An overview of basic concepts and formulas in simulations of the Compton scattering

Petar Žugec
(pzugec@phy.hr)
Department of Physics, Faculty of Science, University of Zagreb
26. April 2023.

Introduction

This conference will be a celebration of a double-scattering formula:

$$
\frac{\mathrm{d}^{4} \sigma_{12}}{\mathrm{~d}^{2} \Omega_{1} \mathrm{~d}^{2} \Omega_{2}}=\frac{r_{0}^{4}}{16}\left[F\left(\theta_{1}\right) F\left(\theta_{2}\right)-G\left(\theta_{1}\right) G\left(\theta_{2}\right) \cos 2\left(\phi_{1}-\phi_{2}\right)\right]
$$

It is a differential cross section for the Compton scattering of two entangled photons from a two-photon electron-positron annihilation. In that:

$$
F\left(\theta_{i}\right)=\frac{2+\left(1-\cos \theta_{i}\right)^{3}}{\left(2-\cos \theta_{i}\right)^{3}} \quad \text { and } \quad G\left(\theta_{i}\right)=\frac{\sin ^{2} \theta_{i}}{\left(2-\cos \theta_{i}\right)^{2}}
$$

The relevant process qualifiers to be kept in mind are:
(1) the scattering of two photons
(2) photons are entangled (most importantly, in polarization)
(3) photons originate from a two-photon annihilation
(4) annihilation is that of electron and positron

Introduction

First published in:

- M.H.L. Pryce, J.C. Ward, Angular correlation effects with annihilation radiation, Nature 160, 435 (1947),
now famous formula for a double-scattering cross section has been regularly quoted in later publications. It applies exclusively to photons from the electron-positron annihilation (initial photon energy $E_{0}=m_{e} c^{2}$).

A more general formula for entangled annihilation photons of any initial energy was soon after provided in:

- H.S. Snyder, S. Pasternack, J. Hornbostel, Angular Correlation of Scattered Annihilation Radiation, Physical Review C 73, 440 (1948):

$$
\begin{aligned}
\frac{\mathrm{d}^{4} \sigma_{12}}{\mathrm{~d}^{2} \Omega_{1} \mathrm{~d}^{2} \Omega_{2}}= & \frac{r_{0}^{4}}{16} \frac{E_{1}^{2}}{E_{0}^{2}} \frac{E_{2}^{2}}{E_{0}^{2}} \times \\
& {\left[\varepsilon_{1} \varepsilon_{2}-\varepsilon_{1} \sin ^{2} \theta_{2}-\varepsilon_{2} \sin ^{2} \theta_{1}+2 \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin ^{2}\left(\phi_{1}-\phi_{2}\right)\right] }
\end{aligned}
$$

with E_{0} as initial photons energy, E_{1} and E_{2} as scattered photon energies, and $\varepsilon_{i}=E_{i} / E_{0}+E_{0} / E_{i}$.

Single-photon scattering: polarized Klein-Nishina

Considering a scattering of each photon separately (independently from the other photon) gives rise to the uncorrelated double-scattering process. In a context of entangled annihilation-photons, an experimental evidence for the photon entanglement and its effect upon subsequent scattering can be found in the observed deviations from the uncorrelated scattering. Therefore, the uncorrelated scattering must be perfectly characterized.

A starting point is the Klein-Nishina cross section for a single photon with a particular polarization:

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d}^{2} \Omega}=\frac{r_{0}^{2}}{4} \frac{E_{\theta}^{2}}{E_{0}^{2}}\left(\frac{E_{0}}{E_{\theta}}+\frac{E_{\theta}}{E_{0}}+2 \cos 2 \Theta\right)
$$

with Θ as an angle between polarization vectors before and after the scattering: $\Theta=\varangle\left(\vec{\varepsilon}_{0}, \vec{\varepsilon}\right)$ [not the same as a scattering angle θ from a solid angle element $\mathrm{d}^{2} \Omega=\sin \theta \mathrm{d} \theta \mathrm{d} \phi$].

Single-photon scattering: polarized Klein-Nishina

A scattering geometry was analyzed in detail in:

- G.O. Depaola, New Monte Carlo method for Compton and Rayleigh scattering by polarized gamma rays, Nuclear Instruments and Methods A 512, 619 (2003).
finding a geometric relation: $\cos ^{2} \Theta=\left(1-\sin ^{2} \theta \cos ^{2} \phi\right) \cos ^{2} \beta$.
Let $\vec{\varepsilon}_{0}$ and \vec{k}_{0} be a polarization and a direction of an initial photon. Let $\vec{\varepsilon}$ and \vec{k} be a polarization and a direction of a scattered photon.
Aside from $\Theta=\varangle\left(\vec{\varepsilon}, \vec{\varepsilon}_{0}\right)$, the relevant angles are:
- scattering angle θ between the two photons: $\boldsymbol{\theta}=\varangle\left(\overrightarrow{\boldsymbol{k}}, \vec{k}_{0}\right)$
- azimuthal scattering angle ϕ (around \vec{k}_{0}) relative to a direction of initial polarization $\vec{\varepsilon}_{0}: \phi=\varangle\left[\overrightarrow{\boldsymbol{k}}_{0} \times\left(\overrightarrow{\boldsymbol{k}} \times \overrightarrow{\boldsymbol{k}}_{0}\right), \vec{\varepsilon}_{0}\right]$
- angle β of a polarization $\vec{\varepsilon}$, relative to a plane spanned by $\vec{\varepsilon}_{0}$ and \vec{k} (i.e. around \vec{k}, relative to a semi-axis in a general direction of $\vec{\varepsilon}_{0}$): $\beta=\varangle\left[\vec{k} \times\left(\vec{\varepsilon}_{0} \times \vec{k}\right), \vec{\varepsilon}\right]$
(See Depaola reference for geometric sketches.)

Single-photon scattering: polarized Klein-Nishina

Using a previous relation:

$$
\cos ^{2} \Theta=\left(1-\sin ^{2} \theta \cos ^{2} \phi\right) \cos ^{2} \beta
$$

a polarized scattering cross section:

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d}^{2} \Omega}=\frac{r_{0}^{2}}{4} \frac{E_{\theta}^{2}}{E_{0}^{2}}\left(\frac{E_{0}}{E_{\theta}}+\frac{E_{\theta}}{E_{0}}+2 \cos 2 \Theta\right)
$$

may be expressed as:

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d}^{2} \Omega}=\frac{r_{0}^{2}}{4} \frac{E_{\theta}^{2}}{E_{0}^{2}}\left(\frac{E_{0}}{E_{\theta}}+\frac{E_{\theta}}{E_{0}}-2+4\left(1-\sin ^{2} \theta \cos ^{2} \phi\right) \cos ^{2} \beta\right)
$$

Notice!

Scattering cross section (i.e. the nature of a process) is fully determined by a change of polarization (Θ) ! The expanded formula is just a way of expressing this dependence via more convenient geometric parameters. Also, not all values of Θ are compatible with a given scattering angle θ :

$$
\cos ^{2} \Theta \leq 1-\sin ^{2} \theta \quad \Rightarrow \quad \theta \leq \Theta \leq \pi-\theta
$$

Single-photon scattering: various Klein-Nishinas

Derived, process-specific cross sections

For photons of specific polarization (ϕ and β for scattered photon both known from initial photon), a scattering cross section is:

$$
\frac{\mathrm{d}^{2} \sigma^{(\theta \phi \beta)}}{\mathrm{d}^{2} \Omega}=\frac{r_{0}^{2}}{4} \frac{E_{\theta}^{2}}{E_{0}^{2}}\left(\frac{E_{0}}{E_{\theta}}+\frac{E_{\theta}}{E_{0}}-2+4\left(1-\sin ^{2} \theta \cos ^{2} \phi\right) \cos ^{2} \beta\right)
$$

For photons of specific initial but unspecified final polarization, a "polarized-in, unpolarized-out" cross section is obtained by summing over the two possible polarization-basis states ($\beta=0$ and $\frac{\pi}{2}$):

$$
\frac{\mathrm{d}^{2} \sigma^{(\theta \phi)}}{\mathrm{d}^{2} \Omega}=\frac{r_{0}^{2}}{2} \frac{E_{\theta}^{2}}{E_{0}^{2}}\left(\frac{E_{0}}{E_{\theta}}+\frac{E_{\theta}}{E_{0}}-2 \sin ^{2} \theta \cos ^{2} \phi\right)
$$

With both polarizations unspecified, a polarization-uncorrelated cross section is obtained by averaging over all possible initial polarizations (ϕ) :

$$
\frac{\mathrm{d}^{2} \sigma^{(\theta)}}{\mathrm{d}^{2} \Omega}=\frac{r_{0}^{2}}{2} \frac{E_{\theta}^{2}}{E_{0}^{2}}\left(\frac{E_{0}}{E_{\theta}}+\frac{E_{\theta}}{E_{0}}-\sin ^{2} \theta\right)
$$

which is a Klein-Nishina formula most regularly encountered in literature.

Simulating a single-photon scattering

In general, a probability for Compton scattering to occur in a material is:

$$
P=\left(1-e^{-n \Sigma_{\mathrm{tot}}}\right) \frac{\sigma_{\mathrm{Comp}}}{\Sigma_{\mathrm{tot}}}
$$

with $\Sigma_{\text {tot }}$ as a total cross section for any photon interaction, and $\sigma_{\text {Comp }}$ as a total (integrated) cross section for Compton scattering:

$$
\sigma_{\text {Comp }}=\int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \frac{\mathrm{~d}^{2} \sigma^{(\theta)}}{\mathrm{d}^{2} \Omega} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi
$$

n is an areal density of targets, i.e. a number of electrons per unit area. In case of a thin material $\left(n \Sigma_{\text {tot }} \ll 1\right)$ P may be approximated as:

$$
P \approx n \sigma_{\mathrm{Comp}}
$$

From this point we focus exclusively on the electron-positron annihilation photons, so that:

$$
\frac{E_{\theta}}{E_{0}}=\frac{1}{2-\cos \theta}
$$

Hence:
$\frac{\mathrm{d}^{2} \sigma^{(\theta)}}{\mathrm{d}^{2} \Omega}=\frac{r_{0}^{2}}{2} \frac{2+(1-\cos \theta)^{3}}{(2-\cos \theta)^{3}}=\frac{r_{0}^{2}}{2} F(\theta)$ and:

$$
\sigma_{\mathrm{Comp}}=r_{0}^{2} \pi\left(\frac{40}{9}-3 \ln 3\right) \approx 3.6 r_{0}^{2}
$$

Simulating a single-photon scattering

(1) Sampling a reaction probability

- calculate a reaction probability P
- uniformly generate a random number $r \in[0,1]$
- if $r \leq P$, scattering occurs

Simulating a single-photon scattering

(1) Sampling a reaction probability

- calculate a reaction probability P
- uniformly generate a random number $r \in[0,1]$
- if $r \leq P$, scattering occurs

(2) Sampling a scattering θ

Repeat until θ accepted:

- uniformly generate $\cos \theta \in[-1,1]$
- use a part of $\mathrm{d}^{2} \sigma^{(\theta)} / \mathrm{d}^{2} \Omega$:

$$
p(\theta)=F(\theta)
$$

such that $p_{\text {max }}=2$

- uniformly generate a random number $r \in\left[0, p_{\text {max }}\right]$
- if $r \leq p(\theta)$, accept θ

Simulating a single-photon scattering

(1) Sampling a reaction probability

- calculate a reaction probability P
- uniformly generate a random number $r \in[0,1]$
- if $r \leq P$, scattering occurs

(2) Sampling a scattering θ

Repeat until θ accepted:

- uniformly generate $\cos \theta \in[-1,1]$
- use a part of $\mathrm{d}^{2} \sigma^{(\theta)} / \mathrm{d}^{2} \Omega$:

$$
p(\theta)=F(\theta)
$$

such that $p_{\text {max }}=2$

- uniformly generate a random number $r \in\left[0, p_{\text {max }}\right]$
- if $r \leq p(\theta)$, accept θ

(3) Sampling a scattering ϕ

Having θ, repeat until ϕ accepted:

- uniformly generate $\phi \in[0,2 \pi]$
- use a part of $\mathrm{d}^{2} \sigma^{(\theta \phi)} / \mathrm{d}^{2} \Omega$:

$$
p(\phi)=F(\theta)-G(\theta) \cos 2 \phi
$$

such that $p_{\max }=F(\theta)+G(\theta)$

- uniformly generate a random number $r \in\left[0, p_{\text {max }}\right]$
- if $r \leq p(\phi)$, accept ϕ
*Reminder:

$$
G(\theta)=\frac{\sin ^{2} \theta}{(2-\cos \theta)^{2}}
$$

Simulating a single-photon scattering

(4) Sampling a polarization β

Having θ and ϕ, repeat until β accepted:

- uniformly generate $\beta \in[0,2 \pi]$; use a part of $\mathrm{d}^{2} \sigma^{(\theta \phi \beta)} / \mathrm{d}^{2} \Omega$:

$$
p(\beta)=\frac{1}{(2-\cos \theta)^{2}}\left[\frac{1}{2-\cos \theta}-\cos \theta+4\left(1-\sin ^{2} \theta \cos ^{2} \phi\right) \cos ^{2} \beta\right]
$$

such that $p_{\max }=F(\theta)+G(\theta)\left(1-4 \cos ^{2} \phi\right)+2(2-\cos \theta)^{-2}$

- uniformly generate a random number $r \in\left[0, p_{\max }\right]$; if $r \leq p(\beta)$, accept β

Simulating a single-photon scattering

(4) Sampling a polarization β

Having θ and ϕ, repeat until β accepted:

- uniformly generate $\beta \in[0,2 \pi]$; use a part of $\mathrm{d}^{2} \sigma^{(\theta \phi \beta)} / \mathrm{d}^{2} \Omega$:

$$
p(\beta)=\frac{1}{(2-\cos \theta)^{2}}\left[\frac{1}{2-\cos \theta}-\cos \theta+4\left(1-\sin ^{2} \theta \cos ^{2} \phi\right) \cos ^{2} \beta\right]
$$

such that $p_{\max }=F(\theta)+G(\theta)\left(1-4 \cos ^{2} \phi\right)+2(2-\cos \theta)^{-2}$

- uniformly generate a random number $r \in\left[0, p_{\text {max }}\right]$; if $r \leq p(\beta)$, accept β

(2-4) Alternative procedure: sampling θ, ϕ, β at once

Repeat until a whole triple θ, ϕ, β accepted:

- uniformly generate $\cos \theta \in[-1,1], \phi \in[0,2 \pi], \beta \in[0,2 \pi]$
- use a part of $\mathrm{d}^{2} \sigma^{(\theta \phi \beta)} / \mathrm{d}^{2} \Omega$ as above, considering it as a distribution $p(\theta, \phi, \beta)$ of three independent parameters, so that $p_{\max }=4$
- uniformly generate a random number $r \in\left[0, p_{\text {max }}\right]$
- if $r \leq p(\theta, \phi, \beta)$, accept θ, ϕ, β

Simulating a correlated double-photon scattering

In simulating a correlated scattering of entangled annihilation photons, each photon (by itself) follows a regular Klein-Nishina statistics. However, their joint scattering cross section is correlated:

$$
\frac{\mathrm{d}^{4} \sigma_{12}}{\mathrm{~d}^{2} \Omega_{1} \mathrm{~d}^{2} \Omega_{2}}=\frac{r_{0}^{4}}{16}\left[F\left(\theta_{1}\right) F\left(\theta_{2}\right)-G\left(\theta_{1}\right) G\left(\theta_{2}\right) \cos 2\left(\phi_{1}-\phi_{2}\right)\right]
$$

Simulating correlated scattering

- if a double-photon scattering has already been decided, one could sample four parameters $\theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}$ at once, applying a rejection sampling to:

$$
p\left(\theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}\right)=F\left(\theta_{1}\right) F\left(\theta_{2}\right)-G\left(\theta_{1}\right) G\left(\theta_{2}\right) \cos 2\left(\phi_{1}-\phi_{2}\right)
$$

- alternatively (or in case of following one photon at a time), one could first sample parameters θ_{1}, ϕ_{1} for one photon, and then apply a rejection sampling to the other photon, wherein already-sampled θ_{1}, ϕ_{1} are to be treated as fixed-parameters for the other photon's distribution $p\left(\theta_{2}, \phi_{2}\right)$
- post-scattering polarizations β_{1}, β_{2} should be sampled as for single photons

Correlated vs. uncorrelated scattering

In order to compare the level of azimuthal correlations between different double-photon scattering models, we derive a reduced (and arbitrarily scaled) quantity dependent on the azimuthal difference $\Phi=\phi_{2}-\phi_{1}$:

$$
R_{\text {model }}\left(\theta_{1}, \theta_{2}, \Phi\right) \propto \frac{\mathrm{d}^{3} \sigma_{\text {model }}}{\mathrm{d}\left(\cos \theta_{1}\right) \mathrm{d}\left(\cos \theta_{2}\right) \mathrm{d} \Phi}
$$

Models

- "entangled" model: from $\mathrm{d}^{4} \sigma_{12} / \mathrm{d}^{2} \Omega_{1} \mathrm{~d}^{2} \Omega_{2}$ for entangled photons:

$$
R_{\mathrm{ent}}\left(\theta_{1}, \theta_{2}, \Phi\right) \propto F\left(\theta_{1}\right) F\left(\theta_{2}\right)-G\left(\theta_{1}\right) G\left(\theta_{2}\right) \cos 2 \Phi
$$

- "polarized" model: from cross section $\mathrm{d}^{2} \sigma^{(\theta \phi)} / \mathrm{d}^{2} \Omega$ for polarized but uncorrelated (not entangled) photons:

$$
R_{\mathrm{pol}}\left(\theta_{1}, \theta_{2}, \Phi\right) \propto 2 F\left(\theta_{1}\right) F\left(\theta_{2}\right)-G\left(\theta_{1}\right) G\left(\theta_{2}\right) \cos 2 \Phi
$$

- "uncorrelated" model: from cross section $\mathrm{d}^{2} \sigma^{(\theta)} / \mathrm{d}^{2} \Omega$ for uncorrelated photons of unknown polarization:

$$
R_{\mathrm{unc}}\left(\theta_{1}, \theta_{2}, \Phi\right) \propto F\left(\theta_{1}\right) F\left(\theta_{2}\right)
$$

Correlated vs. uncorrelated scattering

For entangled and polarized models a level of azimuthal modulations varies with θ_{1}, θ_{2} (uncorrelated model stays flat in $\Phi)$. It can be expressed as:

$$
M_{\text {model }}\left(\theta_{1}, \theta_{2}\right)=\frac{R_{\text {model }}\left(\theta_{1}, \theta_{2}, \pi / 2\right)}{R_{\text {model }}\left(\theta_{1}, \theta_{2}, 0\right)}
$$

For both models it reaches a maximum for $\theta_{1}=\theta_{2}=\theta_{0}$, at $\theta_{0} \approx 81.7^{\circ}$:

$$
\begin{aligned}
& M_{\mathrm{ent}}\left(\theta_{0}, \theta_{0}\right) \approx 2.836 \\
& M_{\mathrm{pol}}\left(\theta_{0}, \theta_{0}\right) \approx 1.629
\end{aligned}
$$

One can also observe an azimuthal variation amplitude for each model:
$A_{\text {model }}\left(\theta_{1}, \theta_{2}\right)=\frac{R_{\text {model }}\left(\theta_{1}, \theta_{2}, \pi / 2\right)}{\left\langle R_{\text {model }}\left(\theta_{1}, \theta_{2}, \Phi\right)\right\rangle}$
Maxima for relevant models are:

$$
\begin{aligned}
& A_{\mathrm{ent}}\left(\theta_{0}, \theta_{0}\right) \approx 1.479 \\
& A_{\mathrm{pol}}\left(\theta_{0}, \theta_{0}\right) \approx 1.239
\end{aligned}
$$

A ratio of two models' amplitudes also has a maximum at θ_{0} :

$$
A_{\mathrm{ent}}\left(\theta_{0}, \theta_{0}\right) / A_{\mathrm{pol}}\left(\theta_{0}, \theta_{0}\right) \approx 1.193
$$

Thank you for your attention!

