

Recent progress in organic semiconductor polymer blend films for OFETs

Elisabetta Colantoni

Ph.D. Student, Department of Mathematics and Physics - Roma Tre University

Phose2023 - Workshop on "Photodetectors and sensors for particle identification and new physics searches"

22/11/2023- Phose2023

OUTLINE

- ★ Organic Field-Effect Transistors (OFETs)
- ★ State of Art
- ★ Materials and methods
- ★ Optical Microscopy
- ★ ToF-SIMS Study
- ★ Electrical Characterization
- ★ X-Ray Characterization

Schematic representation of organic field-effect transistors.

Organic Semiconductor

- ★ Cheapness
- Eco-sustainability
- ★ Bio-compatibility
- ★ Flexibility

22/11/2023- Phose2023

Organic Semiconductor

- ★ Cheapness
- ★ Eco-sustainability
- ★ Bio-compatibility
- ★ Flexibility

Working Principle

Schematic representation of organic field-effect transistors.

gate electrode

(negative charge)

22/11/2023- Phose2023

Organic Semiconductor

- ★ Cheapness
- Eco-sustainability
- ★ Bio-compatibility
- ★ Flexibility

p-type gate insulator film gate electrode (negative charge)

Open issues

- ★ Low mobility
- ★ Shorter lifetime

GOAL

The study focuses on developing organic semiconductor/polymer blend films aimed at enhancing stability, mobility, and X-ray sensitivity.

A new generation of biocompatible devices (e.g., X-Ray Imaging system).

Schematic representation of organic field-effect transistors.

22/11/2023- Phose2023

Device Fabrication

Electrical Characterization

Normalized Intensity (a.u.)

Device Fabrication

Electrical Characterization

Highest stability over time and OFET performance thanks to the bottom PS layer that passivates the interfacial charge traps.

22/11/2023- Phose2023

Materials and Methods

FABRICATION STEPS:

- **★** Layout: Photolithography
- Electrodes: Thermal
 Evaporation (5 nm Cr + 40 nm
 Au) and Lift-Off
- ★ Gold activation: UV Ozone 25 min + SAM of PFBT (10⁻³ M)
- ★ Deposition of active layer by BAMS: 10 mm/s, 105

22/11/2023- Phose2023

The superficial image of the total ion counts obtained from ToF-SIMS represents the spatial distribution of all detected ions, providing a comprehensive surface composition map of the sample at a microscopic level.

ToF-SIMS: Surface Analysis

The most homogenous surface, corresponding to plate-like crystals in optical microscopy -|20.00 µm -60 -50 20X 5X 200 µm 50 µm E 40 E-30 20 20 -10 total PS280K PS280K

22/11/2023- Phose2023

ToF-SIMS: Depth Profiling

PS Au (Drain) Organic Semiconductor Lave latio

The depth profiling reveals the distribution of specific ions as a function of depth, offering insights into the layered structure and compositional variations within the sample

ToF-SIMS: Depth Profiling

TMTES

Au (Drain)

PS

Steel Ba

22/11/2023- Phose2023

Electrical Characterization

Electrical Characterization

Ratio	Mobility ($cm^2V^{-1}s^{-1}$)	Vth (V)
1:0	$(0.90 \pm 0.05) \cdot 10^{-1}$	15 ± 3
4:1	2.5 <u>+</u> 0.3	0.4 ± 0.1
2:1	0.6 ± 0.3	0.1 ± 0.06
1:2	0.7 ± 0.2	0.2 ± 0.06

4:1 \rightarrow Devices with the **highest mobility** correspond to:

- The plate-like crystals in optical microscopy
 - Best **homogeneity** in Surface Analysis by ToF-SIMS

Ratio 4:1

X-Ray Characterization

ALMA MATER STUDIORUM Università di Bologna

- The plate-like crystals in optical microscopy
- ★ Best homogeneity in Surface Analysis by ToF-SIMS
 - Highest mobility

X-ray tube with tungsten target was used at a fixed 40 kV operating voltage the filament current was changed between 100 and 500 μ A leading to an incident dose rate on the samples between 318 and 1665 μ Gy s⁻¹

The study focuses on developing organic semiconductor/polymer blend films aimed at enhancing stability, mobility, and X-ray sensitivity, targeting applications in flexible and bio-electronic devices.

Goals:

- ★ Improved OFET performance with TMTES-Pentacene:Polystyrene blends.
- ★ Investigation of phase segregation and its impact on device efficiency.
- **★** Determination of the optimal TMTES:PS ratio (4:1) for highest device performance.
- ★ Achievement of high sensitivity in X-ray characterization.

To-Do list:

- ★ Evaluate devices with a lower amount of PS (e.g., ratio 8:1).
- ★ Assess long-term stability.
- ★ Perform AFM measurements to determine the roughness of the samples.

Thanks to eMolMat Group

Prof. Marta Mas Torrent Dr. Carme Martinez Rodriguez Ph.D. Maria Elisabetta Giglio

Dr. Beatrice Fraboni Dr. Laura Basiricò Dr. Ilaria Fratelli

ALMA MATER STUDIORUM Università di Bologna

Thanks to Semiconductor Physics Group

Thanks for your kind attention!

Thanks to LASR3 Group

Dr. Paolo Branchini Dr. Luca Tortora Dr. Andrea Fabbri

22/11/2023- Phose2023

Backup slides

ToF-SIMS principle

IONTOF ToF-SIMS

ToF-SIMS principle

IONTOF ToF-SIMS

ToF-SIMS principle

IONTOF ToF-SIMS

ToF-SIMS data

Spectrometry

Imaging

▲ High lateral resolution (~100 nm)

Depth-Profiling

▲ Monolayer sensitivity (~5 nm)

22/11/2023- Phose2023

Device Fabrication

Surface Analysis

In-Depth Analysis

a) Chemical structures of TMTES and PS, and b) scheme of the OFET layout.

ToF-SIMS 2D chemical maps: a) TMTES, and b) TMTES:PS sample.

Normalized ToF-SIMS depth profiles and 3-D rendering of the characteristic ions.

22/11/2023- Phose2023