

Silicon Photomultipliers for calorimetric applications

A.Falcone University of Milano-Bicocca & INFN

Phose2023 Workshop on "Photodetectors and sensors for particle identification and new physics searches "

CERN – 22 November 2023

Overview

Two approach for SiPM calorimetry in neutrino physics:

ENUBET

➢ Calorimeter with all read-out performed by SiPMs

DUNE ➢ Energy resolution improvement with the use of light

ENuBET: the first monitor neutrino beam

➢ Project focused on:

- measure positrons (instrumented decay tunnel) from $K_{\rm e3}$ \Rightarrow determination of $v_{\rm e}$ flux.
- extend measure to muons (instrumented decay tunnel) from K_{uv} and (replacing hadron dump with range meter) $\pi_{\mu\nu}$ \Rightarrow determination of ν_{μ} flux.

22/11/2023 Andrea Falcone - Phose 2023 3

Decay tunnel instrumentation

Shielding

- ≥ 30 cm of borated polyethylene;
- ➢ SiPMs installed on top -> factor 18 reduction in neutron fluence.

Calorimeter with $e/\pi/\mu$ separation capabilities:

- ➢ sampling calorimeter: sandwich of plastic scintillators and iron absorbers;
- ➢ three radial layers of LCM / longitudinal segmentation;
- ➢ WLS-fibers/SiPMs for light collection/readout.

Photon-Veto allows π^0 rejection and timing:

- ➢ plastic scintillator tiles arranged in doublets forming inner rings;
- \triangleright time resolution of ~400 ps.

The shashlik prototype

UCM: ultra compact module. SiPM and electronics embedded in the shashlik calorimeter

5 x (ABSORBER + SCINTI) \rightarrow ~4 X_0 Fe-15mm + EJ200 TiO2 painting WLS: Kuraray Y11 double clad, 1mm diameter

SiPMs: FBK HD-RGB, 1mm²

Excess bias [V]

The shashlik prototype

Tested response to MIP, e and π⁻

- ➢ e.m. energy resolution: 17%/√E (GeV)
- ➢ Linearity deviations: <3% in 1-5 GeV range
- \triangleright From 0 to 200 mrad \rightarrow no significant differences

MC/data already in good agreement

 \triangleright Longitudinal profiles of partially contained π reproduced by MC @ 10% precision

CERN PS, Nov 2016 7x4x2 UCMs

SiPM irradiation at LNL

➢ By choosing SiPM cell size and scintillator thickness (i.e. light yield) properly mip signals remain well separated from the noise even after typical expected irradiation levels.

➢ Mip can be used from channel-to-channel intercalibration even after maximum irradiation.

The lateral readout prototype

Tested during 2018 test beams runs @ CERN-PS: Prototype of sampling calorimeter built out of LCM with lateral WLS-fibers for light collection (Hamamatsu S14160 50 µm cell)

Large SiPM area (4x4 mm2) for 10 WLS readout (1 LCM)

SiPMs installed outside of calorimeter, above shielding: avoid hadronic shower and reduce (factor 18) aging

Electron energy resolution \vert \vert 1/2 mip separation

F. Acerbi et al., JINST (2020), 15(8), P08001

Status of calorimeter:

- ➢ longitudinally segmented calorimeter prototype successfully tested;
- e.m. energy resolution: 15%/√E (GeV)
- ➢ photon veto successfully tested.

Enubino

2021 test beam @ CERN-PS:

- ➢ Sampling calorimeter: plastic scintillator + iron absorber + BPE.
- \triangleright Fibers collect the scintillation light frontally
- ➢ Uniform light collection.
- ➢ Fiber routing through BPE to SIPMs.

New frontal readout scheme & fibers bundling, again with 1 LCM bundled to a 4x4 mm² SiPM.

The tagger demonstrator

- ➢ Detector prototype to demonstrate performance / scalability / cost -effectiveness :
- o 1.65 m longitudinal & 90 ° in azimuth;
- \circ 75 layers of: iron (1.5 mm thick) + scintillator (7 mm thick) \Rightarrow 12x3 LCMs.
- ➢ Central 45 ° part instrumented: rest is kept for mechanical considerations;
- \triangleright Modular design: can be extended to a full 2 π object by joining 4 similar detectors (minimal dead regions);
- ➢ New light readout scheme with frontal grooves instead of lateral grooves:
- o driven by large scale scintillator manufacturing: safer production and more uniform light collection;
- o performed GEANT4 optical simulation validation.

- ➢ Scintillator tiles: 1360
- \triangleright WLS: ~ 1.5 km
- ➢ Channels (SiPM): 400
- o Hamamatsu S14160 50 µm cell
- \circ 240 4050HS SiPM 4x4 mm² (calo)
- \circ 160 3050HS SiPM 3x3 mm² (t0)
- ➢ Fiber concentrators, FE boards: 80
- ➢ Interface boards (hirose conn.): 8
- ➢ Readout 64 ch boards (CAEN A5202): 8
- ➢ Commercial digitizers: 45 ch
- ➢ Hor. movement ~1m
- \triangleright Tilt >200 mrad

2022:

 \triangleright 8 upstream z layers with 10 Φ sectors (400 ch)

2023:

- \triangleright add 7 downstream z layers with 25 Φ sectors;
- \triangleright from 400 to 400+875 = 1275 channels;
- \triangleright Larger acceptance \rightarrow run in "decay region" mode i.e. with the detector off-beam to detect K decay products.

2022 demonstrator numbers

2023

… x 3 !

- \triangleright Discovery of CP-Violating phase δ_{CP} , v mass ordering.
- \triangleright Measurement of PMNS parameters: θ23 octant, Δm²13, precision measurement of δ_{CP}.
- ➢ Astrophysical ν sources: SN burst, solar neutrinos.
- ➢ BSM physics: anomalies @ LBNF, dark matter, proton decay.

The DUNE experiment

- ➢ Four 3.2 m Horizontal Drift regions: alternated Anode and Cathode Plane Assemblies.
- ➢ Charge readout with wires in Anode Planes Assembly (150 APA, 6x2.3m).
- \triangleright Efield = 500 V/cm.
- \triangleright PDS: 10 modules for APA = in total 1500 modules in FD-1, 4 channels per module.
- ≥ 1 Module 2092x118x23 mm³ = 4 supercells 488x100x8 mm3.

- ➢ Two 6 m Vertical Drift regions.
- ➢ Charge readout with PCB planes (160 CRPs, 3x3.4m) Efield = 450 V/cm , 300 kV on Cathode.
- ➢ PDS modules mounted on the cathode and on the cryostat walls:
- Square geometry: dimension 65x65 cm 2 .
	- A single large WLS light guide plane.
	- Light readout by 160 SiPMs mounted on flexible strips.
- ➢ Xenon doped LAr and so longer Rayleigh scattering length: enhanced light collection in large volumes.

The DUNE PDS – X-Arapuca

X-ARAPUCA: internal reflection and highly reflective boxes:

- ➢ efficient conversion of VUV photons;
- \triangleright high fraction of captured photons;
- ➢ efficient photosensors.

Horizontal Drift

- ➢ SuperCell: 6 cells 488 × 100 × 8 mm³ .
- ➢ Module: 4 SC 2092 × 118 × 23 mm³ (bars configuration).
- ➢ 10 modules / APA.

Vertical Drift

- ➢ "4p" reference design.
- \geq 320 X-ARAPUCA 60 x 60 cm² on cathode, and 320 + 32 on cryostat membrane (~3 m from cathode), analog readout.

Horizontal Drift:

- ➢ 48 SiPMs per SuperCell;
- ➢ 1 readout channel per SC (passive+active ganging);
- \triangleright 288,000 SiPMs in total.

Vertical Drift:

- ➢ 160 SiPMs per Plate;
- ➢ 1 readout channel per Plate (passive+active ganging);
- \triangleright 107,502 SiPMs in total.

Two photosensor vendors are being investigated, Hamamatsu Photonics (HPK) and Fondazione Bruno Kessler (FBK):

 \triangleright 6 types (splits) of 6x6 mm² SiPMs developed specifically for DUNE: 4 from HPK (S13360 – LQR/HQR – 50/75 µm pitch) and 2 from FBK (NUV-HD-CRYO single/triple trench).

The DUNE PDS – SiPM

HPK HQR 75 µm

Results in pubblications!

FBK Triple Trench

Horizontal Drift:

- ➢ 48 SiPMs per SuperCell;
- ➢ 1 readout channel per SC (passive+active ganging);
- \geq 288,000 SiPMs in total.

Vertical Drift:

- ➢ 160 SiPMs per Plate;
- ➢ 1 readout channel per Plate (passive+active ganging);
- \triangleright 107,502 SiPMs in total.

Two SIPMS selected:

- \triangleright HPK S13360 HQR 75 µm pitch
- ➢ FBK NUV-HD-CRYO triple trench.

DUNE double calorimetry : charge + light

The energy deposited in the detector goes into 2 observables: Charge and Light

➢ Using only the charge→standard reconstruction of deposited energy in a LArTPC, only the electrons that escape e-ion recombination and successfully drift to the anode can be used: a correction must be applied to account for the charge lost:

Energy from Charge only: E_Q = $Q \star R/W$ _{ion}

 $R=$ Recombination Factor = electron recombination survival probability. Depends on the E_{field} and local ionization charge density *dQ/dx* → difficult to determine at all deposition sites, particularly for EM showers \rightarrow use of an average value Wion= ionization work function

➢ Adding the light: charge and light are anticorrelated and their sum is directly proportional to the deposited energy:

Energy from Charge+Light: $E_{QL} = W_{ph} (Q + L)$

 W_{ph} =19.5 eV = average amount of energy deposited by a charged particle to produce an ion or exciton. Related to W_{ion} through the excitation ratio α : W_{ion}=23.6eV=(1-α)*W_{ph}

Change: $Q = N_i R = N_e$
Light: $L = N_{ex} + N_i (1 - R) = N_v$
$Q + L = N_i + N_{ex} = \Delta E / W_{ph}$

 \rightarrow We can perform a calorimetric measurement bypassing the correction for recombination that is no longer necessary and improve energy resolution

Reconstructed event Energy from Charge & Light: $E_{QL} = W_{ph}(Q+L) \rightarrow$ Comparison to Total Deposited Energy

DUNE double calorimetry : HD beam ν_μ and \overline{v}_{μ}

(MeV)

 $E_{\rm c}$

rey.

 δ

G. Brunetti - Neutrino Telescope '23

(MeV)

je+Light,

Chai

G)

 $\sum_{n=1}^{\infty}$

DUNE-FD1 simulated beam events:

 \triangleright 700 beam v_μ & beam $\overline{v_\mu}$

➢ Energy from Charge+Light & comparison to Total Deposited Energy

➢ Energy Resolution: v_μ CC contained ~ 8.2% \overline{v}_{μ} CC contained ~ 8.5%

Conclusion

Two approach for SiPM calorimetry in neutrino physics:

ENUBET

- \triangleright Conventional beamline with instrumented decay tunnel to monitor ν flux from narrow-band beam.
- \triangleright SiPM will be used for the complete read out.
- ➢ Different configuration have been tested, till the choice of a frontal read out calorimeter with shielding to prevent radiation damage.
- ➢ A scale prototype, built and tested, confirmed the feasibility of the project.

DUNE

- ➢ A large mass, high precision, deep-underground accelerator neutrino experiment for a wide physics program (neutrino oscillation, neutrino from astrophysical sources, BSM physics etc.).
- Two LAr TPC modules (confirmed), with SiPMs as light detection devices.
- ➢ Study for energy resolution improvement with the combined use of charge + light gives good results.

DUNE light simulation

1) Production: phenomenological model that modifies the Birks' charge recombination model and provides the anticorrelation between light and charge and its dependence with dE/dx and E_{field} : $Q(dE/dx, E_{field}) + L(dE/dx, E_{field}) = N_i + N_{ex}$ N_i , N_{ex} = model input parameters, with current numerical

values extracted from data

2022 [JINST 17 C07009](https://iopscience.iop.org/article/10.1088/1748-0221/17/07/C07009)

2) Propagation: tracking individual photons in Geant4 is prohibitive \rightarrow Semi-analytical model that predicts hits on a PDS module from scintillation photons produced: factorize geometry (Ω) , absorption and Reyleigh scattering

Effective parametrization calibrated on heavy Geant4 simulations

Eur. Phys. J. C 81, 349 [\(2021\)](https://link.springer.com/article/10.1140/epjc/s10052-021-09119-3)

3) Digitization:

- For each p.e., a waveform is created (shape modelled on direct measurements)
- Waveforms filtered to deconvolve detector response and scintillation time profile \bullet

The tagger demonstrator: mechanical stracture

The tagger demonstrator: scintillator tiles

Fiber gluing (EJ-500 optical cement)

Tile painting

(EJ-510 TiO² reflecting painting)

Tile assembling on arcs and fiber routing

The tagger demonstrator: fiber routing

Fiber concentrators for bundling and routing to SiPMs

Produced with 5 consumer level 3D printers

The tagger demonstrator: SiPM and front end electronics

Frontend Board (FEB) equipped with:

Hamamatsu S14160 series 3050HS 3x3 mm² (t0-layer) 4050HS 4x4 mm² (calo)

Custom interface board to connect 5 FEB (60 ch) to a A5252 **8 boards**

CAEN A5202 64 readout channels 2 Citiroc-1A ASICs Peak sensing Amplitude / ToT **8 boards** (2022) → 20 (2023)

ENUBET at CERN PS-T9 area

October 2022 CERN-PS-T9

enu
Det

