The Hyper-Kamiokande Experiment

Francesca Di Lodovico King's College London On behalf of the Hyper-Kamiokande OD working group*

Hyper-Kamiokande OD working group: G. Burton, F. Di Lodovico, G. Erofeev, J. Gao, A. Goldsack, S. Hayashida, K. Hayrapetyan, A. Holin, A. Izmaylov, J. Jang, T. Katori, A. Khotjantsev, Y. Kudenko, M. Lamers James, R.P. Litchfield, E. Miller, O. Minee, F. Nova, S. Playfer, S. Samani, F.J.P. Soler, Y. Stroke, M. Thiesse, L.F. Thompson, P. Urquiko, S. Valder, D. Wark, R. Wendell, J.R. Wilson, Z. Xie, N. Yershov, J. Yoo, A. York, and S. Zsoldos

22 November 2023 CERN Phose2023 workshop

Hyper-Kamiokande

• Hyper-Kamiokande is a neutrino experiment aiming to address major questions in science: -CP-violation in lepton sector, neutrino mass hierarchy, sterile neutrinos, SN neutrinos, proton decay, BSM physics with neutrino beams -Under construction for start operations in 2027.

Hyper-K Physics Summary

- "Multi-purpose experiment" sensitive to different neutrino physics.
- Wide energy span.
- Astrophysical and human-made sources detected by neutrino experiments.

- Neutrino observation (reactor).
- Oscillation observation (solar, atmospherics).
- Oscillation parameters (accelerator, atmospherics, reactor, solar).
- Supernova observation.
- Extragalactic cosmics observation.

Physics Energy Range

erics). nospherics, reactor, solar).

Timeline

Three generations of Kamiokande

Kamiokande (1983 - 1995)

SN1997A

Hastrophysics

Super-Kamiokande

(1996-)

20x

Discovery of neutrino oscillations

Data

Hyper-Kamiokande (2027 -)

Takayama (1998)

8.4x

CP, astrophysics, rare decays

Hyper-Kamiokande Detector Concept

- 258 kton of purified water
 - -217 kton Inner Detector (ID) + veto OI
 - -188 kton FV \rightarrow x8.4 Super-K
- •20k 20" (50cm)PMTs in ID
 - -photo-cathode coverage 40%(SK) \rightarrow 20% (HK) compensated with
 - -New generation Hamamatsu Box&Lir RI 2860 PMTs (R3600 in SK)
 - -50 % higher quantum efficiency (30%
 - -x 2 better charge resolution (30%)
 - -x 2 better timing resolution (1.5 ns)
 - -Same dark rate (4 Hz)
- + a few thousands multiple mPMTs
 -19 x 3" (8cm) PMTs inside one vessel
 -directional information

Hyper-Kamiokande OD PMTs - Phose2023

D		
١e	Hynor-Kamiokando	
6)	Typer-Nalliunaliue	

Far Detector

Size of the water tank.

Tank size	Φ68 m × H 72 m
Water height	71 m
ID volume	216.9 kt
Fiducial volume	188.4 kt
ID surface	19991.1 m ²

OD=Outer Detector

ID = Inner Detector

Hyper-Kamiokande OD PMTs - Phose2023

7

Far Detector Outer Detector

- Optically separated ID and OD
- Challenges (with respect to Super-Kamiokande)
 - -Shallower overburden 1000 m \rightarrow 600 m
 - -Larger Hyper-K volume
 - -Cosmic rate 2 Hz \rightarrow 45 Hz
 - -Narrower OD region 2.6/2.7 m \rightarrow 1/2 m (caps)
- Performance requirements
 - -Veto inefficiency 10^{-4}
 - -~4m accuracy of muon exit/entrance positions
- Provide passive backgrounds shield
- Low radioactivity < 10 mBq (ID&OD)
- Thermal power < 1 W per channel
- Longevity and enough redundancy \rightarrow operation for decades + high-cost of draining and intervention
- Light-collection
 - -3,600 3" (8cm) PMTs
 - -Tyvek coverage on walls
 - -WLS plates

Tank Frame

Hyper-Kannokande OD FIVITS - FINOSEZUZO

ID+OD Electronics

#~1,000

50cm PMTs

#20,000

PMT characteristics

	Characteristics
Base:	Waterproof
Voltage:	Anode at $+V_{op}$ (pos
Voltage divider:	Non-tapered in late
Output cable:	Single output cable
Cable type:	50 ohm cable (eg R
	Requirements
Aging:	> 20 years
Pressure:	<10 bar Larg
Gain:	$> 3 \times 10^{6} (900 < V_{o})$
Timing resolution:	< 10 ns (for 1 p.e. a
Charge resolution:	50% σ (for 1 p.e. at
Single-photon peak-to-valley ratio:	> 2 at V_{op} To allow
Dynamic range:	0.2 to 100 p.e. at V _o
Dark rate:	< 1 kHz above a the
Quantum Efficiency:	> 25% in the 300–5
Magnetic field gain variation:	10% at 100 mG Ma
Power consumption:	< 1 W at V_{op} To lim

sitive high voltage) r stages to carry both signal and high voltage G-58) (with connector to be specified)

Requirements need to be valid for waterproofed PMTs with ~20m long cable.

```
e safety margin - HK bottom is ~7bar
p_p < 1300V)
```

```
t V_{op}
       Loose requirement due to slow WLS collection efficiency
V_{op})
        To be consistent with SK performance
```

w good noise separation

```
p
```

```
reshold of 0.25 p.e. at 20°C It will be lower in HK water (13°C)
500 nm range To match the wavelength of Cherenkov emission
ignetic compensation coils reduce Earth's magnetic field to 100 mG
```

nit the heating of the water

PMT candidates

- - Hamamatsu: R14734
 - NNVT: N2031

R14734

WAVELENGTH (nm)

Two "basic" PMT candidates: Hamamatsu and North Night Vision Technology (NNVT)

×10E6 900 1000 1100 1200 1300

> 典型增益曲线 Typical gain curve

典型光谱响应曲线 **Typical spectral response curve**

11

PMT candidates

- OD PMTs are waterproofed with a ~20m long cable due to the length needed to reach the electronics board.
- Electronics in water. ~200 vessels for ID and OD hybrid boards. Cables reach electronics boards in an efficient way (interleaving).

NNVT and Hamamatsu PMTs

Hamamatsu PMTs

• Current studies are presented in the next slides.

Hyper-Kamiokande OD PMTs - Phose2023

NNVT PMTs

PMT Characteristics

Hyper-Kamiokande OD PMTs - Phose2023

Serial number Product name Company Waterproof Cable					
KM56206 R14374 Ha		Hamamatsu	Yes	20 m	
PN2209-4017	N2031	NNVT	No	1 m	
PN2209-4010	N2031	NNVT	No	1 m	
PN2305-1100		NNVT	Yes	20 m	
PN2304-1470		NNVT	Yes	20 m	

PMT Dark Rate

Threshold dependence at Gain=5 \times 10^{6}

- Hamamatsu: 1100 [V]
- NNVT PN2304-1470, nonwaterproofed: 1000 [V]
- NNVT PN2305-1100 : 1200 [V]

Serial number	Product name	Company	Waterproof	С
KM56206	R14374	Hamamatsu	Yes	2
PN2209-4017	N2031	NNVT	No	1
PN2209-4010	N2031	NNVT	No	1
PN2305-1100		NNVT	Yes	2
PN2304-1470		NNVT	Yes	2

Voltage dependence

• Threshold = -8.0 [mV]

WLS Plates

- Intense campaign to find optimal chemical composition for Hyper-K OD WLS plates
- Base material (eg PMMA) + single/double fluor dopants
- Super-K samples
- Eljen (USA) commercial PVT based type EJ286
- Kuraray (Japan)
- LabLogic (UK)
- V.A. Kargin Polymer Chemistry Institute (Russia)

From "Development of wavelength-shifting plate light collector for Outer **Detector of Hyper-**Kamiokande" TiPP 2024, Izmaylo

Fast UV LED light sources from PicoQuant **265 nm** — spectrum range **260-300 nm 315 nm** — spectrum range **300-340 nm 380 nm** — spectrum range **365-395 nm** Hyper- 405 nm — spectrum range 380-440 nm

BBQ50, BBQ100, bisMSB50, bisMSB100, POPOP100, POPOP200, POPOP400, **POPOP50 +PPO3000** (50 mg/l POPOP + 3 g/l PPO — fluor concentrations), POPOP100+PPO3000 (100 mg/I POPOP + 3 g/I PPO), POPOP100+PPO10000 (100 mg/I POPOP + 10 g/I PPO), POPOP200+PPO3000 (200 mg/I POPOP + 3 g/I PPO), **PMMA** base POPOP200+PPO10000 (200 mg/l POPOP +10 g/l PPO), POPOP800+PPO5000 (800 mg/I POPOP + 5 g/I PPO), Double fluor allows to **bisMSB50 + PPO3000** (50 mg/l bisMSB + 3 g/l PPO), accept short UV part bisMSB200+PPO3000 (200 mg/l bisMSB + 3 g/l PPO), of Cherenkov spectrum

	Fluors	Absorption range, nm	Emission range, nm	Notes
V	BBQ	250-460	420-640 peak: ~510	Shifts UV and visible blue light into gre area.
	bis-MSB	300-400 peak: 350	380-530 peak: 400-460	Emission spectrum is close to POPOP, of than POPOP, easier to dissolve in ac
	POPOP	250-390 peak: 360	380-510 peak: 390-450	Emission spectrum is close to bis-MSB to dissolve in acrylic base than bis-MSB. We plastic scintillators with PVT and polysty
	PPO	240-310 peak: 280	320-420 peak: 340-380	Effectively absorbs short UV and re-emit Used as a primary WLS in combination to shift short UV into visible lig

Catode Radius Scan

- plates.

• Scan a PMT with a 380nm Ø1.5 mm collimated LED Vary polar and azimuthal angles Efficiencies at the sides are important for the use of WLS

16

PMT Pressure Tests

 The PMT was put into non-transparent PVC tube and as such placed into the pressure vessel. The PVC tube was used to limit the Cherenkov light muons passing through the vessel.

Hyper-Kamiokande OD PMTs - Phose2023

- PMTs are tested in water under pressure at 10 bar.
- PMTs, Hamamatsu R14689 (serial number: BC0491) and NNVT 3inch PMT (serial number: 044012), were tested in the pressure vessel at Charles University (Prague), B. Roskovec, M. Malinský.
- Tests performed in 2021 and 2022. More detailed test in 2022.

PMT Pressure Tests

There was no damage to the PMT and no imminent leakage.

Similar results were obtained for the NNVT PMTs.

- The pressure was initially brought to 5 bar and then increased by 1 bar up to 11 bar
- Each pressure level was maintained for about 8 mins.

PMT Implosion Tests

 Implosion tests of the OD PMTs if subjected to shock waves of higher peak pressures, or the impact of accidental breakage of an OD PMT. Check any risks of implosion and chain reactions that also affect the OD PMTs.

 Implosion tests performed in Hokkaido (Japan) in 2022 and in the Balearic Sea off the coast of Palma, Mallorca (Spain) in 2023.

PMT Implosion Tests

• Before the implosion test in Mallorca.

Tests successful. No damage was found on the OD PMTs and photo-sensing units.

After the implosion test in Mallorca.

PMT Material Suitability and Components

- Soak testing to check that materials do not contaminate the HK water (T_{eff} > 100m) and to check that materials do not themselves degrade under long-term submergence
- Radon emanation to check that materials do not emanate large amounts of radon into HK water (<10 mBq/PMT channel)
- Radioactivity gamma emission from materials may cause isolated "hits" in PMTs, aka "Dark Noise"

 - Bq at the 95% confidence level.

 Rn emanation test the Boulby mine, supported by Kamioka emanation test. • Radon emanation sensitivity of sample emanation chambers around 60 μ

PMT Material Suitability and Components

Other material

Hyper-Kamiokande OD PMTs - Priosezuza

Sample	Lab	²¹⁴ Po Activity (mBq)	Samp. Quan.	PMT Quan.	Scale Activi (mBq/
Hamamatsu:					
R14374 Waterproofed PMT Assy.	Κ	$\textbf{2.63} \pm \textbf{0.11}$	1 ea.	1 ea.	$2.63 \pm$
Heatshrink Tube w/ mastic	В	$\textbf{5.96} \pm \textbf{0.15}$	100g	10g	0.596
Heatshrink Tube w/o mastic	В	$\textbf{34.6} \pm \textbf{0.7}$	47g	??	
Urethane Potting Compound	В	<0.056	200g	190g	<0.053
Case material, PPS Plastic	В	<0.056	106g	??	
Butyl Foam Tape	В	$\textbf{31.6} \pm \textbf{0.6}$	25g	0.2g	0.252
Mastic Tape	В	$\textbf{11.68} \pm \textbf{0.22}$	44g	9g	$2.39 \pm$
Voltage Divider Circuit	_		1ea.	1ea.	
Belden:					
Waterproof PMT Cable RG-58	В	<0.056	2m	30m	<0.84
AXON:					
Waterproof PMT Cable RG-58	В	$\textbf{0.057} \pm \textbf{0.024}$	2m	30m	0.86 ±
NNVT:					
034077 Waterproofed PMT Assy.	Κ	$\textbf{5.66} \pm \textbf{0.22}$	1 ea.	1 ea.	5.66 ±
Case Material, ABS Beads	_		100g	??	
Cured Resin	Κ	<0.03	60g	??	
Butyl Mastic Tape	В	$\textbf{7.18} \pm \textbf{0.13}$	144g	??	
Heatshrink tube	K	$\textbf{0.10} \pm \textbf{0.03}$	120g	??	

For both Hamamatsu and NNVT PMTs:

- the Rn emanation is below the required limit of 10 mBq.
- The butyl rubber and mastic adhesives contribute significantly to the total Rn emanation of the waterproofed PMT components

22

Soak Tests

The goal for soak testing is to establish the expected change in UV attenuation length of the HK water as a result of long-term dissolution of materials.

-Pure Water Standard -NNVT Heatshrink in Pure Water -0.2% Gd Water Standard -NNVT Heatshrink in 0.2% Gd Water

 For all the NNVT PMT waterproofing components measured, the effective attenuation length, L_{HK} (400m), is greater than 1 km. We do not expect any of the NNVT PMT waterproofing materials to significantly degrade the HK water.

PMT QA

After visual inspection, a programme of QA will start.

Batch Tests			
Characteristic	Requirement	Сс	
Gain	3×10^6 achieved for	Me	
	900 < V <1300 V	H∖	
Stability	<10% variation	Ga	
Dark rate	< 1kHz	Ga	
		OV	
SPE spectrum	peak-to-valley ratio > 2 ,	Ga	
	$\sigma_{ extsf{PE}}/\mu_{ extsf{PE}}=50\%$		
QE	> 0.8 imes reference speci-	Ga	
	fication	CO	

TEST	REQUIREMENTS	DURATION		0
Gain	3.10 ⁶ @[900, 1300]V	1h	\checkmark	
Single PE	PE width to Pedestal = 2 @ 3.10 ⁶	few mins	\checkmark	
Relative QE	<20% variation @ 3.10 ⁶	few mins	\checkmark	
Dark rates + stability	<khz< td=""><td>~10h</td><td></td><td></td></khz<>	~10h		

omment

- easuring gain variation w.r.t / between [900, 1300]V ain @ 3×10^6 , overnight
- ain @ 3×10^6 , 20°C, rnight
- ain @ 3×10^6 .
- ain @ 3×10^6 . Relative to mmon reference per batch

- Top view of dark box.
- Dark box dimension: 100x160x50 cm³

Conclusions

for OD.

- Waterproof is needed.
- Long cables for reaching electronics board.
- Performing measurements of the PMT properties, and additional tests on pressure/implosion. More planned.
- Material tests being performed on all the material.

Two PMT models from Hamamatsu and NNVT for 3" PMTs

Additional Slides

Hyper-Kamiokande OD PMTs - Phose2023

Waveform measurement

- LED perpendicular to PMT face.
- LED amplitude such that ~10% of triggers provide a pulse.
- Take 500k waveforms, integrate pulse, and set the baseline to truncated mean outside set pulse width region

Fitting function from Absolute calibration and monitoring of a spectrometric channel using a photomultiplier - H.E. Bellamy et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 339, Issue 3, 1 February 1994, Pages 468-476 Hyper-Kamiokande OD PMTs - Phose2023

