Development of hybrid single-photon detector based on microchannel plates and the Timepix4 ASIC

J.A. Alozy^a, R. Ballabriga^a, N.V. Biesuz^b, R. Bolzonella^{b,c}, M. Campbell^a, V. Cavallini^{b,c}, A. Cotta Ramusino^b, <u>M. Fiorini^{b,c}</u>, E. Franzoso^b, M. Guarise^{b,c}, X. Llopart^a, S. Okamura^{b,c}, M. Panconesi^b, G. Romolini^{b,c}, A. Saputi^b

^a CERN ^b INFN Ferrara ^c University of Ferrara

University of Ferrara

Phose2023 – Workshop on Photodetectors and Sensors for PID and NP searches CERN, November 22nd 2023

Project goal and detector concept

- Development of a new photodetector with large active area able to measure single photons with simultaneous excellent timing and spatial resolution, with a low noise level at room temperature
- Detector based on a "hybrid" concept:
 - Vacuum detector; photocathode with high QE in the region of interest
 - Proximity-focusing geometry
 - Micro-channel plate (MCP) amplification
 - Silicon ASIC embedded inside vacuum tube
 - Reference: <u>JINST 13 C12005 2018</u>

Target time resolution	<100 ps r.m.s.
Position resolution	5-10 μm
High-rate capability	10 ⁹ hits/s
Low dark count rate at room T	$\sim 10^2 - 10^3 \text{ counts/s}$
Large active area	7 cm ²
High channel density	0.23 millions

Detector concept

- Entrance window + photocathode
- Microchannel plate stack (chevron)
- Pixelated anode
 - Electron cloud spread over a number of pixels
 - 55μm × 55μm
 pixel size
 - 0.23 M pixels measuring arrival time and duration of input signals
 - □ 7 cm² active area
 - Up to 2.5 Ghits/s
 - Local signal processing

Massimiliano Fiorini (Ferrara)

Hybrid detector assembly

3D structure: detector rendering

- Vacuum-based detector
 - □ Assembly of many components under high vacuum (~10⁻¹⁰ mbar)
 - High-speed connections through pins in ceramic carrier board
- Heat sink for stable detector operation (~5 W heat removal)
- Carrier printed circuit board (PCB)
 - Socket for detector pins, regulators and high voltage
 - Connected to FPGA-based read-out and DAQ via 16 × 10 Gbps links

Detector geometry

- Shortest photocathode-to-MCP distance preserves impact position information
- Optimized MCP-to-anode distance spreads the electron cloud over a number of pixels

Pixelated anode

- Timepix4 ASIC in 65nm CMOS silicon pixel technology
 - Developed and produced by the Medipix4 Collaboration for hybrid pixel detectors
- Charge sensitive amplifier, single threshold discriminator and TDC based on Voltage Controlled Oscillator
 - 4-side buttable (TSV)
 - Data-driven and frame-based read-out

Technology			CMOS 65 nm		
Pixel Size			55 μm × 55 μm		
Pixel arrangement			4-side buttable 512×448 (0.23 Mpixels)		
Sensitive area			$6.94 \text{ cm}^2 (2.82 \text{ cm} \times 2.46 \text{ cm})$		
ad-out lodes	Data driven	Mode	TOT and TOA		
		Event Packet	64-bit		
Re M		Max rate	358 Mhits/cm ² /s		
TDC bin size			195 ps		
Readout bandwidth		h	$\leq 163.84 \text{ Gbps} (16 \times @10.24 \text{ Gbps})$		
Equivalent noise charge		harge	50-70 e⁻		
Target global minimum threshold		mum threshold	<500 e-		

X. Llopart (CERN)

The Timepix4 ASIC

- 65 nm CMOS (TSMC)
- ASIC productions:
 - □ Timepix4_v0 (Q1 2020)
 - □ Timepix4_v1 (Q4 2020)
 - □ Timepix4_v2 (Q4 2021)
 - □ Timepix4_v3 (Q1 2023)

Ceramic carrier

- Dedicated testbed for electrical and mechanical tests
- Electrical design critical due to 10
 Gbps lines
- First qualitative electrical measurements on existing devices (loop-back) plus signal integrity simulations
 - PGA not limiting factor per se
 - Requires careful pin placement
 - Low pin density
- Main contributions to signal degradation
 - Parasitic capacitance
 - Aluminium oxide multilayer PCB
 - Pads (wire-bond and pin pads)

Timepix4 hit data

- Measures arrival time (t₁) and Time-over-Threshold (ToT=t₂-t₁)
 TDC bin size: 195 ps (56 ps r.m.s. resolution per pixel)
- Electron cloud spread over a number of pixels \rightarrow cluster
- Use ToT information (proportional to the charge in a pixel) to:
 - Correct for time-walk effect in every pixel
 - □ Improve **position resolution** by centroid algorithm
 - Go from 55μ m/ $\sqrt{12}$ ~16 μ m down to ~ 5μ m
 - Improve **timing resolution** by multiple sampling
 - Many timing measurements for the same photon → few 10s ps

Timepix4 data-driven read-out

- Zero-suppressed continuous data-driven
 - Output bandwidth from 40 Mbps (2.6 Hz/pixel) to 160 Gbps (10.8KHz/pixel)
- 4 external inputs to synchronize/align external signals with data

			SPEC: Packet specifications ToA/ToT					
		Name	Width	MSB	LSB	Bits		
		Тор	1	63	63	[63:63]	$ \rangle$	
		EoC	8	62	55	[62:55]		Address: 18 bits
		SP	6	54	49	[54:49]		
		Pixel	3	48	46	[48:46]	12	
		ToA	16	45	30	[45:30]	$\left \right\rangle$	
		ufToA_start	4	29	26	[29:26]		Time: 20 hits
		ufToA_stop	4	25	22	[25:22]		Time. 29 bits
/: 21 bits	ſ	fToA_rise	5	21	17	[21:17]	רן	
	1	fToA_fall	5	16	12	[16:12]		
	l	ТоТ	11	11	1	[11:1]		
		Pileup	1	0	0	[0:0]		

Energy

Electronics and DAQ

- On-detector electronics
 - Timepix4 ASIC
 - Electro-optical transceivers link the ASIC to an FPGA-based board for the exchange of configuration (slow control) and the collection of event data
 - Regulators, etc.
- Off-detector electronics
 - □ FPGA far from detector
- The FPGA performs serial decoding and sends the data to a PC for data analysis and storage using fast serial data links

Current test system

- Timepix4 bump-bonded to silicon sensors $(300\mu m \text{ and } 100\mu m)$
- SPIDR4 FPGA read-out system and sensor carrier board
 - Developed by Nikhef Medipix4 group
- Dedicated DAQ system working now with 1 Gbps interface

Software

- Dedicated software
- C++ based
 - Low-level
 - Object-oriented
- Readout and Control in unique CLI
- Read and Write register functions
- Application Programming Interfaces for Timepix4
- Packets decoder
- Open source

Measurements with Timepix4

- Digital test pulse:
 - Correct patterns, number of pulses and ToA-ToT
- Analog test pulse:
 - Per-pixel ToT calibration through test pulse over the whole pixel matrix
 - Calibration validated using radioactive sources
- Radioactive sources measurement:
 - Density based clustering (DBSCAN)
 - ToT-charge calibration
- Laser measurement:
 - Timing resolution

Timing resolution measurements (1)

- SPIDR4 control board
- Timepix4_v2 bonded to a 100 μm n-on-p Si detector
 - Metallization with holes pattern
 - □ Thanks to V. Coco, M. Van Beuzekom et al. (LHCb Velo group)

Timing resolution measurements (2)

- Waveform generator: input signal to digital pixels + laser trigger
- Laser: 1060 nm + variable attenuator
- Linear translation stages: 3D position regulation with μm precision

Spidr4 control board

Timing resolution measurements (3) Laser focused using micro-

- Laser focused using micro collimator:
 - $\Box \sigma = 1.4 \text{ pixel} = 77 \ \mu \text{m}$
- Laser spot in fixed position for all presented measurements

Phose23 Workshop

Timing resolution measurements (4)

- VCO of different pixels oscillate with different frequencies
- Finer ToA bins generated with different width
- ToA and ToT measurements heavily affected by this effect
- Internal test pulse tool exploited to calibrate VCO frequencies for the whole matrix (~28.7k VCO)

Timing resolution measurements (5)

- Single pixel timing resolution
- Measurements using variable laser attenuation, populating a wide ToT range on each pixel
- Different time walk trends on different pixels
- Time walk corrected separately on each pixel

Timing resolution measurements (6)

- Single pixel timing resolution
- Measurements using variable laser attenuation, populating a wide ToT range on each pixel
- Different time walk trends on different pixels
- Time walk corrected separately on each pixel

Timing resolution measurements (7)

- ToT vs charge calibration applied to each pixel
- Distribution divided into "vertical" slices, each one selecting a narrow range of charge
- Timing resolution values extracted for each slice

Timing resolution measurements (8)

- Single pixel timing resolution
- Distribution of timing resolution as a function of injected charge
- For the pixel [305,144], where the laser is focused, the standard deviation saturates at 128±1 ps rms
- Subtracting the contribution of the reference TDC (60 ps), a resolution of 111±1 ps rms is obtained

Phose23 Workshop

Timing resolution measurements (9)

- For each cluster:
 - weighted average of ToA using charge as weights
 - cluster charge computed
- Timing resolution dependence on cluster charge:
 - □ best result: $\sigma_{\text{ToADiffAvg}} = 79 \pm 1 \text{ ps rms}$
- Timing resolution subtracting reference TDC contribution:
 - $\sigma_{\text{ToAAvg}} = 49 \pm 1 \text{ ps rms}$

Phose23 Workshop

Timing resolution measurements (10)

- Offline "variation of cluster size": consider shells of pixels within the same physical cluster
 - Large improvement in the resolution from 1-pixel clusters to 5-pixels clusters
 - Small or negligible improvement increasing further the cluster size

Outlook

- A "hybrid" MCP-PMT is under development
 - □ Funded by European Research Council (G.A. No. 819627)
 - Demonstrator based on existing full-scale ASIC (Timepix4 developed by Medipix4 Collaboration for hybrid pixel detectors)
 - Complete integration of sensor and electronics
 - On-detector signal processing, digitization and data transmission with large number of active channels (~230 k pixels), with limited number of external interconnections (~200)
 - Full exploitation of both timing and position resolution of a MCP
- Future improvements for use in HEP harsh environments
 - Radiation hardness
 - Use rad-hard-by-design ASIC (plus rad-hard serializers)
 - High rate capability and detector lifetime
 - Improve current MCP technology
 - Timing resolution
 - Use ASIC with smaller TDC bin size and lower front-end jitter

European Research Council

Application: LHCb RICH Upgrade II

- Current detectors not adequate for RICH in the HL-LHC environment (need granularity ~1 mm, time resolution <100 ps)
- Advantage of the proposed device for future RICH detectors:
 - □ 5-10 μ m position resolution → the pixel size contribution to the Cherenkov angle resolution becomes negligible
 - High granularity (55 μ m × 55 μ m) and rate capabilities (2.5 Ghits/s) crucial in applications with large detector occupancies
 - <100 ps resolution per single photon excellent handle for pattern recognition and time-association of the individual photons
 - Negligible detector-related background at room T
 - Robust in magnetic fields
 - Longer lifetime compared to standard applications due to low gain
 - On-detector signal processing and digitization with large number of active channels (~230 k pixels), with limited number of external interconnections (~200)

Radiation hardness

- For the LHCb Upgrade II we expect, in the RICH region:
 ~2 Mrad TID, ~3 × 10¹³ 1 MeV n_{eq}/cm², ~1 × 10¹³ HEH/cm²
- Advantages of the proposed detector:
 - Optical window made of "silica" glass
 - No degradation of window transmittance
 - □ 65 nm CMOS front-end technology
 - Resistant to >100 Mrad Total Ionising Dose
 - Triple Modular Redundancy not implemented in Timepix4
 - □ Single Event Upset mitigation: refresh configuration registers
 - □ FPGA-based back-end electronics far from detector region
 - Signals are digitized inside the vacuum tube
 - Use radiation hard components on-detector (transceivers, etc.)
- Future improvements
 - Use VeloPix2 (PicoPix) ASIC (30 ps TDC, rad. hard by design)

MCP-PMT limitations

- MCP-PMT lifetime limited by the integrated anode charge, which leads to a strong QE reduction
 - From 0.2 C/cm² to >30 C/cm² in recent years thanks to ALD
- With the expected photon hit rate (~10 MHz/mm²), assuming a 10⁴ gain (very conservative), and an operation of 10 years with 25% duty cycle we have:
 - Total IAC ~ 120 C/cm^2
 - $\hfill Anode current density ~2 <math display="inline">\mu A/cm^2$
- ALD coating is based on the deposition of resistive and/or secondary emissive layers (could tune MCP properties)
 - Reported adverse effects on saturation current on some model with ALD
- Strong R&D to find the best "recipe" is needed

D. Miehling et al., NIM A 1049 (2023) 168047

ToT Vs Q calibration

Validation with radioactive sources(¹³⁷Cs and ²⁴¹Am superimposed spectra)

PicoPix project

- PicoPix is intended to be a "realistic" demonstrator chip for a future upgrade of the LHCb Velo project (Velopix2)
 - Main requirement is time resolution < 30 ps rms
 - Other very challenging requirements (pixel size, radiation hardness, power, bandwidth, etc.)
- There is a limit on time resolution that are achievable for small pixels with limited power
- High-speed links in 28 nm (CERN EP R&D WP6)
 □ lpGBT (10 Gbps) → DART28 (>26 Gbps)

X. Llopart (CERN)

Velopix2

Initial requirements on Velopix2 from LHCb

	Di	· a	· a
	Requirement	scenario S_A	scenario S_B
	Pixel pitch [µm]	\leq 55	≤ 42
	Matrix size	256×256	335×335
Priority	Time resolution RMS [ps]	≤ 30	≤ 30
	Loss of hits [%]	≤ 1	≤ 1
	TID lifetime [MGy]	> 24	> 3
	ToT resolution/range [bits]	6	8
	Max latency, BXID range [bits]	9	9
	Power budget $[W/cm^2]$	1.5	1.5
	Power per pixel [µW]	23	14
	Threshold level [e ⁻]	≤ 500	≤ 500
	Pixel rate hottest pixel [kHz]	> 350	> 40
	Max discharge time [ns]	< 29	< 250
	Bandwidth per ASIC of 2 cm ² [Gb/s]	> 250	> 94

X. Llopart (CERN)

Challenging!

doable

Timepix4 noise

• Equivalent Noise Charge (ENC) for v0, v1 and v2

Power consumption and cooling

- Timepix4 power consumption (~5 W)
- Goal: stable operation with 20 °C inside the vacuum tube
 Cold "finger" attached to ceramic carrier

Time resolution contributions

 $\sigma_{time} = TTS \oplus \sigma_{front-end} \oplus \sigma_{TDC}$

Contributions:

- TTS (Transit Time Spread) of electrons: 25 ps FWHM
- □ Front-end: <30 ps for input charge >10⁴ e⁻
- TDC contribution: 56 ps (195 ps bin size $/\sqrt{12}$)
- Time resolution for 1 pixel: 70 ps

