Development of hybrid single-photon detector based on microchannel plates and the Timepix4 ASIC

J.A. Alozy^a, R. Ballabriga^a, N.V. Biesuz^b, R. Bolzonella^{b,c}, M. Campbell^a, V. Cavallini^{b,c}, A. Cotta Ramusino^b, M. Fiorini^{b,c}, E. Franzoso^b, M. Guarise^{b,c}, X. Llopart^a , S. Okamura^{b,c}, M. Panconesi^b, G. Romolini^{b,c}, A. Saputi^b

^a CERN b INFN Ferrara ^c University of Ferrara

University
of Ferrara

Phose2023 – Workshop on Photodetectors and Sensors for PID and NP searches CERN, November 22nd 2023

Proje[ct goal an](https://iopscience.iop.org/article/10.1088/1748-0221/13/12/C12005/meta)d detector conce

- Development of a new photodetector with large active area to measure single photons with simultaneous excellent time and spatial resolution, with a low noise level at room tem
- Detector based on a "hybrid" concept:
	- □ Vacuum detector; photocathode with high QE in the region of inte
	- □ Proximity-focusing geometry
	- ^q Micro-channel plate (MCP) amplification
	- ^q Silicon ASIC embedded inside vacuum tube
	- ^q Reference: **JINST 13 C12005 2018**

Detector concept

- Entrance window $+$ photocathode
- Microchannel plate stack (chevron)
- Pixelated anode
	- ^q Electron cloud spread over a number of pixels
	- ^q **55μm**× **55μm** pixel size
	- ^q **0.23 M pixels** measuring arrival time and duration of input signals
	- ^q **7 cm2** active area
	- ^q Up to **2.5 Ghits/s**
	- □ Local signal processing

Hybrid detector assembly

3D structure: detector rendering

- Vacuum-based detector
	- a Assembly of many components under high vacuum $({\sim}10^{-10}$ mbar)
	- ^q High-speed connections through pins in ceramic carrier board
- Heat sink for stable detector operation $(-5 W$ heat removal)
- Carrier printed circuit board (PCB)
	- □ Socket for detector pins, regulators and high voltage
	- ^q Connected to FPGA-based read-out and DAQ via 16×10 Gbps links

Detector geometry

- Shortest photocathode-to-MCP distance preserves impact position information
- Optimized MCP-to-anode distance spreads the electron cloud over a number of pixels

Pixelated anode

- n Timepix4 ASIC in 65nm CMOS **silicon pixel technology**
	- ^q Developed and produced by the Medipix4 Collaboration for hybrid pixel detectors
- ⁿ Charge sensitive amplifier, single threshold discriminator and TDC based on Voltage Controlled Oscillator
	- ^q 4-side buttable (TSV)
	- ^q Data-driven and frame-based read-out

X. Llopart (CERN)X. Llopart (CERN)

The Timepix4 ASIC

- ⁿ 65 nm CMOS (TSMC)
- **n** ASIC productions:
	- ^q Timepix4_v0 (Q1 2020)
	- □ Timepix4_v1 (Q4 2020)
	- \Box Timepix4_v2 (Q4 2021)
	- ^q Timepix4_v3 (Q1 2023)

Ceramic carrier

- Dedicated testbed for electrical and mechanical tests
- Electrical design critical due to 10 Gbps lines
- **n** First qualitative electrical measurements on existing devices (loop-back) plus signal integrity simulations
	- □ PGA not limiting factor per se
	- □ Requires careful pin placement
	- ^q Low pin density
- **n** Main contributions to signal degradation
	- □ Parasitic capacitance
	- ^q Aluminium oxide multilayer PCB
	- □ Pads (wire-bond and pin pads)

Timepix4 hit data

- Measures arrival time (t_1) and Time-over-Threshold (ToT= t_2-t_1) ^q TDC bin size: 195 ps (56 ps r.m.s. resolution per pixel)
	- Electron cloud spread over a number of pixels \rightarrow cluster
- Use ToT information (proportional to the charge in a pixel) to:
	- ^q Correct for time-walk effect in every pixel
	- ^q Improve **position resolution** by centroid algorithm
		- Go from $55\mu m / \sqrt{12} \sim 16\mu m$ down to $\sim 5\mu m$
	- ^q Improve **timing resolution** by multiple sampling
		- Many timing measurements for the same photon \rightarrow few 10s ps

Timepix4 data-driven read-out

- Zero-suppressed continuous data-driven
	- q Output bandwidth from 40 Mbps $(2.6 \text{ Hz}/\text{pixel})$ to 160 Gbps (10.8 s) KHz/pixel)
- ⁿ 4 external inputs to synchronize/align external signals with data

Electronics and DAQ

- On-detector electronics
	- ^q Timepix4 ASIC
	- □ Electro-optical transceivers link the ASIC to an FPGA-based board for the exchange of configuration (slow control) and the collection of event data
	- □ Regulators, etc.
- **n** Off-detector electronics
	- ^q FPGA far from detector
- **n** The FPGA performs serial decoding and sends the data to a PC for data analysis and storage using fast serial data links

Current test system

- Timepix4 bump-bonded to silicon sensors (300 μ m and 100 μ m)
- SPIDR4 FPGA read-out system and sensor carrier board
	- □ Developed by Nikhef Medipix4 group
- Dedicated DAQ system working now with 1 Gbps interface

Software

- Dedicated software
- $C++$ based
	- \Box Low-level
	- ^q Object-oriented
- Readout and Control in unique CLI
- **Read and Write register** functions
- **n** Application Programming Interfaces for Timepix4
- Packets decoder
- Open source

Measurements with Timepix4

- Digital test pulse:
	- Correct patterns, number of pulses and ToA-ToT
- Analog test pulse:
	- □ Per-pixel ToT calibration through test pulse over the whole pixel matrix
	- ^q Calibration validated using radioactive sources
- Radioactive sources measurement:
	- ^q Density based clustering (DBSCAN)
	- □ ToT-charge calibration
- Laser measurement:
	- **q** Timing resolution

Timing resolution measurements (1)

- SPIDR4 control board
- Timepix4_v2 bonded to a 100 μm n-on-p Si detector
	- ^q Metallization with holes pattern
	- ^q Thanks to V. Coco, M. Van Beuzekom et al. (LHCb Velo group)

Timing resolution measurements (2)

- Waveform generator: input signal to digital pixels + laser trigger
- Laser: 1060 nm $+$ variable attenuator
- Linear translation stages: 3D position regulation with μm precision

Spidr4 control board

Laser focused using microcollimator:

Timing resolution measurements (3)

- $\sigma = 1.4$ pixel = 77 μm
- **Laser spot in fixed position** for all presented measurements

Timing resolution measurements (4)

- VCO of different pixels oscillate with different frequencies
- Finer ToA bins generated with different width
- ToA and ToT measurements heavily affected by this effect
- **n** Internal test pulse tool exploited to calibrate VCO frequencies for the whole matrix (~28.7k VCO)

Timing resolution measurements (5)

- Single pixel timing resolution
- ⁿ Measurements using variable laser attenuation, populating a wide ToT range on each pixel
- Different time walk trends on different pixels
- Time walk corrected separately on each pixel

Timing resolution measurements (6)

- Single pixel timing resolution
- ⁿ Measurements using variable laser attenuation, populating a wide ToT range on each pixel
- Different time walk trends on different pixels
- Time walk corrected separately on each pixel

Timing resolution measurements (7)

- ToT vs charge calibration applied to each pixel
- Distribution divided into "vertical" slices, each one selecting a narrow range of charge
- Timing resolution values extracted for each slice

Timing resolution measurements (8)

- Single pixel timing resolution
- Distribution of timing resolution as a function of injected charge
- For the pixel [305,144], where the laser is focused, the standard deviation saturates at 128 ± 1 ps rms
- Subtracting the contribution of the reference TDC (60 ps), a resolution of 111 ± 1 ps rms is obtained

Timing resolution measurements (9)

- For each cluster:
	- ^q weighted average of ToA using charge as weights
	- ^q cluster charge computed
- n Timing resolution dependence on cluster charge:
	- best result: $\sigma_{\text{ToADiffAvg}}$ =79 \pm 1 ps rms
- Timing resolution subtracting reference TDC contribution:
	- $\sigma_{\text{ToAAvg}} = 49 \pm 1 \text{ ps rms}$

Timing resolution measurements (10)

- ⁿ Offline "variation of cluster size": consider shells of pixels within the same physical cluster
	- ^q Large improvement in the resolution from 1-pixel clusters to 5-pixels clusters
	- □ Small or negligible improvement increasing further the cluster size

Outlook

- ⁿ A "hybrid" MCP-PMT is under development
	- Funded by European Research Council (G.A. No. 819627)
	- □ Demonstrator based on existing full-scale ASIC (Timepix4 developed by Medipix4 Collaboration for hybrid pixel detectors)
	- □ Complete integration of sensor and electronics
		- ⁿ On-detector signal processing, digitization and data transmission with large number of active channels (~230 k pixels), with limited number of external interconnections (~200)
	- ^q Full exploitation of both timing and position resolution of a MCP
- Future improvements for use in HEP harsh environments
	- ^q Radiation hardness
		- Use rad-hard-by-design ASIC (plus rad-hard serializers)
	- □ High rate capability and detector lifetime
		- ⁿ Improve current MCP technology
	- **q** Timing resolution
		- Use ASIC with smaller TDC bin size and lower front-end jitter

European Research Counci

Application: LHCb RICH Upgrade II

- Current detectors not adequate for RICH in the HL-LHC environment (need granularity ~1 mm, time resolution <100 ps)
- Advantage of the proposed device for future RICH detectors:
	- \Box 5-10 μ m position resolution \rightarrow the pixel size contribution to the Cherenkov angle resolution becomes negligible
	- \Box High granularity (55 μm × 55 μm) and rate capabilities (2.5 Ghits/s) crucial in applications with large detector occupancies
	- ^q <100 ps resolution per single photon excellent handle for pattern recognition and time-association of the individual photons
	- ^q Negligible detector-related background at room T
	- □ Robust in magnetic fields
	- □ Longer lifetime compared to standard applications due to low gain
	- ^q On-detector signal processing and digitization with large number of active channels (~230 k pixels), with limited number of external interconnections (~200)

Radiation hardness

- For the LHCb Upgrade II we expect, in the RICH region: α ~2 Mrad TID, ~3 × 10¹³ 1 MeV n_{eq}/cm², ~1 × 10¹³ HEH/cm²
- ⁿ Advantages of the proposed detector:
	- □ Optical window made of "silica" glass
		- No degradation of window transmittance
	- ^q 65 nm CMOS front-end technology
		- ⁿ Resistant to >100 Mrad Total Ionising Dose
		- Triple Modular Redundancy not implemented in Timepix4 □ Single Event Upset mitigation: refresh configuration registers
		-
	- ^q FPGA-based back-end electronics far from detector region
		- Signals are digitized inside the vacuum tube
		- Use radiation hard components on-detector (transceivers, etc.)
- **n** Future improvements
	- ^q Use VeloPix2 (PicoPix) ASIC (30 ps TDC, rad. hard by design)

MCP-PMT limitations

- ⁿ MCP-PMT lifetime limited by the integrated anode charge, which leads to a strong QE reduction
	- From 0.2 C/cm² to >30 C/cm² in recent years thanks to ALD
- With the expected photon hit rate $(-10$ $MHz/mm²$), assuming a 10⁴ gain (very conservative), and an operation of 10 years with 25% duty cycle we have:
	- Total IAC ~120 C/cm^2
	- q Anode current density \sim 2 μA/cm²
- ALD coating is based on the deposition of resistive and/or secondary emissive layers (could tune MCP properties)
	- ^q Reported adverse effects on saturation current on some model with ALD
- Strong R&D to find the best "recipe" is needed

D. Miehling et al., NIM A 1049

ToT Vs Q calibration

• Validation with radioactive sources($137Cs$ and $241Am$ superimposed spectra)

PicoPix project

- PicoPix is intended to be a "realistic" demonstrator chip for a future upgrade of the LHCb Velo project (Velopix2)
	- \Box Main requirement is time resolution < 30 ps rms
	- □ Other very challenging requirements (pixel size, radiation hardness, power, bandwidth, etc.)
- n There is a limit on time resolution that are achievable for small pixels with limited power
- High-speed links in 28 nm (CERN EP R&D WP6) \Box lpGBT (10 Gbps) \rightarrow DART28 (>26 Gbps)

X. Llopart (CERN)

Velopix2

nitial requirements on Velopix2 from LHCb

X. Llopart (CERN)

Challenging!

doable

Timepix4 noise

Equivalent Noise Charge (ENC) for v0, v1 and v2

Power consumption and cooling

- Timepix4 power consumption $(\sim 5 W)$
- Goal: stable operation with 20 $\mathrm{^{\circ}C}$ inside the vacuum tube □ Cold "finger" attached to ceramic carrier

Time resolution contributions

 $\sigma_{time} = TTS \bigoplus \sigma_{front-end} \bigoplus \sigma_{TDC}$

Contributions:

- TTS (Transit Time Spread) of electrons: 25 ps FWHM
- Front-end: <30 ps for input charge >10⁴ e⁻
- TDC contribution: 56 ps (195 ps bin size/ $\sqrt{12}$)
- ⁿ Time resolution for **1 pixel**: **70 ps**

