Characterisation of SiPM at cryogenic temperatures

R. Calabrese, A. Cotta Ramusino, M. Fiorini, M. Guarise, E. Luppi, L. Tomassetti

Università degli Studi di Ferrara

Overview

Outlook:

- Background
- Setup
- Measurements
- Burst effect
- Results
- Conclusions

Background

"Photodetectors and sensors for particle identification and new physics searches"

- Need best performances from each photodetector in terms of:
- Photodetection efficiency (PDE);
- Gain;
- S/N;
- Dark count rate (DCR);
- Correlated noise;
- Radiation hardness;
- Resilience to stresses;
- Cost;
- Adjustable shape;

Study and characterize sensors in different conditions of operation

SiPM models for initial tests

HPK 13360-3025CS: 2022

- 3x3mm² area
- 25um pitch
- Glass epoxy

HPK 13360-3025PE: 2022

- 3x3mm² area
- 25um pitch
- Ceramic

HPK 14160-3015PS: 2022

- 3x3mm² area
- 15um pitch
- Surface mount

HPK 13360-3050HS: 2022

- 3x3mm² area
- 50um pitch
- Surface mount

HPK 13360-3050VE: 2022

- 3x3mm₂ area
- 50um pitch
- Surface mount

HPK 13081-050CS: 2015 (discontinued)

- 1x1mm₂ area
- 50um pitch

New FBK + Broadcom sensors procurement

Setup (1)

Multipurpose setup for SiPM characterization in a wide temperature range (from -150° to 25°)

NF

eali Studi

Ferrara

Setup:

- liquid nitrogen cryostat (LN2) 14l;
- source meter unit Keithley SM2450 resolution <1pA, triaxial cables ;
- stabilized power supply Keysight E3630;
- oscilloscope (Tektronix MSO 64) 12bit res., 2.5GHz bandwidth, sampling 25GS/s;
- mechanical linear stage software controlled;
- cold amplifier not designed for fast signals;
- led system at 470nm;
- pulsed UV laser Hamamatsu
 PLP10 @405nm, 50ps pulse width ;
- fast amplifiers Hamamatsu and Fast 2GHz bandwidth.

Setup (2)

The setup can perform:

• IV curve through the source meter unit SM2450

Quenching resistor R_q; Breakdown voltage V_{bd};

DCR analysis through power supply + amplification + oscilloscope
 Primary DCR;

Afterpulses;

Cross-talk;

Burst effect;

 Temporal study through power supply + amplification + oscilloscope + Laser source

Time resolution

INFN

Università degli Studi

di Ferrara

Setup (3)

Università degli Studi

di Ferrara

INFN

FFRRAR

Analysis through Python Scripts:

- Linear fit in direct IV;
- Polynomial fit in normalized derivative reverse IV;
- Peak amplitude in waveform
- Time study;
- Peak shape;
- Hystograms;

Example: SiPM 13360-3025CS @-60°

Signals in DCR: burst of events

Signals in DCR: burst of events

Università

degli Studi

di Ferrara

Signals in DCR: burst of events

The bursts:

- Consecutive random events with 1ms to 10ms time delay between each other
- Duration of one burst between 100ms-2s;
- A burst can contain from tens to hundread of single events (average ~ 50events);
- The mean amplitude of the events in the burst is 1p.e.;
- Observed from T=-60° in some samples;
- Different from model to model;
- Under further investigations
- Pictorial representation:

events

Burst of events

time

For more detail see:

"A newly observed phenomenon in the characterisation of SiPM at cryogenic temperature" M. Guarise et al., Journal of instrumentation, vol16 (2021) **DOI** 10.1088/1748-0221/16/10/T10006

Results: breakdown voltage

Example of HPK S13360-3025CS

Example of HPK S14160-3015PS

Università degli Studi di Ferrara Empirical models: linear & quadratic

Results: DCR

Example of HPK S13360-3025CS

Example of HPK S14160-3015PS

Results: CT

Example of HPK S13360-3025CS

Università degli Studi

di Ferrara

INFN

FFRRAR/

Example of HPK S14160-3015PS

Roughly constant trend

Results: AP

Example of HPK S13360-3025CS

Example of HPK S14160-3015PS

INFN

FFRRAR/

Università degli Studi

di Ferrara

Roughly constant trend

Resume of results before irradiation

For almost all SiPM models we performed IV and DCR characterization in the range [-120:25]° in step of 20°

	S13360	S13360	S13360	S14160	S14160	S13081
	-3025CS	-3025PE	-3050VE	-3015PS	-3050HS	-050CS
\mathbf{R}_q range (Ω)	$[51.3 \div 94.1]^*$	$[50.9 \div 79.7]$	$[69.9 \div 81.1]$	$[20.0 \div 33.6]$	$[118.8 \div 245.5]$	$[367.0 \div 761.6]$
\mathbf{R}_q th. coef. ($\Omega/^{\circ}C$)	$[-2.2 \pm 0.1] \times 10^{-1}$	$[-2.02 \pm 0.09] \times 10^{-1}$	$[-7.9 \pm 0.5] \times 10^{-2}$	$[-9.0\pm0.6]\times10^{-2}$	$[-7.8 \pm 0.7] \times 10^{-1}$	$[-2.5\pm0.2]$
\mathbf{V}_{bd} range (V)	$[42.59 \div 51.19]^*$	$[43.87 \div 51.25]$	$[43.71 \div 51.33]$	$[33.29 \div 38.21]$	$[33.17 \div 39.19]$	$[44.90 \div 52.49]$
\mathbf{V}_{bd} th. coef. (V/°C)	$[5.04 \pm 0.08] \times 10^{-2}$	$[5.41 \pm 0.08] \times 10^{-2}$	$[5.6 \pm 0.1] \times 10^{-2}$	$[3.66 \pm 0.05] \times 10^{-2}$	$[3.64 \pm 0.04] \times 10^{-2}$	$[5.54 \pm 0.07] \times 10^{-2}$
1 p.e. (mV) at 22 °C	$[10.5 \pm 0.5]$	$[10.7\pm0.5]$	$[20 \pm 1]^{**}$	$[5.8\pm0.6]$	$[20 \pm 1]^{**}$	$[36.5\pm0.6]$
DCR range	$[7.3\mathrm{Hz}\div282\mathrm{kHz}]$	$[1.4\mathrm{Hz}\div325\mathrm{kHz}]$	$[25 \div 466] \text{ kHz} ^{***}$	$[18\mathrm{Hz}\div1.2\mathrm{MHz}]$	$[1.1 \div 1.4]$ MHz ***	$[0.5\mathrm{Hz}\div59\mathrm{kHz}]$
\mathbf{E}_{act} (eV)	$[0.49\pm0.03]$	$[0.50\pm0.06]$		$[0.48\pm0.02]$		$[0.46 \pm 0.05]$
Burst events	✓at -80 °C	✓at −120 °C		×		×
CT (%)	$[3.8 \div 5.2]$	$[3.6 \div 6.8]$	$[10.8 \div 15]^{***}$	$[3.1 \div 4.9]$	$[3.9 \div 27]^{***}$	$[6.0 \div 9.4]$
AP (%)	$[1.0 \div 3.3]$	$[0.7 \div 3.0]$	$[3.7 \div 13.0]^{***}$	$[1 \div 10]$	$[22 \div 49]^{***}$	$[2 \div 11]$

Perspectives

Plans for the (near) future:

- Improve the setup: new shielded box for SiPMs, new low noise amplifier, new power supply filter,...;
- Complete the characterization of the models presented;
- New models procurement: different area, cell pitch, technology,...
- Irradiation campaign: define place, dose, kind of sensors, number of sensor,...;
- Instrument the setup for PDE measurements: monochromator, calibrated photodiode, room T calibration;
- Further test on burst behaviour: HPK & FBK synergy, new models, further tests,...

N.B. DRD4 Framework

Conclusions

In Ferrara:

- We can peform SiPM characterization down to LN2 temperature in LN2 vapour through a dedicated custom multipurpose system (IV, DCR & correlated noise, time resolution);
- We tested so far 6 different HPK models (different pitch, different package, different fill factor, different chip, ...);

Some results:

- IV standard behaviour (also temperature dependeance);
- DCR behaviour with burst effect (random train of pulses at kHz);
- DCR decreses from MHz at room temperature down to Hz at -120°;
- DCR lower value: 150mHz/mm² @ -120° for 13360-3025PE;

For the near future:

- Upgrade of setup (noise reduction);
- We plan to instrument PDE test setup;
- We plan to test these sensors after different dose irradiation;
- We plan to test the irradiated sensors after different annealing procedure;

Thanks!

Back-up: quenching resistor

Back-up: time resolution

