

Photodetectors and sensors for particle identification and new physics searches 22 November 2023 @ CERN

Characterization of LAPPD for RICH applications

Rok Pestotnik

On belhaf of Ljubljana Photon detector group:

Samo Korpar, Peter Križan, Rok Dolenec, Andrej Seljak, Andrej Lozar, Andrej Kodrič

Outline

- Motivation
- Tests of the LAPDDs
- Timing distributions
- Charge distributions
- Charge sharing
- Test with multichannel ASICs: FastIC, PETSys

Rok Pestotnik

Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

Large Area Picosecond Photodetector

R&D started in 2009 led by a collaboration of universities In **2014 Incom** Inc. founded to commercialize the device. Main characteristics:

- chevron pair of ALD-GCA-MCPs
- large area 203 mm x 203 mm
- ~ 195 mm x 195 mm active area
- > 90 % active fraction (spacers)
- lower cost per area (50 k\$ ► ~20 k\$ for large orders?)

Consists of several layers separated by spacers (C):

- fused silica glass window with Multi-Alkali (K2NaSb) photocathode (A)
- two MCP layers in chevron configuration (B)
- back plate with anode (D):
 - Gen-I: direct coupled segmented into 5.2 mm strips with 1.7 mm gap (50 Ohm impedance)
 - Gen-II: resistive anode plain with capacitive coupled readout electrode - custom

Aerogel RICH @ Belle II

ARICH K efficiency vs. π

misidentification probability

MC

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

π mis-ID Rate

Belle II Preliminary $\int Ldt = 71.2 \text{ fb}^{-1}$ double layer focusing aerogel radiator (20+20 mm)
160 mm expansion gap
photon detector : 420 HAPDs -

Hybrid Avalanche Photo Detectors

Belle III ~2033

Proposal: increase the luminosity 5x

 Higher backgrounds
 HAPD – accumulated dose too high will not be able to operate
 Search for new technologies: Candidates: SiPM, MCP-PMT

LAPPDs?

Possible LAPPD tiling scheme

$\begin{array}{c} \overbrace{0}^{\circ} \\ \overbrace{0}^{\circ} } \\ \overbrace{0}^{\circ} } \\ \overbrace{0}^{\circ} \\ \overbrace{0}^{\circ} \\ \overbrace{0}^{\circ} \\ \overbrace{0}^{\circ} }$

0.9

0.6

LHCb RICH (1 and 2) Upgrade II

- Standard RICH design
- Gas radiator
- Focusing optics
- Single photon detectors

- Keep peak Occupancies
 - (time and space) < 30%</p>
- Improve Single Photon Ch. Angle resolution < 0.5 mrad

Requirements

- A lot of pixels -> Photodetectors and assoc. electronics
 - Pixel size ~ 1mm²
- 40 MHz interaction rate
- An excellent lens -> Optical and gas systems
- A fast and precise shutter -> Gating and time resolution ~ 150ps
- High PDE in green to reduce dispersion

Separate space overlapping events

Baseline Upgrade 2 design: SiPM + FastRICH RO chip (FastIC family) Can LAPPDs serve as a suitable candidate?

Characterisation of LAPPD for RICH applications@ Phose 2023

22 November 2023

Belle II ARICH R&D: Photonis MCP-PMT

Model 85015/A1:

- . two MCP steps chevron configuration
- . 8x8 anode pads @6.5 mm pitch, gap ~ 0.5mm
- bialkali photocathode
- gain ~ 0.6 x 10⁶ (@2400V)
- 10 μ m pores \rightarrow operates up to 1.5 T
- \cdot size ~ 59mm
- effective area fraction $\sim 80\%$
- excellent timing < 40ps single photon
- window thickness 1.5mm

Beam test result of 25µm sample: $\cdot \sigma_{9}$ ~13 mrad (single cluster) number of clusters per track N ~ 4.5 $\cdot \sigma_9 \sim 6 \text{ mrad (per track)}$ $. \rightarrow \sim 4 \sigma \pi/K$ separation at 4 GeV/c

NIM A567 (2006) 124

Rok Pestotnik

Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

.

Single timing channel per module

 electronics for Belle II ARICH + TOF could be simplified if a common electrode signal could be used for timing and signals from anode pads for position

. MCP-out signal was tested for common timing

HV

1n

1n

1n

1M

2500k

<u></u>5Μ

<500k

cathode bias

MCP-in bias

MCP-out bias

ground

2 tested Samples Gen II LAPPD #109 and #162

Characteristics (Incom):

- Size 230 mm x 220 mm x 22 mm
- fused silica glass window (5 mm), multi-alkali ph.cat. (Na₂KSb)
- peak QE (@365 nm)
 - **#109** :≈ 27%

• **#162**: ≈ 33%

- 2 MCPs: 13° bias angle
 - #109: 20 μ m pores at 25 μ m pitch (>65% OAR)
 - #162: 10 μm pores at 13 μm pitch (>72% OAR),
- back plate with interior resistive ground plane anode
 - #109 borosilicate 5 mm thick
 - #162: ceramic - 2 mm thick
- capacitively coupled readout electrode
- two parallel spacers (active fraction ≈ 97 %)
- gain
 - #109: $\approx 5 \cdot 10^6$ @ ROP (825 V/MCP, 100 V/ ph.cathode)
 - #162: $\approx 4 \cdot 10^6$ @ ROP (875 V/MCP, 50 V/ ph.cathode)
- Dark Count rate at a threshold of 8x10⁵ gain
 - #109: @ ROP: ~ 500 kHz/cm2
 - #162: @ ROP: ~ 400 Hz/cm2
- 5 HV levels: PC, MCP1in, MCP1out, MCP2in, MCP2out and resistive anode at ground potential

Experimental setup

- Standard setup with QDC, TDC, 3D stage ...
- TDC value corrected for time-walk
- ALPHALAS PICOPOWER[™]-LD Series of Picosecond Diode Lasers – 405 nm
- FWHM $\approx 20 \text{ ps}$
- light spot diameter on the order of $100 \ \mu m$
- \approx single photon light intensity

LAPPD – Incom sensing electrode

Rok Pestotnik

Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

BRIGHT IDEBS

LAPPD – time-walk correction

- TDC corrected for time-walk
- timing resolution (prompt peak) $\sigma \approx 40~{\rm ps}$ after correction

Rok Pestotnik

Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

Rok Pestotnik

Characterisation of LAPPD for RICH applications@ Phose 2023

22 November 2023

•

13

63

5345.

27.06

948.1

80.90

62.81

ISet

5.00

200.00

5.00

200.00

5.00

0.9028

55

x [mm]

54

10 20

Slices at equal charge sharing for red and blue laser) – pad boundary. Resolution limited by photoelectron energy.

22 November 2023

49

571

57

52

52

to anode and can hit more than one anode \rightarrow Charge sharing Can be used to improve spatial resolution.

Secondary electrons spread when traveling from MCP out electrode

Fraction of the charge detected by left pad as a

function of light spot position (red laser)

MCP-PMT: charge sharing

14

••••

LAPPD – charge sharing

- fraction of the signal on channel 3 vs laser spot x position: $f(x) = \frac{q_3}{\sum_i q_i}$
- scan between the centres of pads 2 and 3 (top)

- central slice where signal is equally split between the pads (bottom)
- narrow peak is due to the light spot size and photoelectron spread
- longer tail from photoelectron backscattering $\approx 6 \text{ mm}$ on each side $\rightarrow \approx 3 \text{ mm PC} - \text{MCP1}$ distance

LAPPD – induced charge fraction

- fraction of the signal on ch. 2 vs laser spot x position: $f(x) = \frac{q_2}{\sum_i q_i}$
- green band (log scale) indicates the range of a backscattered photoelectrons – twice the PC-MC1 distance (on each side)
- ROP for upper plots and 100 V between MCP2 and A for lower ones
- Signal spread not mainly from electron spread but induced charge spread on coupled electrode

LAPPD – PLANCON

LAPPD (capacitive coupling) – BURLE PLANACON (internal anodes) signal spread comparison – same pad size, same range

Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

Charge sharing #162 vs. #109

- An example plot for charge sharing between pads D3-D5 for:
 - 162 (top) compared with similar plot for
 - 109 (bottom).
- One can see reduced signal spread as expected.
- From backscatter component range (~2mm) one can also see that PC-MCP1in distance was reduced:
 - from about 3mm (109)
 - to about 1mm (162).

18

 10^{4}

LAPPD charge sharing

- calculation of charge sharing for different MCP2out-resistive andode/resistive anode-sensing electrode distances (6/5-measured, 2/5, 6/2, 2/2)
- fraction of the charge induced vs. square pad size when signal is produced in the centre of the pad

LAPPD – IJS sensing electrodes

- capacitively coupled electrode produced at IJS with several different patterns:
 - pads: 5 mm, 6 mm, 12.5 mm, 25 mm
 - 50 mm long strips: 5 mm, 3 mm
 - PETSYS connector (256 6mm pads)
 - FastIC connector (12.5 mm and 25

.

LAPPD + PETSYS

- $\frac{1}{4}$ pads
- 128 channels (16 x 8)

LAPPD + PETSYS

- Signal amplification and discrimination
- Gain adjustment per channel: 1, 1/2, 1/4, 1/8
- Dual branch quad-buffered analogue interpolation TDCs for each channel
- Quad-buffered charge integration for each channel
- Dynamic range: 1500 pC
- TDC time binning: 30 ps
- positive input signal polarity
- Max channel hit rate: 600 kHz
- Configurable timing, trigger and ToT thresholds
- Fully digital output

• Center of gravity with ToT

Location of energy weighted hits (ROI)

LAPPD + FastIC

- 8 CH ASIC
- Technology 65 nm CMOS ~ 6 mW/ch
- Number of channels: 8 SE / 4 DIFF
- Connection Type Configurable SE (Pos/Neg polarity) DIFF, Sum of 4 (Pos/Neg polarity)
- Electronics Time Jitter ~ 25 ps rms
- Energy Resolution Linear (~ 2.5 % Linearity error

• Timing resolution $\approx 70 \ ps$ with time-walk correction, ADC from shared signal on the neighbouring pad used

TC center ch. 1

2000

230.8

4000

/ 28

1560.

2.907

66.90

 χ^2/ndf

Constant

Mean Sigma

TC center ch. 2

10

 10^{2}

10

- Different photo detectors are being considered for the future PID projects
 - SiPMs (rad. hardness, cooling, annealing, light concentration ...)
 - MCP-PMTs (INCOM(LAPPD, HRPPD), PHOTONIS, PHOTEK, HAMAMATSU ...?)

- Both options need carefully designed low noise low power readout electronics to explore timing capabilities of both sensors (FastIC, FastRICH, ...)
- Simulations and tests of hardware are in progress.