

R&D for a TOF-like KLM in Belle II upgrade and a muon detector of CEPC based on SiPM and scintillator

XiaoLong Wang

Fudan University

Workshop on "Photodetectors and sensors for particle identification and new physics searches" (PHOSE 2023)

CERN(remote), 11/22/2023

Belle II KLM and the upgrade proposal

Subdector	Function	upgrade idea	time scale
PXD	Vertex Detector	2 layer installation	short-term
		new DEPFET	medium-term
SVD	Vertex Detector	thin, double-sided strips, w/ new frontend	medium-term
PXD+SVD	Vertex Detector	all-pixels: SOI sensors	medium-term
		all-pixels: DMAPS CMOS sensors	medium-term
CDC	Tracking	upgrade front end electronics	short/medium-term
		replace inner part with silicon	medium/long term
		replace with TPC w/ MPGD readout	long-term
TOP	PID, barrel	Replace conventional MCP-PMTs	short-term
		Replace not-life-extended ALD MCP-PMTs	medium-term
		STOPGAP TOF and timing detector	long-term
ARICH	PID, forward	replace HAPD with Silicon PhotoMultipliers	long-term
		replace HAPD with Large Area Picosecond Photodetectors	long-term
ECL	$\gamma, e \text{ ID}$	add pre-shower detector in front of ECL	long-term
		Replace ECL PiN diodes with APDs	long-term
		Replace CsI(Tl) with pure CsI crystals	long-term
KLM	K_L, μ ID	replace 13 barrel layers of legacy RPCs with scintillators	medium/long-term
		on-detector upgraded scintillator readout	medium/long-term
		timing upgrade for K-long momentum measurement	medium/long-term
Trigger		firmware improvements	continuos
DAQ		PCIe40 readout upgrade	ongoing
		add 1300-1900 cores to HLT	short/medium-term

Table 1.1: Known short and medium-term Belle II subdetector upgrade plans, starting from the radially innermost. The current Belle II subdetectors are the Silicon Pixel Detector (PXD), Silicon Strip Detector (SVD), Central Drift Chamber (CDC), Time of Propagation Counter (TOP), Aerogel Rich Counter (ARICH), EM Calorimeter (ECL), Barrel and Endcap K-Long Muon Systems (BKLM, EKLM), Trigger and Data aquistion (DAQ). DAQ includes the high level trigger (HLT).

CDR for Belle II Detector upgrade in preparing, or see the Snowmass whitepaper, arXiv:2203.11349v1

2

Structure of scintillator-based KLM

The structure:

- Extruded scintillator
- ➢ WLS fiber
- ➢ SiPM

- Extruded scintillator: cheap in massive production, but the attenuation length is only several centimeters.
- > WLS: Kuraray Y11(200), a diameter of 1.2mm.
- > SiPM: Hamamatsu MPPC, S10362, $1.3mm \times 1.3mm$.
- The scintillator-based KLM has a good performance in Belle II operation. So that, it's a good reference for a muon detector for CEPC.

Why to upgrade KLM?

KLM is the largest subdetector of Belle II

How to take advantage of its large volume?

What can a new KLM do?

- 1. Improve the KL ID. Better identification and better neutrino veto.
- 2. TOF-like to determine the momentum of a neutral hadron directly.
- 3. Contribute to dark sector search?
- 4. Keep the good muon ID.

Captured from Belle II VR

Time of K_L in KLM

X.L. Wang Fudan University

October 25, 2019

With scintillator+WLSFibre+MPPC technology, high resolution of time determination in an upraded KLM is possible. A good time resolution δT of K_L flying in Belle II detector, determination of the velocity and hereafter the momentum of K_L is possible. Here the relationship between δT and the uncertainty of momentum of K_L (δp) will be discussed.

The momentum of K_L with a determined velocity β is

$$\gamma m v$$
 (1)

where γ is the factor of special relativity, $m=0.53~{\rm GeV}/c^2$ is the mass of K_L and $v=\beta c$ is the velocity of $K_L.$

$$\beta = v/c = L/tc \tag{2}$$

where L is the length of K_L flying between IP or a secondary vertex of decay and the hit point in KLM. So

$p = \gamma mv = \frac{m\beta c}{\sqrt{1-\beta^2}} = \frac{mcL}{\sqrt{T^2c^2 - L^2}}$	(3)
$T^2c^2 - L^2 = m^2L^2c^2p^{-2}$	(4)
$\frac{\delta T}{\delta p} = -\frac{m^2 L^2}{T \cdot p^3}$	(5)
1	

T = 7.07 *ns* with assumptions of p = $1.5 \text{ GeV}/c K_L$ travels 2m to arrive KLM, a 100 *ps* time resolution leads to $\delta p = 0.19 \text{ GeV}/c$, relative precision is 13%.

Snowmass whitepaper, arXiv: 2203.11349

CEPC muon detector

Preliminary simulation by Fudan group

CEPC CDR 2018

Parameter	Baseline				
$L_b/2$ [m]	4.14				
<i>R_{in}</i> [m]	4.40				
<i>R</i> _{out} [m]	6.08				
<i>L_e</i> [m]	1.72				
<i>R_e</i> [m]	0.50				
Segmentation in ϕ	12				
Number of layers	8				
Total thickness of iron ($\lambda = 16.77 \text{ cm}$)	6.7λ (112 cm) (8/8/12/12/16/16/20/20) cm				
Solid angle coverage	0.98 ×4π				
Position resolution [cm]	$\sigma_{r\phi}: 2$ $\sigma_z: 1.5$				
Time resolution [ns]	1 – 2				
Detection efficiency $(P_{\mu} > 5 \text{ GeV})$	> 95%				
Fake $(\pi \rightarrow \mu)@30$ GeV	<1%				
Rate capability [Hz/cm ²]	~60				
Technology	RPC (super module, 1 layer readout, 2 layers of RPC)				
Total area [m ²]	Barrel: ~4450 Endcap: ~4150 Total: ~8600				

5

Hamamatsu MPPC and NDL SiPM

MPPC (Multi-Pixel Photon Counter)

S14160/S14161 series

Electrical and optical characteristics (Typ. Ta=25 °C, Vover=2.7 V, unless otherwise noted)

Parameter		Symbol	S14160/S14161 -3050HS-04, -08	S14160/S14161 -4050HS-06	S14160/S14161 -6050HS-04	unit		
Spectral response range		λ		nm				
Peak sensitivity wavelength		λр		nm				
Photon detection efficiency a	t λp* ³	PDE		%				
Breakdown voltage		VBR		38				
Recommended operating vol	tage*4	Vop		V				
Vop variation between	Typ.			v				
channels in one product*5	Max.	-						
Dark current	Typ.	To	0.6	1.1	2.5			
Dark current	Max.	ID	1.8	3.3	7.5	μΑ		
Crosstalk probability		-	7			%		
Terminal capacitance		Ct	500 900 2000		2000	pF		
Gain	М	2.5×10^{6}			-			
Temperature coefficient of recommended reverse voltage	e	ΔTVop		mV/°C				

Type	EQR15 11-3030D-S/E	EQR15 22-1313D-S/E		
Pitch	15 μm			
Element Number	1×1	2×2		
Active Area	3.0×3.0 mm ²	1.3×1.3 mm ²		
Micro-cell Number	40000	7396		
Breakdown Voltage (VB)	28±0.2 V	28±0.2 V		
Temperature Coefficient for V_B	28 mV/°C	28 mV/°C		
Recommended Operation Voltage	V _B +8 V	V _B +8 V 45.7 % 4×10 ⁵		
Peak PDE @420nm	45.4 %			
Gain	4×10 ⁵			
Dark Count Rate (DCR)	2380 kHz	413 kHz		
Terminal Capacitance	50 pF	10 pF		

EQR15 11-3030D-S

- > Lower gain and higher DCR.
- Lower Vop and smaller capacitance.
- > Very small pixel size.
- > QE is similar.

6

We got new NDL SiPM for testing recently.

Hamamatsu MPPC and NDL SiPM in our testing

Our R&D works

- I. Front-end readout for high time resolution
- II. Regular design like current KLM scintillator modules.
 - > Extruded scintillator, WLS fiber, and small size SiPM
- III. New design for high-time resolution.
 - Scintillator with long attenuation length, large size SiPM
 - Design like traditional TOF

Design of FE with preamplifier

Performance test of preamplifier

Nuclear Science and Techniques (2023) 34:169 https://doi.org/10.1007/s41365-023-01328-7

— Y: (Hits)

0.3

02

Design and performance of a high-speed and low-noise preamplifier for SiPM

Xi-Yang Wang¹ · Hong-Yu Zhang¹ · De-Qing Fang¹ · Wan-Bing He^{1,2} · Xiao-Long Wang¹ · Qi-Bin Zheng³ · Shi-Mina Zou¹

Received: 12 May 2023 / Revised: 17 July 2023 / Accepted: 7 August 2023 © The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society 2023

> Gain: +20 V/V Bandwidth(-3dB): 426 MHz Baseline noise(RMS): 600uV Input impedance: 50Ω Simple and low cost.

Single photon signal of SiPMs Tin

Time resolution varies with the number of photons

PZC to reduce pile-up

- Some SiPMs (Hamamatsu MPPCs) have long fall time edge.
- ► We add pole zero cancelation (PZC) in the preamplier.
- ► The rise time is also improved by PZC.

- Increase the frequency of laser to test the pile-up.
- The limit of the laser is 20 MHz.
- No pile-up is found in the implementation of PZC.

X.Y. Wang et al.,

NST 34, 169(2023)

Regular stintillator strips, original design

Performance in CR

Wavelength-shifting fiber keeps good photon collection at long-distance. There are good efficiencies, but the time resolution is 1-2 ns.

13

Plastic scintillator test using cosmic rays

Time resolution of long strip: GNKD_new(2cm)

Time resolution at different position (one end)

> Less light collection at the far end makes the SNR smaller, resulting in worse time resolution.

17

- > Different time resolutions due to the different qualities of the scintillator samples.
- > We are working with GNKD to improve the scintillator quality.

Time resolution at different position (two ends)

Unweighted:

$$T_{s.c.} = \frac{T_F + T_B}{2} = T_0 + \frac{L}{2\nu} \qquad \sigma_{s.c.}^2 = (\sigma_F^2 + \sigma_B^2)/4$$

Weighted average:

$$T_{s.c.} = \frac{\frac{T_F}{\sigma_F^2} + \frac{T_B}{\sigma_B^2}}{\frac{1}{\sigma_F^2} + \frac{1}{\sigma_B^2}} \qquad \qquad \frac{1}{\sigma_{s.c.}^2} = \frac{1}{\sigma_F^2} + \frac{1}{\sigma_B^2}$$
$$T_{s.c.} \text{ related to hit position 'x'}$$

We get a time resolution better than 80 ps from the 1m long bar. This proves the quality of scintillator from GNKD.

Time resolution of an array of long strips

4SiPMs

- Cut the old 1.5m scintillator strips to be 75cm.
- Six strips for testing, and 10cm triggers at the middle.
- CAEN DT5742 for DAQ.
- Logic trigger as input from the two trigger strips.
- 12 SiPMs at both ends of one strip.

Time resolution of each channel is about 120 ps.

Time calibration with the laser

Prototype Test (Velocity of CR Muon)

Summary

- We have been performing the R&D for detector based on scintillator, SiPM and WLS fiber.
- ► We can use the technologies for Belle II KLM upgrade and a muon detector for CEPC.
 - ▶ KLM upgrade: good timing can be used for momentum measurement of neutral hadrons like K_L and neutrons.
 - Muon detector for CEPC: large size and high efficiency.
- Extruded scintillator+WLS fiber+SiPM shows a good efficiency, but the time resolution is at the ns level.
- Scintillator with long attenuation length and large size SiPMs (array) shows very good time resolution. We get a time resolution of ~70 ps from 1 meter long scintillator from GNKD company.
- ▶ Fast BaF2 with VUV MPPC looks like a good choice for timing measurement.

Thank you!

Status of R&D: Regular design

► GNKD scintillator + Kuraray WLS fibre + NDL SiPM(3mm × 3mm)

Performance in cosmic ray testing

The efficiency of GNKD_150cm at far end.

The strips with optical glue and Teflon have highest efficiency, keeping upon 98% at threshold of 10 p.e.

KLM Detector Simulation

1 GeV/c μ^- Event

1 GeV/c K_L Event

27

Particle Identification of K_L

Average ~30 hits.

SiPMs will only record the time when there are more than 5 photons passing through them within 50ns.

Flight Time Reconstruction of *K*_L

		ි 1600 ල	↓ ,	Data Laver1
Cuts	Number	1400	┽╁┽╵ ^{┿┿} ┿┿┿ ┶	Layer2 Layer3
N _{events}	50000	Å		Layer4 Layer5 Layer6
K_L Undergoes Hadronic Shower	49719 (99.43%)	1000	+ ⁺ + +	Layer7
Scintillator Signal > 0	49654 (99.31%)	800	+ +	Layer10
K_L Decay in KLM Detector	47598 (95.20%)	600	+ +	Layer12 Layer13
		400	+ + ₽ ₽	Layer15
		200		**************************************
Rough estimation on the KL ID would be > 90%		$\begin{array}{c} 0 \\ \hline \bullet \bullet$	••••••••••••••••••••••••••••••••••••••	0.5 0.6 0.7 0.8 Residual Time(ns)

$sin(2\beta/\phi_1)$ from $B \rightarrow J/\psi K_L$

K_L reconstruction:

- Get direction of K_L according to cluster in KLM.
- $J/\psi \rightarrow e^+e^-$ or $\mu^+\mu^-$
- Mass constraint of $J/\psi K_L$ to get the P_4 of K_L .

- > $N^{sig}(e^+e^-) = 226 \pm 20$, $N^{sig}(\mu^+\mu^-) = 267 \pm 21$
- ➢ In good agreement with Belle.
- But the systematic uncertainties related to peaking background is relatively large.

$$\Delta N_{peaking}(e^+e^-) = 31 , \ \Delta N_{peaking}(\mu^+\mu^-) = 28$$

TABLE I. MC samples used for this study.

Sample	Equiv. $\int \mathcal{L} dt [fb^{-1}]$	release/proc	exp
MCsampleA: $J\!/\!\psi[\ell\ell]K^0_{\scriptscriptstyle L}$	300	04-00-01/proc11	8
MCsampleB: generic MC13b	40	04-02-04/proc11	7,8,10

TABLE II. Signal reconstruction and selection efficiency.

Sample	$arepsilon_{\mu^+\mu^-}$ [%]	$\varepsilon_{e^+e^-}$ [%]
MCsampleA	16.2 ± 0.4	15.2 ± 0.4
MCsampleB	13.3 ± 1.0	11.7 ± 1.0

Estimation of the improvements with new KL ID

existing result	Lum [fb ⁻¹]	NBB [10 ⁶]		eff		Nobs	Branching fraction
B0->(Jpsi->mm)KL	62.8±0.6	68.21		(16.2±0.4)%		267±21±28 @peaking	-
B0->(Jpsi->ee)KL	62.8±0.6	68.21		(15.2±0.4)%		226±20±31 @peaking	-
B0->JpsiKL (Barbar)	20.7	22.72±0.36		22.3%		408	(6.8±0.8±0.8)e-4
B0->(D+->K-pi+pi+)pi-	771	772±11	((24.09±0.04)%	6	34651±268	(2.48±0.01±0.09±0.04)e-3 @B(D+
B0->(phi->K+K-)gam	771	772±11		(29.6±0.1)%		3.4+4.6-3.8	<1.0e-7
B+->(K0->Ks)pi	771	772±11		25.23%		3229±71	(23.97±0.53±0.71)e-6
B+->(K0->Ks)rho+ (Barbar)	429	470.9±29.8		~15%		507±30	(9.4±1.6±1.1+0-2.6)e-6 @sigMode
B+->K+KsKs	771	772±11		24%		650.16	(10.42±0.43±0.22)e-6
improvement estimation	Lum [fb⁻¹]	NBB [10 ⁶]	eff_others	eff_KL	eff_global	Nobs_estimate	using branching fraction
B0->(Jpsi->ll)KL	362	387	60.2%	80%	48%	14687	6.8e-4
BO->(D+->KLpi+)pi-	362	387	76.6%	80%	61%	8346	2.48e-3
B0->(phi->KsKL)gam	362	387	53.9%	80%	43%	4	1.0e-7
B+->KLpi	362	387	83.0%	80%	66%	3167	, 11.99e-6
B+->KLrho+	362	387	46.8%	80%	37%	700	4.7e-6
B+->K+KLKL	362	387	82.2%	80%	66%	2181	10.42e-6

Some channels that Belle can not measure should be included in the future.