

Photodetectors and sensors for particle identification and new physics searches 22 November 2023 @ CERN

Characterization of LAPPD for RICH applications

Rok Pestotnik

On belhaf of Ljubljana Photon detector group:

Samo Korpar, Peter Križan, Rok Dolenec, Andrej Seljak, Andrej Lozar, Andrej Kodrič

Outline

- **Motivation**
- Tests of the LAPDDs
- Timing distributions
- Charge distributions
- Charge sharing
- Test with multichannel ASICs: FastIC, PETSys

Large Area Picosecond Photodetector

- R&D started in 2009 led by a collaboration of universities In **2014 Incom** Inc. founded to commercialize the device. Main characteristics:
- chevron pair of ALD-GCA-MCPs
- large area 203 mm x 203 mm
- \cdot ~ 195 mm x 195 mm active area
- > 90 % active fraction (spacers)
- lower cost per area (50 k\$ \blacktriangleright ~20 k\$ for large orders?)

Consists of several layers separated by spacers (C):

- fused silica glass window with Multi-Alkali (K2NaSb) photocathode (A)
- two MCP layers in chevron configuration (B)
- back plate with anode (D):
	- Gen-I: direct coupled segmented into 5.2 mm strips with 1.7 mm gap (50 Ohm impedance)
	- Gen-II: resistive anode plain with capacitive coupled readout electrode - custom

 \bullet \bullet Inst

Aerogel RICH @ Belle II

Qdouble layer focusing aerogel radiator $(20+20$ mm $)$ \square 160 mm expansion gap □ photon detector : 420 HAPDs -

Hybrid Avalanche Photo Detectors

Belle III ~2033

Proposal: increase the luminosity 5x

QHigher backgrounds \Box HAPD – accumulated dose too high will not be able to operate **□Search for new technologies:** Candidates: SiPM, MCP-PMT

LAPPDs?

Possible LAPPD tiling scheme

3

misidentification probability

ARICH K efficiency vs. π

LHCb RICH (1 and 2) Upgrade II

- Standard RICH design
- Gas radiator
- Focusing optics
- Single photon detectors

- Keep peak Occupancies
	- (time and space) $<$ 30%
- Improve Single Photon Ch. Angle resolution < 0.5 mrad

Requirements

- **A lot of pixels -> Photodetectors and assoc. electronics**
	- Pixel size ~ 1 mm²
- 40 MHz interaction rate
- An excellent lens -> Optical and gas systems
- A fast and precise shutter -> Gating and time resolution \sim 150ps
- High PDE in green to reduce dispersion

Separate space overlapping events

Baseline Upgrade 2 design: SiPM + FastRICH RO chip (FastIC family) Can LAPPDs serve as a suitable candidate?

4

 \bullet

Rok Pestotnik Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

Belle II ARICH R&D: Photonis MCP-PMT

្មី
^S 500

400

300

200

100

Model 85015/A1:

- . two MCP steps chevron configuration
- \cdot 8x8 anode pads @6.5 mm pitch, gap \sim 0.5mm
- . bialkali photocathode
- \cdot gain ~ 0.6 x 10⁶ (@2400V)
- 10µm pores \rightarrow operates up to 1.5 T
- $size ~ 59mm$
- \cdot effective area fraction \sim 80%
- \cdot excellent timing \leq 40ps single photon
- window thickness 1.5mm

Beam test result of 25µm sample: $\cdot \sigma_9$ ~13 mrad (single cluster) . number of clusters per track $N \sim 4.5$ \cdot σ_{9} ~ 6 mrad (per track) \rightarrow ~ 4 σ π/K separation at 4 GeV/c

 $time [1 bin = 25 ps]$ NIM A567 (2006) 124

Rok Pestotnik Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

 χ^2 /ndf

Mean Sigma

Constant

 $60.75 / 20$

 σ ~ 50ps

525.7 -0.2194

1.997

100

 $\sqrt{12}$

791.9

 0.1741

20

1.408

 $\ddot{\cdot}$

Single timing channel per module

 \cdot electronics for Belle II ARICH + TOF could be simplified if a common electrode signal could be used for timing and signals from anode pads for position

HV

 $1n$

 $1n$

 $1n$

 1_M

 \geq 500k

 $\frac{1}{2}5M$

 $300k$

cathode bias

MCP-in bias

MCP-out bias

2 tested Samples Gen II LAPPD #109 and #162

Characteristics (Incom):

- Size 230 mm x 220 mm x 22 mm
- fused silica glass window (5 mm), multi-alkali ph.cat. (Na₂KSb)
- peak QE (@365 nm)
	- #109 : $\approx 27\%$
	- #162: $\approx 33\%$

- 2 MCPs: 13^o bias angle
	- #109: 20 μ m pores at 25 μ m pitch (>65% OAR)
	- #162: 10 μ m pores at 13 μ m pitch (>72% OAR),
- back plate with interior resistive ground plane anode
	- #109 borosilicate 5 mm thick
	- \cdot #162: ceramic -2 mm thick

- capacitively coupled readout electrode
- two parallel spacers (active fraction \approx 97 %)
- gain
	- #109: $\approx 5 \cdot 10^6$ @ ROP (825 V/MCP, 100 V/ ph.cathode)
	- #162: $\approx 4 \cdot 10^6$ @ ROP (875 V/MCP, 50 V/ ph.cathode)
- Dark Count rate at a threshold of 8x10⁵ gain
	- #109: @ ROP: ~ 500 kHz/cm2
	- #162: @ ROP: ~ 400 Hz/cm2
- 5 HV levels: PC, MCP1in, MCP1out, MCP2in, MCP2out and resistive anode at ground potential
- **BOOV MCF B25V MCF** $-$ 850V MCF $-$ 875V MCF **● 900V MCF** 925V MCF LAPPD 162 Gain vs. Rate (PC 100 V, MCP 875 V per MCP) 1000.0 Laser Trigger Rate (kHz) $-825V$ MCF **B**R50V MCP **875V MCF +900V MCP** LAPPD 109 Gain vs. Rate (PC 50 V, MCP 825 V per MCP) <u>laulaunudaanudaanudaanudaanudaan</u> 100 200 300 Photocathode Voltage 1.0 1000.0 Laser Trigger Rate (kHz)

Experimental setup

- Standard setup with QDC, TDC, 3D stage ...
- TDC value corrected for time-walk
- ALPHALAS PICOPOWER™-LD Series of Picosecond Diode Lasers – 405 nm
- FWHM ≈ 20 ps
- light spot diameter on the order of $100 \ \mu m$
- \approx single photon light intensity

SINCOM **LAPPD – Incom sensing electrode**

9

Rok Pestotnik Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

BRIGHT IDEAS

LAPPD – time-walk correction

- TDC corrected for time-walk
- timing resolution (prompt peak) $\sigma \approx 40$ ps after correction

Rok Pestotnik Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

Rok Pestotnik Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

63

5.00

200.00

5.00

200.00

5.00

581

51

52.

53

 54

55

 x [nm]

 $ADCI/ADCI+ADC2)$

 06

 9.4

 9.2

Ü.

49

Rok Pestotnik Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

MCP-PMT: charge sharing

Secondary electrons spread when traveling from MCP out electrode to anode and can hit more than one anode \rightarrow Charge sharing Can be used to improve spatial resolution.

 H_1 :

 \Leftarrow

Fraction of the charge detected by left pad as a function of light spot position (red laser)

Slices at equal charge sharing for red and blue laser) – pad boundary. Resolution limited by photoelectron energy.

 $\ddot{\cdot}$

LAPPD – charge sharing

- fraction of the signal on channel 3 vs laser spot x position: $f(x) = \frac{q_3}{\Gamma}$ Σ_i q_i
- scan between the centres of pads 2 and 3 (top)

- central slice where signal is equally split between the pads (bottom)
- narrow peak is due to the light spot size and photoelectron spread
- longer tail from photoelectron backscattering ≈ 6 mm

LAPPD – induced charge fraction

- fraction of the signal on ch. 2 vs laser spot x position: $f(x) = \frac{q_2}{\sum x_i}$ Σ_i q_i
- green band (log scale) indicates the range of a backscattered photoelectrons – twice the PC-MC1 distance (on each side)
- ROP for upper plots and 100 V between MCP2 and A for lower ones
- Signal spread not mainly from electron spread but induced charge spread on coupled electrode

LAPPD – PLANCON

LAPPD (capacitive coupling) – BURLE PLANACON (internal anodes) signal spread comparison – same pad size, same range

Rok Pestotnik Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

Charge sharing #162 vs. #109

- An example plot for charge sharing between pads D3-D5 for:
	- 162 (top) compared with similar plot for
	- \cdot 109 (bottom).
- One can see reduced signal spread as expected.
- From backscatter component range (~2mm) one can also see that PC-MCP1in distance was reduced:
	- from about 3mm (109)
	- to about 1mm (162).

 10

LAPPD charge sharing

- calculation of charge sharing for different MCP2out-resistive andode/resistive anode-sensing electrode distances (6/5-measured, 2/5, 6/2, 2/2)
- fraction of the charge induced vs. square pad size when signal is produced in the centre of the pad

19

 \ddot{v}

LAPPD – IJS sensing electrodes

- capacitively coupled electrode produced at IJS with several different patterns:
	- pads: 5 mm, 6 mm, 12.5 mm, 25 mm
	- 50 mm long strips: 5 mm, 3 mm
	- PETSYS connector (256 6mm pads)
	- FastIC connector (12.5 mm and 25

Rok Pestotnik Characterisation of LAPPD for RICH applications@ Phose 2023 22 November 2023

 $\ddot{\cdot}$

LAPPD + PETSYS

- $\cdot \frac{1}{4}$ $\frac{1}{4}$ " pads
- \cdot 128 channels (16 x 8)

LAPPD + PETSYS

- Signal amplification and discrimination
- Gain adjustment per channel: 1, 1/2, 1/4, 1/8
- Dual branch quad-buffered analogue interpolation TDCs for each channel
- Quad-buffered charge integration for each channel
- Dynamic range: 1500 pC
- TDC time binning: 30 ps
- positive input signal polarity
- Max channel hit rate: 600 kHz
- Configurable timing, trigger and ToT thresholds
-

• Fully digital output • Center of gravity with ToT

Location of energy weighted hits (ROI)

 $\ddot{}$

LAPPD + FastIC

- 8 CH ASIC
- Technology 65 nm CMOS ~ 6 mW/ch
- Number of channels: 8 SE / 4 DIFF
- Connection Type Configurable SE (Pos/Neg polarity) DIFF, Sum of 4 (Pos/Neg polarity)
- Electronics Time Jitter ~ 25 ps rms
- Energy Resolution Linear (~ 2.5 % Linearity error

• Timing resolution $\approx 70 \text{ ps}$ with time-walk correction, ADC from shared signal on the neighbouring pad used

TC center ch. 1

2000

 χ^2 /ndf

Constant

Mean

Sigma

230.8 / 28

4000

1560.

2.907

66.90

TC center ch. 2

 $10¹$

 10^{2}

 10

- Different photo detectors are being considered for the future PID projects
	- SiPMs (rad. hardness, cooling, annealing, light concentration …)
	- MCP-PMTs (INCOM(LAPPD, HRPPD), PHOTONIS, PHOTEK, HAMAMATSU …?)

- Both options need carefully designed low noise low power readout electronics to explore timing capabilities of both sensors (FastIC, FastRICH, ...)
- Simulations and tests of hardware are in progress.

 $\ddot{\bm{v}}$