excited Ω_c^0 , Ξ_b^0 states
- Amplitude analysis of $D_{(s)}^+ \to \pi\pi\pi$
- Evidence of $T_{\psi S1}^{\theta}(4000)^0$

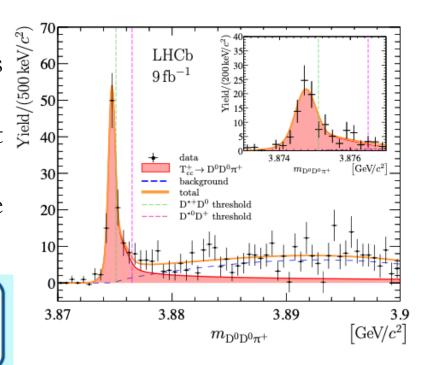
Larger statistics in Run 3 boosts hadron spectroscopy studies:

- Search for more conventional excited states
- The evidence of hadrons to be confirmed
- To confirm the observed multiquark states in other channel, e.g.: P_c^+ in $\Lambda_b^0 \to J/\psi p\pi$
- Study J^P and other properties of multiquark states
- •

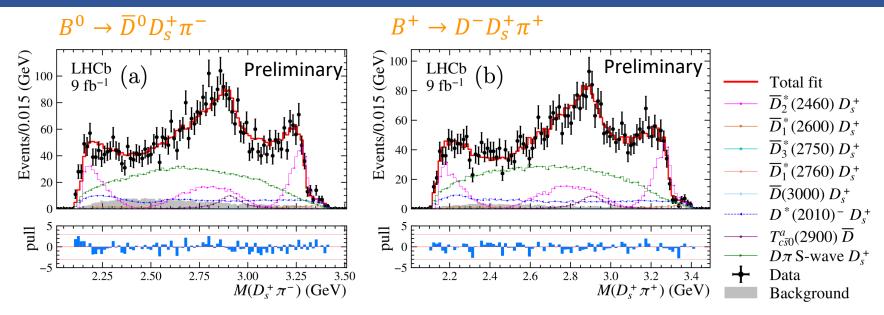
Backup

Thanks for your attention

[arXiv: 2019. 01038] [arXiv: 2019. 01056]


> First observation of same-sign doubly charmed tetraquark T_{cc}^+

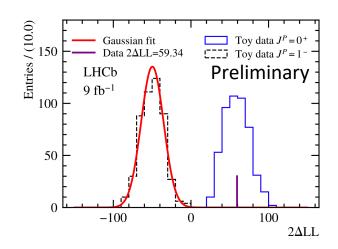
- your narrow state in $D^0D^0\pi^+$ mass spectrum

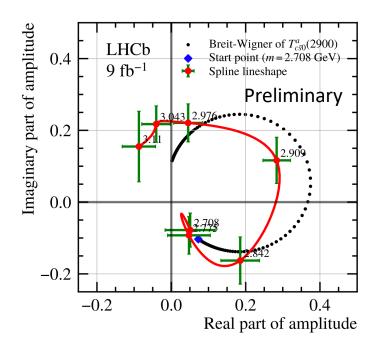

 Manifestly exotic with quark content $cc\bar{u}\bar{d}$
- $cc\bar{u}\bar{d}$
- ➤ Mass ~ 3875 MeV, very close to the $D^{*+}D^{0}$ threshold

$$\delta m_{\rm BW} = -273 \pm 61 ({\rm stat}) \pm 5 ({\rm syst})^{+11}_{-14} ({\rm model}) \ {\rm keV}$$

 $\Gamma = 410 \pm 65 ({\rm stat}) \pm 43 ({\rm syst})^{+18}_{-38} ({\rm model}) \ {\rm keV}$

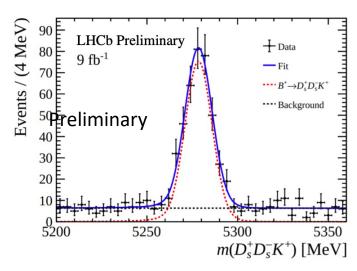
- \triangleright Consistent with isoscalar $I^P = 1^+$
- \triangleright No hint of possible T^0 , T^{++} isospin partners




Dalitz fit with $T_{c\bar{s}0}^{a} (2900)^{0/++}$

- > The fit greatly improved;
- \triangleright Significance of $T_{c\bar{s}0}^a$ (2900)^{0/++} >9 σ
- > Strong preference for J^P as 0^+ (>7 σ)
- Mass and width are measured

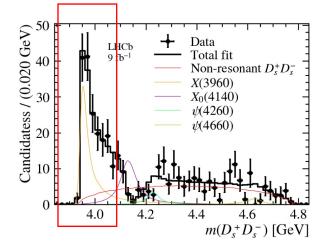
$$M = 2.908 \pm 0.011 \pm 0.020 \,\text{GeV}$$
 and $\Gamma = 0.136 \pm 0.023 \pm 0.011 \,\text{GeV}$,

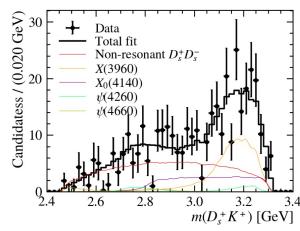


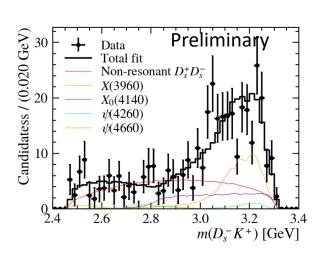
- \triangleright The fit using seven spline points to describe $T_{c\bar{s}0}^a$ (2900)^{0/++} lineshape;
- Consistent with Breit-Wigner lineshape, further supports the resonant character

6/28/23 Zehua XU 21

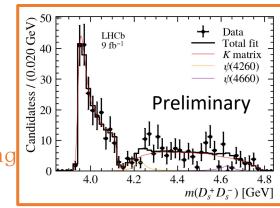
$B^+ \rightarrow D_s^+ D_s^- K^+$ at LHCb


- Motivation:
 - $B^+ \to D_S^+ D_S^- K^+$ has not been observed previously
 - $\mathcal{B}(B^+ \to D_s^+ D_s^- K^+)$ allows to estimate partial width of X near threshold [arXiv: 1602.08421]
 - Also search for other exotics
- Signal reconstruction using LHCb Run 1+2 dataset;
 - B^+ yield ~360 candidates with 84.4% purity



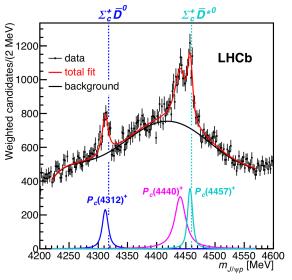

Dalitz plot analysis to understand the resonance structure

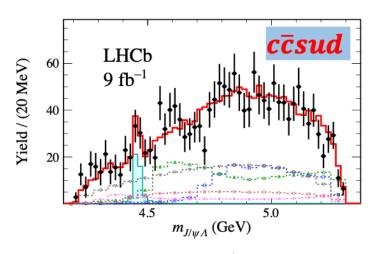
Dalitz analysis


 \triangleright Near-threshold enhancement in $m(D_s^+D_s^-)$

- Baseline model well describes data
 - 0^{++} : X(3960), X(4140) and NR; 1^{--} : $\psi(4260)$ and $\psi(4660)$
- > *X*(3960):
 - Significance > 12σ
 - $J^{PC} = 0^{++}$ preferred over 1^{--} and 2^{++} (> 9σ)
- > *X*(4140):
 - $J^{PC} = 0^{++}$ preferred over 1^{--} and 2^{++} (> 3σ)
 - The dip can also described by $J/\psi \to D_s^+ D_s^-$ scattering

	M [MeV]	Γ [MeV]	J^{PC}
X(3960)	$3955 \pm 6 \pm 12$ $48 \pm 17 \pm 10$		0++
$\chi_{c0}(3930)$	3924 ± 2	17 ± 5	


- > Same particles?
 - Latest Lattice QCD shows the enhancement near the threshold of $D_s^+D_s^-$ due to the presence of X(3930) [arXiv: 2207.08490]


$$\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}(B^+ \to D^+ D^- K^+) \times \mathcal{F} \mathcal{F}_{B^+ \to D^+ D^- K^+}^X}{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) \times \mathcal{F} \mathcal{F}_{B^+ \to D_s^+ D_s^- K^+}^X} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08$$

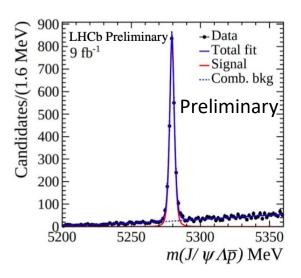
- X has an exotic nature: creation of $S\overline{S}$ from vacuum is suppressed wrt. $u\overline{u}$ and $d\overline{d}$; $X \to D_S^+D_S^-$ has smaller phase-space than $X \to D_S^+D_S^-$
- Different particles?
 - No obvious candidate within conventional multiplets for them; likely to be exotic

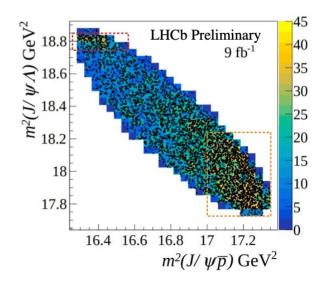
Motivation of searching for $P_{\psi s}^{\Lambda}$ in $B^- \to J/\psi \Lambda \overline{p}$

Pentaquark seen at LHCb often noted to be close to charm-hadron threshold

 P_{ψ}^{N} in $\Lambda_b^0 \to J/\psi p K$ [PRL 122 (2019) 222001]

Evidence of $P_{\psi s}^{\Lambda}$ in $\Xi_b^- \to J/\psi \Lambda K^-$ [Sci.Bull.66(2021) 1278]

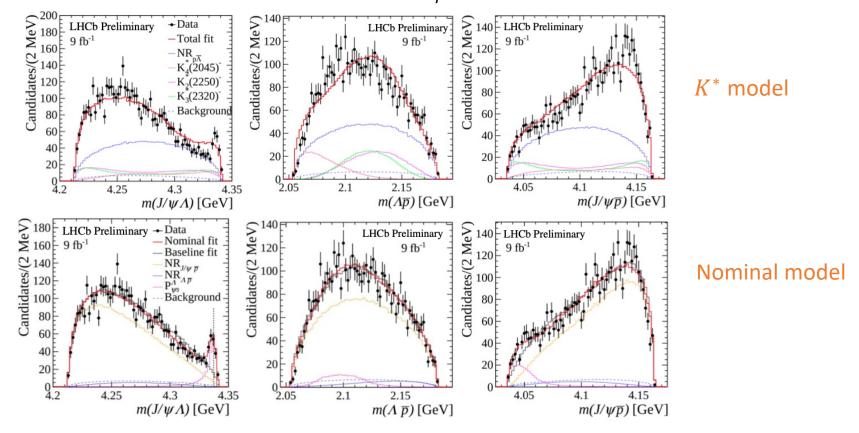

- $\gg B^- \to J/\psi \Lambda \bar{p}$ allows to search near threshold of $\Xi_c D^-, \Lambda_c^+ D_s^-$ and $\Lambda_c^+ D^0$
- $\triangleright P_{\psi s}^{\Lambda}$ predicted in hadronic molecules model


[Progr.Phys.41(2021) 65-93]

$B^- o J/\psi \Lambda \overline{p}$ signals

- \triangleright B⁻ yield ~4617 with 93% purity using Run 1+2 data
- \triangleright Most precise measurement of B^- mass:

$$m_{B^+} = 5279.44 \pm 0.05(stat.) \pm 0.07(syst.) \, \text{MeV}/c^2$$

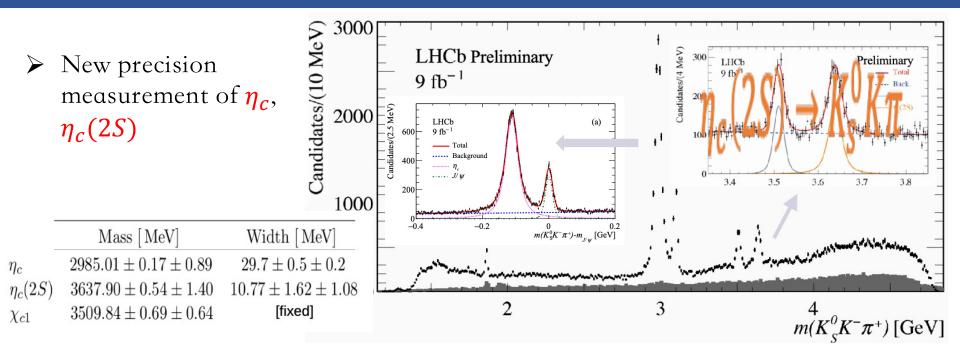


- \triangleright Narrow structure in $J/\psi\Lambda$; broad structure in $J/\psi\bar{p}$
- Dalitz analysis needed to determine its resonance structure

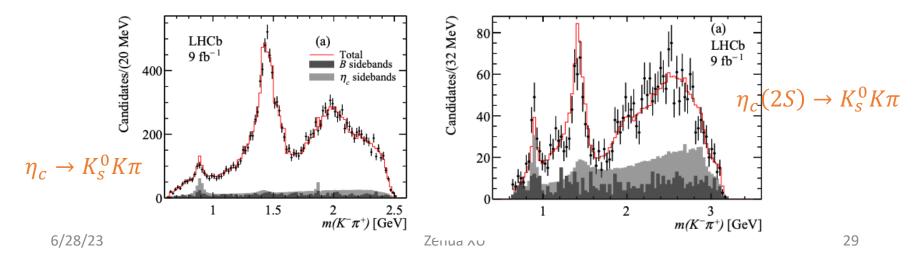
6/28/23 Zehua XU 26

- $ightharpoonup K^*$ model: $K_{2,3,4}^*$ and $NR(\Lambda \bar{p})$
- ightharpoons Nominal model: NR($\Lambda \bar{p}$), NR($J/\psi \bar{p}$) and $P_{\psi s}^{\Lambda}$

- \triangleright K^* model cannot describe data well
- $ightharpoonup P_{\psi s}^{\Lambda}$ improve the fit NNL significantly


6/28/23 Zehua XU 27

Observation of $P_{\psi s}^{\Lambda} \rightarrow J/\psi \Lambda$


- $\triangleright P_{\psi s}^{\Lambda}$ observed with significance $> 10\sigma$
- > J = 1/2 is established
- P = -1 preferred; $J^P = 1/2^+$ excluded at 90% CL

$$M(P_{\psi s}^{\Lambda}) = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$$

 $\Gamma(P_{\psi s}^{\Lambda}) = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}$

- ➤ Key properties
 - \checkmark First observation of pentaquark with strange quark content $c\bar{c}uds$
 - ✓ Narrow
 - ✓ Close to $\mathcal{Z}_c^+ D^-$ threshold and in S-wave

 \triangleright Dalitz analyses of η_c , $\eta_c(2S)$ decays provide information on kaon spectroscopy

