Nanoparticle theranostics with PET and MRI

International workshop "Positronium – from quantum physics to medical applications"

26-28 April 2023, Split

Zdenka Kuncic School of Physics and Sydney Nano Institute, Australia

Acknowledgements

- Lots of clever & enthusiastic undergrad research students @USyd
- PhD students: R. Maschmeyer, L. Smith
- Postdocs: Yaser Gholami, David Waddington, Phillip Janowicz
- Prof Viive Howell, USyd and Kolling Institute of Medical Research
- Dr Nana Sun & Dr Sofie Trajanovska, Sydney Pre-Clinical Imaging Facility, USyd
- <u>Prof Georges El Fakhri</u>, A/Prof Lee Josephson, Dr Moses Wilks, Dr Marc Normandin, Dr Hushan Yuan, Gordon Centre for Medical Imaging, MGH and Harvard Medical School
- <u>Prof Matt Rosen</u>, Athinoula A. Martinos Centre for Biomedical Imaging, MGH and Harvard Medical School

I. Introduction: nanotechnology for medicine

Geometric confinement on nanoscales induces unique physical properties:

- Large surface area-tovolume ratio;
- 2) Mechanical, optical, electrical, magnetic behaviour;
- 3) Non-trivial quantum effects.

Challenge 1: how can we harness these properties for novel theranostic applications?

Carbon nanotubes

Metallic NPs

Dendrimers

Nanogels

Liposomes

Polymeric NPs

I. Introduction: radio-nanomedicine

- Nanoparticles labelled with radio-isotopes for diagnostic imaging (e.g. PET, SPECT) and targeted radionuclide therapy
- Better selectivity/specificity, tumour cell targeting

Goel et al. Small (2014)

I. Introduction: radio-nanomedicine

Commonly used radio-isotopes:

isotope	Particle type	Half-life	use
⁶⁴ Cu	β^+	12.7 hrs	PET
⁸⁹ Zr	eta^+	3.3 days	PET
⁶⁸ Ga	β^+	68 mins	PET
⁹⁰ Y	eta^+ and eta^- (3.7 mm)	2.7 days	PET and therapy
⁹⁹ Tc	γ	6.0 hrs	SPECT
¹⁷⁷ Lu	γ and $\beta^{\text{-}}$ (0.67 mm)	6.7 days	SPECT and therapy
²²³ Ra	$lpha$ (42 μ m)	11.4 days	therapy

Y-90 PET CRC mets in liver

II. SPIONs for MRI

SPION = SuperParamagnetic Iron Oxide Nanoparticle

• Strong magnetic susceptibility in an external B-field:

(b) Applied magnetic field

Ferromagnetic particle

II. SPIONs for MRI

In MRI (B₀ = 1-3 T), SPIONs interact with ¹H spins, shortening relaxation times, and inducing a strong nanoscale B-field inhomogeneity:

II. SPIONs for Ultra-Low-Field (mT) MRI

RESEARCH ARTICLE | APPLIED SCIENCES AND ENGINEERING

High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles

David E. J. Waddington^{1,2,3,*}, D Thomas Boele^{2,4}, Richard Maschmeyer¹, Zdenka Kuncic^{1,5} and Matthew S. Rosen^{2,6,7}

HYPERFINE Portable MR Imaging

II. Detecting inflammation with SPIONs

Normandin et al. IJNM (2015)

Radiolabelled SPIONs: PET-CT + MRI

⁸⁹Zr-SPIONs: invasion status of tumor draining lymph nodes critical for cancer staging

Thorek et al. Nature Commun. (2013)

⁶⁸Ga-SPIONs: PET-CT biodistribution

Locatelli et al. IJNM (2012)

III. Radiolabelled SPIONs: PET and MRI brain imaging

- PET → High sensitivity biological imaging
- MRI \rightarrow Superior soft-tissue contrast and spatial resolution

III. Radiolabelled SPIONs for glioblastoma

- MRI: limited glioma grading, treatment response
- ¹⁸F-FDG-PET: insufficient differential uptake (non-targeting)
- amino acid PET tracers are better, but isotopes are short-lived

Gd-enhanced T1W

¹⁸F-FDG PET

¹⁸F-FDG PET

¹¹C-MET PET

Verger & Langdon 2017

III. SPIONs for glioblastoma

 SPIONs: can target neuroinflammation sites and provide diagnostic MRI tool for macrophages in gliomas – BUT only if it crosses blood-brain barrier (BBB)

T2W MRI w/o SPIONs T2W MRI w SPIONs ly et al. 2018

III. SPIONs for glioblastoma

BBB remains intact in regions of tumour infiltration
 inaccessible to MRI & PET diagnostic agents and treatments

Israel et al. 2020

III. SPIONs for GBM (in progress)

Hypothesis: SPIONs functionalised with novel DNA-damaging antibodies can cross intact BBB, accumulate in infiltrative GBM tissue, and enhance contrast in MRI scans

Rattry et al. JCI Insight 2021 ENT2 facilitates brain endothelial cell penetration and blood- brain barrier transport by a tumortargeting anti-DNA autoantibody

III. Radiolabelled SPIONs for GBM (next study)

 SPIONs radiolabelled with a PET tracer can enable physiological monitoring of GBM response to anti-DNA

Gd-enhanced T1W MRI + PET imaging of ⁶⁴Cu-labelled NPs in GBM mouse model (Houston et al. 2020)

 SPIONs labelled with a targeting radiotherapeutic (Pb-212) can enhance anti-DNA action, which sensitizes tumour cells to radiation

IV. Towards MRI and PET-MRI nano-theranostics

nature > scientific reports > articles > article

SCIENTIFIC REPORTS

Article Open Access Published: 04 October 2019

Radio-enhancement effects by radiolabeled nanoparticles

Yaser Hadi Gholami 🖾, Richard Maschmeyer & Zdenka Kuncic 🖾

Atomic dose enhancement effect in radionuclide therapy, up to 20%

²¹²Pb (
$$\alpha$$
)
²¹³Bi (α , β^{-} , γ)
¹⁷⁷Lu (β^{-} , γ , Auger)
⁸⁹Zr (β^{+} , γ , Auger)
⁶⁷Cu (β^{-} , γ , Auger)
⁶⁴Cu (β^{+} , β^{-} , γ , Auger)
⁹⁰Y (β^{-})

Magnetic dose enhancement in radionuclide therapy, up to $\sim 60\%$

magnetised SPION

New Australian industry – university partnership funding! (2023–27)

Australian Research Centre

Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals

UQ's new hub to develop manufacturing of radiopharmaceuticals

MIGNON D'SOUZA September 19, 2022, 4:36 pm

