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Introduction

This conference will be a celebration of a double-scattering formula:

d4σ12
d2Ω1d2Ω2

=
r40
16

[
F (θ1)F (θ2)−G(θ1)G(θ2) cos 2(φ1 − φ2)

]

It is a differential cross section for the Compton scattering of two
entangled photons from a two-photon electron-positron annihilation.
In that:

F (θi) =
2 + (1− cos θi)

3

(2− cos θi)3
and G(θi) =

sin2 θi
(2− cos θi)2

The relevant process qualifiers to be kept in mind are:

(1) the scattering of two photons

(2) photons are entangled (most importantly, in polarization)

(3) photons originate from a two-photon annihilation

(4) annihilation is that of electron and positron
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Introduction

First published in:

• M.H.L. Pryce, J.C. Ward, Angular correlation effects with annihilation
radiation, Nature 160, 435 (1947),

now famous formula for a double-scattering cross section has been regularly
quoted in later publications. It applies exclusively to photons from the
electron-positron annihilation (initial photon energy E0 = mec

2).

A more general formula for entangled annihilation photons of any initial
energy was soon after provided in:

• H.S. Snyder, S. Pasternack, J. Hornbostel, Angular Correlation of
Scattered Annihilation Radiation, Physical Review C 73, 440 (1948):

d4σ12

d2Ω1d2Ω2
=
r4
0

16

E2
1

E2
0

E2
2

E2
0

×[
ε1ε2 − ε1 sin2 θ2 − ε2 sin2 θ1 + 2 sin2 θ1 sin2 θ2 sin2(φ1 − φ2)

]
with E0 as initial photons energy, E1 and E2 as scattered photon energies,

and εi = Ei/E0 + E0/Ei.
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Single-photon scattering: polarized Klein-Nishina

Considering a scattering of each photon separately (independently from the
other photon) gives rise to the uncorrelated double-scattering process. In
a context of entangled annihilation-photons, an experimental evidence for
the photon entanglement and its effect upon subsequent scattering can
be found in the observed deviations from the uncorrelated scattering.
Therefore, the uncorrelated scattering must be perfectly characterized.

A starting point is the Klein-Nishina cross section for a single photon with
a particular polarization:

d2σ

d2Ω
=
r20
4

E2
θ

E2
0

(
E0

Eθ
+
Eθ
E0

+ 2 cos 2Θ

)

with Θ as an angle between polarization vectors before and after the
scattering: Θ = ^

(
~ε0, ~ε

)
[not the same as a scattering angle θ from

a solid angle element d2Ω = sin θdθdφ].
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Single-photon scattering: polarized Klein-Nishina

A scattering geometry was analyzed in detail in:
• G.O. Depaola, New Monte Carlo method for Compton and Rayleigh

scattering by polarized gamma rays, Nuclear Instruments and Methods
A 512, 619 (2003).

finding a geometric relation: cos2 Θ = (1 − sin2 θ cos2 φ) cos2 β.

Let ~ε0 and ~k0 be a polarization and a direction of an initial photon.
Let ~ε and ~k be a polarization and a direction of a scattered photon.

Aside from Θ = ^(~ε, ~ε0), the relevant angles are:

• scattering angle θ between the two photons: θ = ^(~k,~k0)

• azimuthal scattering angle φ (around ~k0) relative to a direction

of initial polarization ~ε0: φ = ^
[
~k0 × (~k × ~k0), ~ε0

]

• angle β of a polarization ~ε, relative to a plane spanned by ~ε0 and
~k (i.e. around ~k, relative to a semi-axis in a general direction of ~ε0):

β = ^
[
~k × (~ε0 × ~k), ~ε

]

(See Depaola reference for geometric sketches.)
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Single-photon scattering: polarized Klein-Nishina

Using a previous relation:

cos2 Θ = (1− sin2 θ cos2 φ) cos2 β

a polarized scattering cross section:

d2σ

d2Ω
=
r20
4

E2
θ

E2
0

(
E0

Eθ
+
Eθ
E0

+ 2 cos 2Θ

)

may be expressed as:

d2σ

d2Ω
=
r20
4

E2
θ

E2
0

(
E0

Eθ
+
Eθ
E0
− 2 + 4(1− sin2 θ cos2 φ) cos2 β

)

Notice!

Scattering cross section (i.e. the nature of a process) is fully determined
by a change of polarization (Θ)! The expanded formula is just a way
of expressing this dependence via more convenient geometric parameters.
Also, not all values of Θ are compatible with a given scattering angle θ:

cos2 Θ ≤ 1 − sin2 θ ⇒ θ ≤ Θ ≤ π − θ
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Single-photon scattering: various Klein-Nishinas

Derived, process-specific cross sections

For photons of specific polarization (φ and β for scattered photon
both known from initial photon), a scattering cross section is:

d2σ(θφβ)

d2Ω
=
r20
4

E2
θ

E2
0

(
E0

Eθ
+
Eθ
E0
− 2 + 4(1− sin2 θ cos2 φ) cos2 β

)

For photons of specific initial but unspecified final polarization,
a ”polarized-in, unpolarized-out” cross section is obtained by
summing over the two possible polarization-basis states (β = 0 and π

2 ):

d2σ(θφ)

d2Ω
=
r20
2

E2
θ

E2
0

(
E0

Eθ
+
Eθ
E0
− 2 sin2 θ cos2 φ

)

With both polarizations unspecified, a polarization-uncorrelated cross
section is obtained by averaging over all possible initial polarizations (φ):

d2σ(θ)

d2Ω
=
r20
2

E2
θ

E2
0

(
E0

Eθ
+
Eθ
E0
− sin2 θ

)

which is a Klein-Nishina formula most regularly encountered in literature.
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Simulating a single-photon scattering

In general, a probability for Compton
scattering to occur in a material is:

P = (1− e−nΣtot)
σComp

Σtot

with Σtot as a total cross section for
any photon interaction, and σComp

as a total (integrated) cross section
for Compton scattering:

σComp =

∫ π

θ=0

∫ 2π

φ=0

d2σ(θ)

d2Ω
sin θdθdφ

n is an areal density of targets, i.e. a
number of electrons per unit area. In
case of a thin material (nΣtot � 1)
P may be approximated as:

P ≈ nσComp

From this point we focus exclusively
on the electron-positron annihilation
photons, so that:

Eθ
E0

=
1

2− cos θ

Hence:

d2σ(θ)

d2Ω
=
r2
0

2

2 + (1− cos θ)3

(2− cos θ)3
=
r2
0

2
F (θ)

and:

σComp = r2
0π
(

40
9
− 3 ln 3

)
≈ 3.6 r2
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Simulating a single-photon scattering

(1) Sampling a reaction probability

• calculate a reaction probability P

• uniformly generate a random
number r ∈ [0, 1]

• if r ≤ P , scattering occurs

(2) Sampling a scattering θ

Repeat until θ accepted:

• uniformly generate cos θ ∈ [−1, 1]

• use a part of d2σ(θ)/d2Ω:

p(θ) = F (θ)

such that pmax = 2

• uniformly generate a random
number r ∈ [0, pmax]

• if r ≤ p(θ), accept θ

(3) Sampling a scattering φ

Having θ, repeat until φ accepted:

• uniformly generate φ ∈ [0, 2π]

• use a part of d2σ(θφ)/d2Ω:

p(φ) = F (θ)−G(θ) cos 2φ

such that pmax = F (θ) +G(θ)

• uniformly generate a random
number r ∈ [0, pmax]

• if r ≤ p(φ), accept φ

∗Reminder:

G(θ) =
sin2 θ

(2− cos θ)2
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Petar Žugec Basic concepts and formulas in Compton scattering simulations



Simulating a single-photon scattering

(1) Sampling a reaction probability

• calculate a reaction probability P

• uniformly generate a random
number r ∈ [0, 1]

• if r ≤ P , scattering occurs

(2) Sampling a scattering θ

Repeat until θ accepted:

• uniformly generate cos θ ∈ [−1, 1]

• use a part of d2σ(θ)/d2Ω:

p(θ) = F (θ)

such that pmax = 2

• uniformly generate a random
number r ∈ [0, pmax]

• if r ≤ p(θ), accept θ

(3) Sampling a scattering φ

Having θ, repeat until φ accepted:

• uniformly generate φ ∈ [0, 2π]

• use a part of d2σ(θφ)/d2Ω:

p(φ) = F (θ)−G(θ) cos 2φ

such that pmax = F (θ) +G(θ)

• uniformly generate a random
number r ∈ [0, pmax]

• if r ≤ p(φ), accept φ

∗Reminder:

G(θ) =
sin2 θ

(2− cos θ)2
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Simulating a single-photon scattering

(4) Sampling a polarization β

Having θ and φ, repeat until β accepted:

• uniformly generate β ∈ [0, 2π]; use a part of d2σ(θφβ)/d2Ω:

p(β) = 1
(2−cos θ)2

[
1

2−cos θ
− cos θ + 4(1− sin2 θ cos2 φ) cos2 β

]
such that pmax = F (θ) +G(θ)(1− 4 cos2 φ) + 2(2− cos θ)−2

• uniformly generate a random number r ∈ [0, pmax]; if r ≤ p(β), accept β

(2–4) Alternative procedure: sampling θ, φ, β at once

Repeat until a whole triple θ, φ, β accepted:

• uniformly generate cos θ ∈ [−1, 1], φ ∈ [0, 2π], β ∈ [0, 2π]

• use a part of d2σ(θφβ)/d2Ω as above, considering it as a distribution
p(θ, φ, β) of three independent parameters, so that pmax = 4

• uniformly generate a random number r ∈ [0, pmax]

• if r ≤ p(θ, φ, β), accept θ, φ, β
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Petar Žugec Basic concepts and formulas in Compton scattering simulations



Simulating a correlated double-photon scattering

In simulating a correlated scattering of entangled annihilation photons,
each photon (by itself) follows a regular Klein-Nishina statistics. However,
their joint scattering cross section is correlated:

d4σ12

d2Ω1d2Ω2
=
r4
0

16

[
F (θ1)F (θ2)−G(θ1)G(θ2) cos 2(φ1 − φ2)

]

Simulating correlated scattering

• if a double-photon scattering has already been decided, one could sample
four parameters θ1, θ2, φ1, φ2 at once, applying a rejection sampling to:

p(θ1, θ2, φ1, φ2) = F (θ1)F (θ2)−G(θ1)G(θ2) cos 2(φ1 − φ2)

• alternatively (or in case of following one photon at a time), one could first
sample parameters θ1, φ1 for one photon, and then apply a rejection
sampling to the other photon, wherein already-sampled θ1, φ1 are to be
treated as fixed-parameters for the other photon’s distribution p(θ2, φ2)

• post-scattering polarizations β1, β2 should be sampled as for single photons
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Correlated vs. uncorrelated scattering

In order to compare the level of azimuthal correlations between different
double-photon scattering models, we derive a reduced (and arbitrarily
scaled) quantity dependent on the azimuthal difference Φ = φ2 − φ1:

Rmodel(θ1, θ2,Φ) ∝ d3σmodel

d(cos θ1)d(cos θ2)dΦ

Models

• ”entangled” model: from d4σ12/d
2Ω1d2Ω2 for entangled photons:

Rent(θ1, θ2,Φ) ∝ F (θ1)F (θ2)−G(θ1)G(θ2) cos 2Φ

• ”polarized” model: from cross section d2σ(θφ)/d2Ω for polarized but
uncorrelated (not entangled) photons:

Rpol(θ1, θ2,Φ) ∝ 2F (θ1)F (θ2)−G(θ1)G(θ2) cos 2Φ

• ”uncorrelated” model: from cross section d2σ(θ)/d2Ω for uncorrelated
photons of unknown polarization:

Runc(θ1, θ2,Φ) ∝ F (θ1)F (θ2)
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Correlated vs. uncorrelated scattering
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For entangled and polarized models a
level of azimuthal modulations varies
with θ1, θ2 (uncorrelated model stays
flat in Φ). It can be expressed as:

Mmodel(θ1, θ2) =
Rmodel(θ1, θ2, π/2)

Rmodel(θ1, θ2, 0)

For both models it reaches a maximum
for θ1 = θ2 = θ0, at θ0 ≈ 81.7◦:

Ment(θ0, θ0) ≈ 2.836

Mpol(θ0, θ0) ≈ 1.629
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One can also observe an azimuthal
variation amplitude for each model:

Amodel(θ1, θ2) =
Rmodel(θ1, θ2, π/2)〈
Rmodel(θ1, θ2,Φ)

〉
Maxima for relevant models are:

Aent(θ0, θ0) ≈ 1.479

Apol(θ0, θ0) ≈ 1.239

A ratio of two models’ amplitudes also
has a maximum at θ0:

Aent(θ0, θ0)/Apol(θ0, θ0) ≈ 1.193
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Thank you for your attention!
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