Synchrotron Radiation Background @ FCC-ee K.D.J. André for the MDI study group

Outline

- FCC-ee lattice, aperture profile, masks and collimators
- Simulation tool, physics and field map
- Synchrotron radiation collimation scheme
 - □ At the Z operation mode
- Other on-going studies
 - Top-up injection
 HFD lattice

FCC-ee lattice | IR design

The lattice design upstream the IP is based on weak dipoles and long straight sections. There is a **30 mrad crossing angle** at the IP. The central beam pipe radius is **10mm** over **18cm** along the Z axis and is tapered to 15mm in QC1.

Simulation tool, field map and physics

BDSIM simulation tool (ref & website) that is based on GEANT4.

Use of the synchrotron radiation (*G4SynchrotronRadiation*) and low-energy electromagnetic physics (*G4EmPenelopePhysics*) from GEANT4.

Production energy cut at 990 eV (default in GEANT4) to prevent infrared divergence.

Implementation of the solenoid and anti-solenoid field map.

Implementation of a realistic central beam pipe in a GDML format.

The beam pipe is made of Copper.

The collimators (10cm) and masks (2cm) are made of Tungsten.

The MAD-X sequences (link) are converted as input files for BDSIM.

The beam parameters can be found in (<u>ref</u>).

Synchrotron radiation collimation scheme and beam halo collimation

Name	s [m]	half-gap [m]	plane
BWL.H	-144.69	0.018	Н
QC3L.H	-112.05	0.014	Н
QT1L.H	-39.75	0.015	Н
PQC2LE.H	-8.64	0.011	н
MSK.QC2L	-5.56	R = 0.015	H&V
MSK.QC1L	-2.12	0.0085*	Н

Synchrotron radiation collimation scheme

15 sigmas corresponds to the aperture of the **primary** collimators, **17 sigmas** corresponds to the aperture of the **secondary** collimators. \rightarrow See A. Abramov talk for more details.

Synchrotron radiation collimation scheme

Name	s [m]	half-gap [mm]	plane
BWL.H	-144.69	18	Н
QC3L.H	-112.05	14	Н
QT1L. H	-39.75	15	Н
QT1L. V	-39.65	15	V
PQC2LE. H	-8.64	11→12	Н
PQC2LE.V	-8.54	11	V
MSK.QC2L	-5.56	R = 15→11	H&V
MSK.QC1L	-2.12	8.5→7.0	Н

The collimators closer to the IP need wider apertures from tt to Z. One could adapt the aperture of the mask MSK.QC2L set to 15mm (18.0 $\sigma_x @Z$) could be decrease to 11mm (13.3 $\sigma_x @Z$). There are no issues in the vertical plane.

Z operation mode

Synchrotron radiation collimation at the **Z mode** - Core and tails

Simulations made with a Gaussian positron beam and 4 to 10 sigmas uniform distribution for the tail without the synchrotron radiation from the solenoid as it produce radiation deposited downstream the IP.

Name	s [m]	nsigma	half-gap [m]	plane
bwl.h	-144.692	14.8	0.018	Н
qc3l.h	-112.054	13.3	0.014	Н
qt1l.h	-39.747	11.6	0.015	Н
qt1l.v	-39.647	199.2	0.015	V
pqc2le.h	-8.64	11.3	0.012	Н
pqc2le.v	-8.54	156.3	0.012	V
msk.qc2l	-5.56	18.0/161	R = 0.015	Radial
msk.qc1l	-2.12	47.5(39.1)	0.0085(7)	Н

COLL.BWL is 10cm of tungsten absorbing **76W** COLL.QC3L is 10cm of tungsten absorbing **82W** COLL.QT1L is 10cm of tungsten absorbing **46W** COLL.PQC2LE is 10cm of tungsten absorbing **19W** MSK.QC2L is 2cm of tungsten absorbing **37mW** MSK.QC1L is 2cm of tungsten absorbing **56W(143W)**

Simulations made with a Gaussian positron beam and 4 to 10 sigmas uniform distribution for the tail without the synchrotron radiation from the solenoid as it produce radiation deposited downstream the IP.

Name	s [m]	nsigma	half-gap [m]	plane
bwl.h	-144.692	14.8	0.018	Н
qc3l.h	-112.054	13.3	0.014	Н
qt1l.h	-39.747	11.6	0.015	Н
qt1l.v	-39.647	199.2	0.015	V
pqc2le.h	-8.64	11.3	0.012	Н
pqc2le.v	-8.54	156.3	0.012	V
msk.qc2l	-5.56	18.0/161	R = 0.015	Radial
msk.qc1l	-2.12	47.5(39.1)	0.0085(7)	Н

COLL.BWL is 10cm of tungsten absorbing **76W** COLL.QC3L is 10cm of tungsten absorbing **82W** COLL.QT1L is 10cm of tungsten absorbing **46W** COLL.PQC2LE is 10cm of tungsten absorbing **19W** MSK.QC2L is 2cm of tungsten absorbing **37mW** MSK.QC1L is 2cm of tungsten absorbing **56W(143W)**

Comparison with wakefield heat load

The synchrotron radiation heat load on the beam pipe is smaller than the heat load due to the wakefields. It depends a lot on the transverse tail distribution.

AlBeMet

uncooled

40 W

Main SR

heat load.

AlBeMet

uncooled

40 W

Gold

30 W

Cu

30 W

AlBeMet

cooled

130 W

Cu 150 W

Cu

140 W

workshop (24/10) ref

from the MDI

Effects of (anti-)solenoid at Z energy

Effects of solenoid

Energy deposited via positrons in the central chamber.

- 20 to 30 W in the CC.
- Positrons ?

Effects of (anti-)solenoid

Low-energy positrons from photoelectric effects upstream the IP in a strong solenoid field

On-going studies: off-axis top-up injection (ref)

Parameters for the SR background study due to off-axis beam injection

The emittance of the injected beam is **0.235 nm.rad** (<u>ref</u>) as opposed to 0.71 nm.rad for the circulating beam.

The injected beam has **10%** of the circulating beam current.

The horizontal damping time is **2336 turns**; 120 turns \rightarrow <u>5%</u>, 520 turns \rightarrow <u>20%</u>.

Injected beam centroid evolves along a **5** σ^{core} + **5** σ^{inj} + septum (0.2 σ^{core}) = **8** σ^{core} trajectory in the horizontal phase space.

Tracking from QC2L onwards with the latest 4 IPs lattice (V22); 2 masks available to protect the FF quads and central chamber.

The injected beam is **perfectly aligned** and **Gaussian** *i.e.* **no tails**.

Top up injection in the horizontal phase space

Top up injection in the normalised horizontal phase space

44th MDI Meeting - February 20th 2023 - Kevin André

Top up injection in the horizontal phase space

Positive horizontal displacement (away from the mask)

Positive horizontal displacement (away from the mask)

Negative horizontal displacement (towards from the mask)

Negative horizontal displacement (towards from the mask)

On-going studies: HFD lattice (ref)

Comparison with the HFD lattice

Asymmetric interaction region beam optics to accommodate a long straight section with the last dipole (100keV critical energy) **150m** from the IP.

Optics design at the IP: β_x *=10cm, β_v *=0.8mm

Symmetric interaction region beam optics to accommodate a short straight section with the last dipole (200keV critical energy) **48m** from the IP.

Optics design at the IP: $\beta_x^*=13$ cm, $\beta_v^*=0.5$ mm

Beam parameters comparison

Beam energy	[GeV]	45.6	80	120	182.5
Layout		PA31-1.0			
# of IPs		4			
Circumference	[km]	91.174117 91.174107			74107
Bending radius of arc dipole	[km]		9.9	37	
Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0
SR power / beam	[MW]		5)	
Beam current	[mA]	1280	135	26.7	5.00
Bunches / beam		10000	880	248	40
Bunch population	$[10^{11}]$	2.43	2.91	2.04	2.37
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49
Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98
Arc cell		Long	90/90	90/90	
Momentum compaction α_p	$[10^{-6}]$	28.5		7.33	
Arc sextupole families		75		146	
$\beta_{x/y}^*$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6
Transverse tunes/IP $Q_{x/y}$		53.563 /	53.600	100.565	/ 98.595
Energy spread (SR/BS) σ_{δ}	[%]	0.038 / 0.132	0.069 / 0.154	0.103 / 0.185	0.157 / 0.221
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	3.34 / 6.00	1.95 / 2.75
RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	2.5 / 8.8
Harmonic number for 400 MHz			121	548	111 - CT
RF freuquency (400 MHz)	MHz	399.99	04581	399.994627	
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826
Long. damping time	[turns]	1168	217	64.5	18.5
RF acceptance	[%]	1.6	3.4	1.9	3.0
Energy acceptance (DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.135	0.011 / 0.125	0.014 / 0.131	0.093 / 0.140
Luminosity / IP	$[10^{34}/cm^2s]$	182	19.4	7.26	1.25
Lifetime $(q + BS)$	[sec]	-		1065	4062
Lifetime (lum)	[sec]	1129	1070	596	744
		4		eung - Februa	<u>17 20° 2023 </u>

(Bold: computed values)		FCCee Z	FCCee W	FCCee H	FCCee ttbar
Parameter	Units				
LUMINOSITY	cm ⁻² s ⁻¹	1.83E+36	1.95E+35	6.93E+34	1.21E+34
Pinch effect Shatilov		1.93E+36	2.05E+35	7.27E+34	1.27E+34
Energy	GeV	45.6	80	120	182.5
Circumference	m	91170	91170	91170	91170
X-Angle (full)	mrad	30	30	30	30
β _x @ IP	m	0.13	0.16	0.2	0.52
β _v @ IP	mm	0.5	0.8	1.1	1.6
Coupling (full current)	%	0.1	0.1	0.1	0.1
Emittance x (without IBS)	nm	0.19	0.57	1.24	2.83
Emittance x (with IBS)	nm	0.19	0.57	1.24	2.83
Emittance y	pm	0.188	0.57	1.24	2.83
Momentum compac	mm	1.78E-05	1.78E-05	1.78E-05	1.78E-05
Bunch length (zero current)	mm	3.7	3.9	4.2	4.7
Bunch length (in collision)	mm	10.9	7.02	6.1	5.3
Beam current	mA	720	70	23	4
Number of bunches	#	16000	1000	200	20
RF frequency	Hz	4.00E+08	4.00E+08	4.00E+08	4.00E+08
Revolution frequency	Hz	3.29E+03	3.29E+03	3.29E+03	3.29E+03
Harmonic number	#	121644	121644	121644	121644
N. Particle/bunch	#	8.553E+10	1.330E+11	2.186E+11	3.801E+11
σ _x @ IP	microns	4.94	9.55	15.75	38.36
σ _y @ IP	nm	9.70	21.35	36.93	67.29
σ _x @ IP	cm	0.000494	0.000955	0.001575	0.003836
	cm	0.0000097	0.00000214	0.0000369	0.00000673
σ _{x'} @ IP	microrad	38.0	59.7	78.7	73.8
	microrad	0.019	0.027	0.034	0.042
Piwinski angle	rad	33.07	11.03	5.81	2.07
σ_x effective	microns	163.59	105.74	92.85	88.28
σ _x effective	cm	0.0164	0.0106	0.0093	0.0088
Hourglass reduction factor		0.950	0.950	0.950	0.950
Tune shift x		0.0021	0.0055	0.0100	0.0392
Tune shift y	Contractor.	0.1354	0.1354	0.1356	0.1426
Energy Loss/turn	MeV	31.8	300	1530	8150
SR power loss	MW	22.90	21.00	35.19	32.60
RF Wall Plug Power (SR only)	MW	45.79	42.00	70.38	65.20

W/ FOOss II FOOs

And a second second second

X-Ar

Comparison with the HFD lattice

44th MDI Meeting - February 20th 2023 - Kevin André

SR power deposition at Z energy 45.6 GeV

- Only one mask present in the design at s=-2.1m
- Peaks of SR power deposition present at aperture reductions.
- High power deposited in the mask because there are no collimators upstream.
- Power deposited in the CC around 20 to 30W due to the solenoid.

SR power deposition at Z energy 45.6 GeV

Similar order of magnitude in terms of SR losses. The HFD lattice needs SR collimators to have a conclusive comparison.

SR power deposition at tt energy 182.5 GeV

SR power deposition at tt energy 182.5 GeV

Similar order of magnitude in terms of SR losses. The HFD lattice needs SR collimators to have a conclusive comparison.

Photon energy spectrum at the mask

Simulations settings

10 runs of 100,000 primary positrons (or 10 runs of 50,000 primary positrons) Beam distribution: **Gaussian distribution** from Twiss parameters to represent **the core** or **Halo uniform distribution** 4 to 10 (or more) σ_x (and σ_y) to represent **the tails**

Physics list : *Synchrotron_radiation* physics and *em_peneloppe* (particle-matter interaction) Energy / Range cuts:

e+/e- **1 mm** ~ 990 eV (air/vacuum), 2.3 MeV in W, 1.4 MeV in Cu e+/e- **5 um** ~ 53 keV in W, 60 keV in Cu gamma **1 mm** ~ 990 eV (air/vacuum), 1 keV in W, 1 keV in Cu gamma **5 um** ~ 4.8 keV in W, 2.2 keV in Cu