Phose2023 - Workshop on "Photodetectors and sensors for particle identification and new physics searches"

Jožef Stefan Institute, Ljubljana, Slovenija

SiPMs for Belle II ARICH

D. Consuegra Rodríguez¹, R. Dolenec^{1,2}, P. Križan^{1,2}, S. Korpar^{1,3}, A. Seljak¹, R. Pestotnik¹

¹ Experimental particle physics department, Jozef Stefan Institute (JSI), Ljubljana, Slovenia
² University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia
³ University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor, Slovenia

AidaInnova has received funding from the EU Horizon 2020 RIA programme under Grant No 101004761

Jennifer 2 is an MSCA-RISE project funded by EU under grant n.822070

Co-funded by Slovenian Research and Innovation Agency project - J1-4358

Outline

- Motivation / Objectives / Specific task
- SiPM characterization before irradiation
- SiPM characterization after irradiation
- Annealing studies after irradiation
- Conclusions

Acknowledgments:

We would like to thank A. Gola, S. Merzi, and M. Penna from Fondazione Bruno Kessler for providing the photodetector samples and all the other support.

We would like to thank A. Verdir, A. Jazbec, and S. Rupnik for the help with sample irradiation at JSI TRIGA reactor.

Belle III ARICH ~ 2035

- <u>Proposal:</u> Increase the luminosity
- Higher backgrounds
- HAPD will not be able to operate

Candidates: MCP-PMT & SiPMs

[M.Fiorini. The upgrade of the LHCb RICH detectors, NIMA 2020]

Jožef Stefan Institute

Dania Consuegra Rodríguez

Phose2023

SiPMs for Belle II ARICH

neutron radiation hardness $(3 \times 10^{12} \text{ neq/cm}^2 \text{ by detector end-of-life})$

Objectives

- Develop a setup for **SiPM characterization** at room temperature and at different controlled temperature steps down to liquid nitrogen before and after irradiation.
 - Current-voltage characteristics (I-V curve)
 - Threshold scan (Dark count rate)
 - Waveform analysis
 - Signal shape
 - Pulse height distribution
 - Charge distribution
 - Single photon timing resolution (SPTR)
- Carry out preliminary annealing studies after irradiation.

Characterization of 6 Samples (NUV-HD-RH) developed by FBK TOTAL: 18 SiPMs (Presenting results for 6 UHD-DE SiPMs)

Jožef Stefan Institute

Current-voltage characteristics (I-V curve)

- 6 NUV-HD-RH UHD-DE SiPMs were characterized.
- The expected $V_{Br} = 32.5$ V at RT was observed.
- The I decreases with the decrease in temperature.
- The V_{Br} slowly shifts to lower values with the decrease in temperature.

SiPM characterization before irradiation

Results shown for Sample 1 are representative for the other 5 Samples

Phose2023

Threshold scan (Dark count rate)

• 6 NUV-HD-RH UHD-DE SiPMs were characterized.

- The DCR increases with the increase in the overvoltage (**OV**).
- The DCR decreases with the decrease in temperature.

SiPM characterization before irradiation

Results shown for Sample 1 are representative for the other 5 Samples

Jožef Stefan Institute

Dania Consuegra Rodríguez

Phose2023

Page 7/18

Waveform analysis

SiPM characterization before irradiation

Signal shape & Pulse height distribution

Results shown for Sample 1 are representative for the other 5 Samples

Jožef Stefan Institute

Dania Consuegra Rodríguez

Phose2023

SiPMs for Belle II ARICH

Waveform analysis

- The **SPTR** [FWHM] values has no temperature dependence.
- The shape of the timing distribution is not always symmetric. Noise contribution could not be completely removed and it moves relative to the main peak randomly (in regards to temperature, Sample, and time).

Correlation plot

- Single photon cut in the qdc distributions was always applied.
- An SPTR < 100 ps [FWHM] was measured.

Results shown for Sample 1 are representative for the other 5 Samples

RT NUV-HD-RD UHD-DE

41.5 V (9 OV)

Jožef Stefan Institute

Dania Consuegra Rodríguez

Phose2023

9000

8000

7000

4000

2000 1000

SiPMs for Belle II ARICH

350

300

250

200

150

100

Irradiation of the Samples

Preparing the Samples

The Samples were protected, avoiding contact between the SiPMs structures and the plastic bag.

JSI TRIGA reactor

Irradiation 2/10/2023

Target [neq/cm ²]	Sample
109	6
1010	5
1011	4
1012	3
1013	2
Non-irradiated	1

While waiting for re-characterization after irradiation, the Samples were placed inside a freezer (\sim -25 °C).

Jožef Stefan Institute

Dania Consuegra Rodríguez

Phose2023

SiPMs for Belle II ARICH

Current-voltage characteristics (I-V curve)

10^{-2} non-irradiated 10^{-3} 10⁹ neq/cm² 10-4 1010 neg/cm2 10⁻⁵ RT 10¹¹ neg/cm² 10 1012 neg/cm2 <u></u> 10^{−7} 10¹³ neq/cm² 10 10^{-9} 10⁻¹⁰ $V_{Br} = 32.5 V$ 10^{-11} 10⁻¹² 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 SiPM Bias voltage [V] 10^{-2} non-irradiated 10^{-3} 10 10⁹ neq/cm² RT non-irradiated LN 10 10 RT 10¹⁰ neq/cm² 10⁻⁵ -20 °C 10 10¹¹ neg/cm² -60 °C 10 10 -100 °C 10¹² neq/cm² <u></u> 10[−] 140 °C <u>ح</u> 10-LN 013 neq/cm2 10 10 $V_{\rm Br} = 27.5 V$ 10^{-9} 10 10^{-10} 10^{-10} 10^{-} 10^{-1} 10 22 24 26 28 30 32 20 10^{-12} 28 30 32 34 36 38 40 42 44 46 48 SiPM Bias voltage [V]

SiPM characterization after irradiation

- 5 NUV-HD-RH UHD-DE SiPMs were characterized.
- The shape of the I-V curves depends on the irradiation level at any temperature step.
- The V_{Br} at RT remained at 32.5 V.
- The $V_{\mathbf{R}_{r}}$ shifts to lower values with the decrease in temperature.
- The V_{Br} in LN is at 27.5 V.

• Cooling irradiated SiPMs can match the I before irradiation until 10¹² neq/cm².

Threshold scan (Dark count rate)

SiPM characterization after irradiation

- **5 NUV-HD-RH UHD-DE SiPMs** were characterized.
- The shape of the threshold scans in LN are fully dependent on the irradiation level.

Cooling irradiated SiPMs can match the DCR before irradiation until 10^{12} neq/cm².

Jožef Stefan Institute

Dania Consuegra Rodríguez

Threshold scan (Dark count rate)

DCR was measured at single photon level (0.5 p.e.).

SiPM characterization before irradiation

- Plot of DCR vs temperature at different fluences shows how much cooling is needed to get the same DCR as RT no-irradiated.
- Plot of DCR vs fluences at different temperatures shows how is the maximum fluence possible at certain cooling level.

SiPM characterization after irradiation

Phose2023

Waveform analysis

SiPM characterization after irradiation

SPTRs at 10^{12} neq/cm²

SPTRs at 10¹² neq/cm², if metric from previous slide is used.

Waveform analysis

SiPM characterization after irradiation

The temperature of stable operation for the **SiPMs** after irradiation was defined to be when single photon cut is possible at **9 OV**.

By 10¹³ neq/cm² colling to LN is necessary.

- SPTR [FWHM] of the SiPMs after irradiation.
- Best SPTR [FWHM] at any OV or temperature is also shown.

SPTR [FWHM] does not seem to be affected by irradiation as long as single photon cut is possible, at least until 10¹³ neq/cm².

Dania Consuegra Rodríguez

Conclusions

- 6 NUV-HD-RH UHD-DE SiPMs were characterized before and after irradiation up to 10¹³ neq/cm².
- DCR increased with irradiation level.
- SPTR not degraded by irradiation, as long as single photons could be resolved.
- Cooling to certain level allowed irradiated **SiPMs** to operate well again.
- By 10^{13} neq/cm², cooling to ± 180 °C needed.
- Annealing at room temperature for 1 month only slightly improved performance (only sample irradiated at 10⁹ neq/cm² measured so far).

AidaInnova has received funding from the EU Horizon 2020 RIA programme under Grant No 101004761

Jennifer 2 is an MSCA-RISE project funded by EU under grant n.822070

Co-funded by Slovenian Research and Innovation Agency project - J1-4358

We would like to thank A. Gola, S. Merzi, and M. Penna from Fondazione Bruno Kessler for providing the photodetector samples and all the other support. We would like to thank A. Verdir, A. Jazbec, and S. Rupnik for the help with sample irradiation at JSI TRIGA reactor.

Phose2023

SiPM characterization after irradiation

SPTR, non-irradiated

SiPM characterization after irradiation

SPTR at 10⁹ neq/cm²

SiPM characterization after irradiation

SPTR at 10¹⁰ neq/cm²

Phose2023

SiPM characterization after irradiation

SPTR at **10¹¹ neq/cm²**

Phose2023

SiPM characterization after irradiation

SPTR at 10¹³ neq/cm²

The pre-amplifier is on the board itself.

Custom electronic board used for these measurements

DATA SHEET NEC **BIPOLAR ANALOG INTEGRATED CIRCUIT μPC2710TB**

5 V, SUPER MINIMOLD SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER

DESCRIPTION

The uPC2710TB is a silicon monolithic integrated circuit designed as PA driver for 900 MHz band cellular telephone tuners. This IC is packaged in super minimold package which is smaller than conventional minimold. The µPC2710TB has compatible pin connections and performance to µPC2710T of conventional minimold version. So, in the case of reducing your system size, µPC2710TB is suitable to replace from µPC2710T. This IC is manufactured using NEC's 20 GHz fr NESATTM III silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability

FEATURES

- · High-density surface mounting : 6-pin super minimold package
- : fu = 1.0 GHz TYP. @ 3 dB bandwidth Wideband response · Medium output power
 - : Po(sat) = +13.5 dBm TYP. @ f = 500 MHz with external inductor : Vcc = 4.5 to 5.5 V
- Supply voltage
- Power gain Port impedance

: GP = 33 dB TYP. @ f = 500 MHz : input/output 50 Ω

SiPMs for Belle II ARICH

Backup

Jožef Stefan Institute

Dania Consuegra Rodríguez

Phose2023

Wrong OV

After annealing

Jožef Stefan Institute

Dania Consuegra Rodríguez

Phose2023

SiPMs for Belle II ARICH

Backup