Phose 2023 Workshop

CERN, November 22nd 2023 SiPM studies for the e.m. calorimeter of the Belle II detector

Marcello Campajola, Claudia Cecchi, Guglielmo De Nardo, Elisa Manoni, Mario Merola, <u>Stefano Moneta</u>

Belle II future upgrade

First long-shutdown (LS1) just concluded

Belle II will undergo a significant upgrade during 2027 long-shutdown (**LS2**):

- Vertexing, tracking and PID
- MDI re-design
 - Reduce machine backgrounds to cope with 6x10³⁵ cm⁻²s⁻¹ luminosity
- 10 60 Lpeak(Targe 50 Integrated Luminosity [ab⁻¹] 30 20 10 Peak Luminosity [×10³⁵ cm⁻²s⁻¹] 8 Int. L[ab-1 LS2 LS1 6 YOU ARE HERE 0 2019 2024 2029 2034
- Improve electron and neutral particle reconstruction: electromagnetic calorimeter (ECL)
 - possible **bottleneck** at high luminosity
 - longer term timescale (> 2030)

ECL @Belle II

Same from Belle

- 8736 **CsI(Tl) crystals** 30x5x5 cm³ (~16 X₀)
- **Pin diodes** (2 x crystal)
- Charge sensitive preamplifier (**CSP**)
- **Shaper** (500 ns)
- **Digitizer** (1.7 MHz)
- **FPGA** to fit waveform

ECL upgrade scenarios

Higher rate and occupancy with increasing luminosity

- Low energy spectrum dominated by beam-background
- Performance degradation in the low energy region: impact **soft photons** and π^0 reconstruction

Possible solutions:

- a) New crystals with shorter decay time (pure CsI, PWO, BSO...)
 - i) reject out of time beam background
 - ii) **APD** readout studied in a past R&D <u>JINST 12 C07032</u>
 - iii) high impact and very expensive solution
- b) New photodetector, use same CsI(Tl) crystals
 - i) fast timing for rejecting beam-background \rightarrow need **internal gain**
 - ii) exploit the very high LY of CsI(Tl) for the energy reconstruction
 - iii) investigated APD, new R&D with **SiPM**

SiPM readout option

- Simpler and cheaper wrt APD
- Good solution for **timing**, even at **low energy**
 - reject beam background photons
- Not the optimal option for **amplitude measurement** (loss of linearity at high p.e. yield)
 - expected improvement with future developments
 - keep existing pin diodes for energy measurement, use SiPM for timing in the low energy region
- Beyond CsI(Tl), different crystals investigated:
 - pure Csl, LYSO, LaBr₃, BGO
- Possible synergy with FCC dual-readout homogeneous calorimeter R&D

Test with SiPM prototype

Originally designed by **FBK** for CTA, characterized in <u>NIM A</u> <u>1049, 168023 (2023)</u>

- NUV-enhanced (P.D.E. peaked @350 nm)
 - optimized for pure Csl or LaBr₃ emission
 - also to detect Cherenkov light emission in CsI(Tl)
- Area 6x6 mm² (effective active area ~80%, 40 μm pitch)
- Breakdown V_B ~ 26.5 V
- At O.V. +4.5 V \rightarrow Gain = 3.5 x 10⁶ electrons/p.e.

SiPM readout

AdvanSid Board Signal amplifier

- <u>Transimpedance amplifier</u>: **gain** $G_{out} = 500 \Omega$
- Takes directly the SiPM bias
- Power supply: ±5 V

Output signal amplitude is proportional to collected photo-electrons

Experimental setup

• Test different crystals

- Pure Csl from Amcrys
- CsI (TI) from old Belle ECL
- LYSO from SuperB
- LaBr₃ from Saint Gobain
- Couple SiPM directly to crystal surface with Silicone <u>optical grease</u> (<u>EI-550</u>)
- All crystals are wrapped with teflon + mylar foils
- Trigger cosmics with scintillator (coupled to PMT) or use radioactive source spectrum
- Save full waveforms at the scope reading the AdvanSid

Pure CsI + SiPM

- 30x6x6 cm³
- Low LY but short decay time (~ 10 ns)
- SiPM discharge time dominates in the waveform
- Energy spectrum with cosmics

	Csl (Tl)	Csl pure
Density (g/cm ³)	4.51	4.51
λ max emission (nm)	550	310
Light yield (γ/keV)	54	2
Primary decay time (ns)	1000	10
Hygroscopic	у	es

CsI(TI) + SiPM

- 30x6x6 cm³
- High LY but very long decay time (~ 1 µs)
- Good energy resolution with cosmics
 - Compare pure CsI and CsI(Tl)

	Csl (Tl)	Csl pure	
Density (g/cm ³)	4.51	4.51	
λ max emission (nm)	550	310	
Light yield (γ/keV)	54	2	
Primary decay time (ns)	1000	10	
Hygroscopic	yes		

SIPM Cosmics

LYSO + SiPM

- 20x3x3 cm³, slightly trapezoidal shape
- High light-yield and fast decay time (36 ns)
 - \circ useful as a cross-check (LY ~ CsI(Tl))
- Sharp peak observed in amplitude spectrum
 - with faster emission, also energy resolution improves

Table comparing principal properties	LYSO
Density [g/cm ³]	7.1
Attenuation length for 511 keV (cm)	1.2
Decay time [ns]	36
Energy resolution @ 662 keV	8.0
Light output, photons per keV	33

LaBr₃ + SiPM

One crystal from Saint-Gobain:

- Cylinder 25 mm diameter x 25 mm height
- High light-yield and short decay time (16 ns)
- Very good energy resolution with ¹³⁷Cs source

Properties	Standard LaBr ₃ (Ce)	Enhanced LaBr ₃ (Ce+Sr)	
Energy Resolution @ 662KeV	2.6%	2.2%	
Photoelectron yield [% of Nal(Tl)] (for γ-rays)	165	>190	
Wavelength of emission max [nm]	380	385	
Primary decay time [µs]	0.016	0.025	
Light yield [photons/keV _ʔ]	63	73	
Refractive index @ emission max.	~1.9	~2.0	
Density [g/cm³]	5.08		
Hygroscopic	yes		

Planned tests with Hamamatsu SiPM

S13360-6050CS SiPM are going to be tested

- Non UV-enhanced \rightarrow optimized for CsI(TI) emission
- 50 µm pitch already tested @Napoli, 25 µm pitch on the pipe

Type no.	Pixel pitch (µm)	Effective photosensitive area (mm)	Number of pixels	Package	Fill factor (%)	
S13360-1325PE		1.3 × 1.3	2668	Glass epoxy		
S13360-3025CS		20 × 20	14400	Ceramic		
S13360-3025PE	25	5.0 × 5.0	14400	Glass epoxy	47	
S13360-6025CS		60×60	57600	Ceramic		
S13360-6025PE		0.0 × 0.0		Glass epoxy		
S13360-1350PE		1.3 × 1.3	667	Glass epoxy		
S13360-3050CS		20 × 20	2600	Ceramic		
S13360-3050PE	50	2.0 × 2.0	3000	Glass epoxy	74	
S13360-6050CS		60×60	14400	Ceramic		
S13360-6050PE		0.0 × 0.0	14400	Glass epoxy		
S13360-1375PE		1.3 × 1.3	285	Glass epoxy		
S13360-3075CS	CS PE 75 CS	20,420	1600	Ceramic		
S13360-3075PE		5.0 × 5.0		Glass epoxy	82	
S13360-6075CS		60×60	6400	Ceramic		
S13360-6075PE		0.0 × 0.0	0400	Glass epoxy		

Planned tests with Hamamatsu SiPM

S14160 SiPM o be tested

Typ. no.	Number of channels (ch)	Effective photosensitive area/channel (mm ²)	Pixel pitch (µm)	Number of pixels/channel	Package	Window	Window refractive index	Geometrical fill factor (%)
S14160-3050HS		3.0 × 3.0		3531				
S14160-4050HS] 1	4.0 × 4.0		6331				
S14160-6050HS]	6.0×6.0		14331	Curton			
S14161-3050HS-04	$16(4 \times 4)$	3.0 × 3.0	50	3531	Surface	Silicone	1.57	74
S14161-3050HS-08	64 (8 × 8)	3.0 × 3.0		3531	mount type			
S14161-4050HS-06	36 (6 × 6)	4.0 × 4.0		6331				
S14161-6050HS-04	16 (4 × 4)	6.0×6.0		14331				

Wavelength (nm)

Daramatar	Symbol	S14160				
Parameter		-1310PS	-3010PS	-1315PS	-3015PS	Unit
Effective photosensitive area	-	1.3×1.3	3 × 3	1.3 × 1.3	3 × 3	mm
Pixel pitch	-	10		15		μm
Number of pixels	-	16663	89984	7284	39984	-
Geometrical fill factor	-	31		49		%
Package	-	Surface mount type			-	
Window	-	Silicone resin			-	
Window refractive index	-	1.57			-	

Read-out options

Test complementary options in Perugia and Napoli

Readout option (@Napoli)

• <u>CITIROC-1A</u>

- 64 ch frontend
- Onboard power supply with temperature correction

Readout scheme:

- Each channel:
 - preamplifier
 - slow shaper with peak sensing (variable shaping time)
 - fast shaper followed by a discriminator
- Output:
 - integrated charge

Analogous strategy @PG:

- Cremat chip with CSP + fast shaper (50 ns)
- To be integrated in custom-made board

Readout option (@Perugia)

CAEN DT5550W with PETIROC-2A

- On-board Power Supply for SiPM Bias
- Measure both first incident photon timing and whole crystal light charge integration
- 10-bit ADC + 40 ps TDC

Ideal solution for highly accurate **SiPM timing applications**

Summary

The Belle II community will soon need to define a scenario for an upgrade of the e.m. calorimeter

- Fundamental detector for *B* physics
- The **increase in luminosity** @Belle II could lead to a significative **performance degradation**
- Full redesign of the calorimeter may not be feasible \rightarrow investigate **low-impact solutions**
- A **SiPM readout** represents an interesting option
 - fully exploit the **high light-yield** of **CsI(Tl)** crystals
 - \circ recover good **time resolution** at **low energy** deposits \rightarrow reject overlapping **beam-backgrounds**
 - need to deal with **limited dynamic range**
- We are looking forward further development in the field

Backup

Performance of PIN diode, APD, SiPM

	PIN [55]	APD [56]	SiPM [50]
	(SFH2704)	(S12053-05)	(C10010)
Gain	1	1 - 50	2×10^{5}
Output Type	Analogue	Analogue	Analogue or Digital
Operational Bias (V)	6	150 - 200	24.2 - 24.7
Overvoltage (V)	-	-	1 - 5
Spectral Range (nm)	400 to 1100	200 to 1000	300 to 950
Peak Sensitivity (nm)	900	620	420*
PDE/QE (%)	-	80	18 **
Capacitance (pF)	13.4	5	50
Max Photocurrent (µA)	1.22	84	16×10^3
Dark Current (nA)	0.1 - 25	0.2 - 5	1 - 10
Area (mm ²)	3.6	21.24	2.4
Active Area (mm ²)	1.51	7.07	1
Responsivity (A/W)	0.34	21	4×10^{3}
Rise Time (ns)	47	0.875	0.3