

MInternational UON Collider Collaboration

Target Radiation Studies: Spent Beam Impact

Daniele Calzolari, Anton Lechner SY-STI-BMI (CERN), With inputs from C. Rogers, L. Bottura, P. Testoni and A. Portone 2 Feb 2023

Outline

- Geometry of the target area:
 - FLUKA implementation of the HTS magnets from the magnet working group.
- Spent proton beam:
 - Trajectory in the tapering region at various angles of injection
 - Position of impact on the shield aperture
 - Local and global energy deposition on the aperture
- Muon yield:
 - First consideration in case of the liquid lead

Introduction

- The MC under current investigation is proton driven. **Protons** impact on a solid or liquid target **generating pions** by inelastic collisions. In this study, we considered a graphite target.
- The scope of these studies is to assess the radiation load to the equipment in the target area (target and magnets) and develop a shielding design. We used a HTS coil configuration as proposed by the magnet working group in December. All the simulation are conducted using FLUKA.
- All the **results** will be **normalized per 1.5 MW proton beam** intensity with 200 days of operation per year.
- Particularly, this talk will focus mostly on the spent proton beam, to understand the position and size of impact, and to calculate the corresponding load on the equipment

Parameters table

Table 1: Parameters table.		
Material	Graphite $(1.8{ m g/cm^3})$	Liquid lead $(10.5\mathrm{g/cm^3})$
Inelastic scattering length Target radius	$44.94\mathrm{cm}$ $15\mathrm{mm}$	$17.34 \mathrm{cm}$ $15 \mathrm{mm} \ (+ 5 \mathrm{mm} \mathrm{vessel})$
Target length	80 cm	$29.7 \mathrm{cm} (+2 \mathrm{cm} \mathrm{vessel})$
Beam size (round) Beam power (normalization purposes) Beam energy Shielding thickness Magnet aperture (radius) Peak magnetic field		
Realistic values un consideration can higher (1.5-4 M	nder n be W)	

Geometry

Detail shielding

- **Neutrons** are the main source of the **displacement damage** in the coils. While tungsten is very efficient in shielding electromagnetic component, it lacks the capability to stop neutrons.
- We considered a possible scheme to reduce the neutron component using a layer of water to moderate them and finally a layer of boron carbide (1 cm) to capture them at thermal energy.

Non zero angle: spent proton beam on tapering

When the beam angle is equal to 6 degrees, we observed a second peak in the tapering region where the spent proton beam impacts on the aperture. This leads to a local hotspot in the energy deposition.

Comparison spot size in the chicane

MInternational UON Collider

Global energy deposition profile

- With a zero angle, a relevant part of the energy will inevitably be deposited in the chicane region. Increasing the angle, the spent beam is intercepted by the shielding before the chicane.
- Integrate beam dump in the shielding? Or design extraction channel?

Effect on coils: power density

• While having a large angle might appear beneficial to avoid the power peak in the chicane, the energy deposition can increase beyond a factor 2 in the superconductive coils.

Zero angle: spent beam impacts on the chicane

- When the beam is parallel to the line, the spent beam will impact directly on the chicane walls.
- The energy deposition is substancial, as the displacement damage.
- The current setup consider a 2 cm shielding, which certainly will have to be increased. The shielding shall accommodate both magnet and muon capture requirements.

Liquid lead target

Liquid lead target

Muon yield: proton energy

The muon yield in case of liquid lead target is rather low. Results will be double checked.

Liquid lead target: transversal side

Proton beam size:

The default case is a 5 mm beam size, and the target size is

always 3 times the beam size

Proton beam size:

The default case is a 5 mm beam size, and the target size is always 3 times the beam size

Conclusions

- The **spent beam** deliver a considerable amount of **power**, up to **40%** of the original proton drive power.
- Two main issues have to be considered: the total heat removal and the local damage to the machines.
- The angle at which the proton driver beam is injected strongly affects the spent beam position of impact, while it doesn't influence the energy deposition profile around the target.
- Changing the angle, the hotspot from the spent protons moves from the chicane toward the tapering shielding.
- For the next steps, the **shielding optimization process** will continue, both in the **target solenoids** (neutron absorber layer optimization) and the **chicane region** (shielding thickness, materials, interconnects).
- The muon yield in case of a liquid lead target is under investigation. So far the results do not show a clear advantage in comparison with the graphite one.

MInternational UON Collider Collaboration

Thank you for your attention!

Angle of incidence of proton beam

The spent proton drive beam deposits a considerable amount of power in the shielding. A beam dump has been considered as necessary in past studies. A first approach is to consider what happens to the proton trajectory when a non-zero angle is considered.

As a first estimation of the actual particle trajectory, we considered the trajectory of proton in vacuum in the same magnetic field.

Maximum longitudinal power density

- With a zero angle, a relevant part of the energy will inevitably be deposited in the chicane region. Increasing the angle, the spent beam is intercepted by the shielding before the chicane.
- Integrate beam dump in the shielding? Or design extraction channel?

Effect on coils: DPA

• Even with a thick layer of water and boron carbide (5 + 1 cm respectively), the displacement per atom profile follow the power deposition one.

J. Back studies

