

FCC-ee IR Beam Losses

<u>A. Abramov</u>, G. Broggi, R. Bruce, M. Hofer, S. Redaelli

44th FCC-ee MDI meeting – 20/02/2023

Many thanks for discussions and input to:

K. André, M. Boscolo, H. Burkhardt, A. Ciarma, Y. Dutheil, P. Hunchak, A. Lechner, K. Oide, R. Ramjiawan, T. Raubenheimer, F. Zimmermann

FCC-ee collimation system

- Dedicated halo collimation system in PF
 - Two-stage betatron and off-momentum collimation in one insertion
 - Defines the global aperture bottleneck
 - Dedicated collimation optics (M. Hofer)
 - First collimator design for beam cleaning performance (G. Broggi)

• Synchrotron radiation collimators around the IPs

- 6 collimators and 2 masks upstream of the IPs (K. André talk)
- Designed to reduce detector backgrounds and power loads in the inner beampipe due to photon losses

A. Abramov | FCC-ee IR Beam Losses, 44th FCC-ee MDI meeting

β [m]

Beam loss sources

- Many processes can lead to beam losses in the FCC-ee
 - See talk by H. Burkhardt (link)
 - Beam losses can lead to:
 - Detector backgrounds
 - Superconducting magnet quench risk and material damage
 - Radiation damage and material activation
- Loss scenarios selected for particle tracking studies:
 - Beam halo
 - Top-up injection
 - Spent beam (Beamstrahlung, Bhabha scattering)
 - Failure modes (injection failures, asynchronous dump, others)
 - Beam tails from Touschek scattering and beam-gas interactions

Current study: beam halo losses

- "Generic beam halo from slow diffusion" beam loss scenario:
 - Assume a slow diffusion process halo particles intercepted by the primary collimators
 - The diffusion is not simulated, all particles start impacting a collimator
 - The particles have the "worst" impact parameter
 - Determined with an impact parameter scan
 - Provides a conservative performance estimate
 - Study horizontal and vertical betatron halo, and off-momentum halo impacts
 - Track the particles scattered out from the collimator and record losses on the aperture
 - Specify a beam lifetime that must be sustained
 - Currently assuming 5 min

Impact parameter scan for 2 IP CDR lattice with MoGr primary collimator, with and without radiation and tapering (R&T)

FCC-ee collimation simulation setup

- The FCC-ee presents unique challenges for collimation simulations:
 - Synchrotron radiation and magnet strength (optics) tapering to compensate it
 - Complex beam dynamics strong sextupoles in lattice, strong beam-beam effects (Beamstrahlung)
 - Electron/positron beam particle-matter interactions
 - Large accelerator 91 km beamline, efficiency is crucial
- Xsuite + BDSIM (Geant4)
 - Benchmarked against other codes for FCC-ee MAD-X, pyAT, SixTrack-FLUKA coupling (IPAC'22 paper)
 - Used for for the latest FCC-ee collimation studies (A. Abramov, G. Broggi)
 - Tests / benchmarks in other machines:
 - LHC (FCC-ee optics meeting talk) G. Broggi
 - PS (<u>NDC section meeting talk</u>) T. Pugnat

Z mode halo losses - betatron

- Z mode is the current focus (Beam 1, 45.6 GeV positrons), 17.8 MJ stored beam energy
- Particles simulated directly impacting the primary collimators
- No radiation and tapering, SR collimators not included, 1 µm impact parameter
- 5 min beam lifetime assumed • \mathbf{PA} PBPD \mathbf{PF} \mathbf{PG} PHPJPLWarm Warm 10^{0} Cold 10^{0} Cold IP PA Collimator Horizontal (B1H) Collimator 10^{-1} 10^{-1} aperture bottlenecks: $[m^{-1}]$ $\stackrel{[]}{\overset{[]}{\boxplus}} 10^{-2} \\ \stackrel{[]}{\overset{[]}{\boxplus}} 10^{-3}$ 10^{-2} final focus Total loss power: 59.2 kW 10^{-3} μ ĥ 10^{-4} 10^{-4} 10^{-5} 10^{-5} Max. int. power Case 10^{-6} 10^{-6} $\pm 100 \text{ m from IP [W]}$ B1H 10^{0} 10^{0} 2.80Vertical (B1V) 10^{-1} 10^{-1} B1V 0.09 $[m^{-1}]$ $[m^{-1}]$ 10^{-2} 10^{-2} significant protection 10^{-3} 10^{-3} from the collimation system 5 μ 10^{-4} 10^{-4} 10^{-5} 10^{-5} Power loads in the MDI 10^{-6} 10^{-6} for 5 min beam lifetime 91170 16262000060000 80000 91160 40000 911506 S [m]S [m]Z-mode betatron halo loss maps

Z mode halo losses - off-momentum

- First studies of off-momentum losses carried out
- Similar method to the betatron case:
 - Particles impacting the off-momentum primary collimator
 - Set δ and betatron amplitude to obtain 1 μm impact parameter

 \mathcal{X}

 $\beta_x \epsilon_x + D_x \delta$

Off-momentum losses mitigation

- The results show high losses at the aperture bottlenecks
- Aligning the primary collimator with the beam divergence helps
 - This mitigation strategy has shown promise, but must be studied in detail
 - Alternative mitidation strategies under study optics, layout, settings

Z mode halo losses – with SR collimators

- The SR collimators upstream of the IPs have been integrated in the model
- The collimators intercept losses locally upstream of the IPs
- The energy deposition in the collimators and the backgrounds in the detector should be evaluated

Z-mode off-momentum halo loss maps with SR collimators

Z mode halo losses – with radiation and tapering

- No significant differences in losses observed for the Z mode with radiation and optics tapering.
- Some indications of issues with the DA affecting the tracking

Z mode losses on SR collimators

- The SR collimators intercept losses for all cases
 - Highest load on WL and C3 horizontal collimators
 - Lowest load on the vertical T1 collimator

Issues with the sextupoles

- Comparing the base Z mode sextupole configuration • and a configuration optimized for DA (M. Hofer)
- The optimized configuration leads to faster loss of ٠ particles scattered from collimators
- •

0.15

0.10 -

0.05

<u>⊽</u> _{0.00} ,

A. Abramov | FCC-ee IR Beam Losses, 44th FCC-ee MDI meeting

k2 base

k2l optimised for DA

80

60

20

 $-k_2l_{opt})/k_2l_1$ 40

Issues with the radiation and tapering

- There are more losses observed with radiation and tapering for the Z mode
 - This is not expected, due to the damping from the radiation ٠
 - However, the DA seems a lot worse with radiation and tapering ٠
 - Using the old sextupole settings, as the new optimised settings are paradoxically destructive for the halo ٠
 - Need to resolve this before running spent beam and injected beam studies ٠

OLLIDER

Z mode halo losses - summary

- For betatron losses, only a small fraction of the total loss power ends up in the IRs
- For off-momentum losses, IRG is exposed to high power loads
 - Up to 1.8 kW over the MDI, up to 700 W on a single SR collimator
 - Mitigation with tilted primary collimators alleviates the off-momentum losses, but more studies are needed on the operational feasibility
- SR collimators and masks intercept losses in all cases
- The impact on the MDI and the detector is studied by the MDI team (A.Ciarma talk)
- Very sensitive configuration at the Z sextupole settings, DA, MA
- Need to resolve the DA before studying the spent beam and injected beam cases

Beam halo losses for the ttbar mode

- Collimation studies for the ttbar mode were first presented for FCC week 2022 (link)
- Added synchrotron radiation collimators to the ttbar mode
 - Some beta-beating at the SR collimation locations near the 4 IPs (around 3%)
- Added radiation and tapering
 - Previous issues with this problematic RF matching and tapering in MAD-X
 - Tapering now done in Xsuite, based on approximately equal positive and negative delta, e.g sum(delta) = 0

Closed orbit δ due to SR, used to adjust magnet strengths

ttbar mode halo losses - betatron

• Beam 1 horizontal (B1H), 1 um impact parameter, no SR collimators

ttbar mode halo losses - betatron

• Beam 1 horizontal (B1H), 1 um impact parameter, with SR collimators

ttbar mode halo losses – effect of radiation

- The turn-by-turn losses show the effect of radiation damping
 - The losses exhibit a cut-off as surviving particles are damped inside the primary collimator aperture
 - This effect was observed also in the studies for the 2 IP CDR layout (IPAC paper)
- Interesting loss step around turn 10 with radiation
 - Need to understand in detail the multi-turn losses

ttbar mode halo losses - betatron

Tested a smaller impact parameter, as found by G. Broggi for the 2 IP ttbar lattice (talk) ۲

The smaller impact parameter increases the losses ٠

ttbar mode halo losses - summary

- Using new models with SR collimators and radiation
- Performing checks for beam 1 horizontal, vertical and off-momentum cases to follow
- Analysis of the SR collimator and final focus quadrupole losses will be performed
- The DA and MA for the ttbar mode appear more stable than for the Z mode

Summary

- Studies of beam losses and collimation for the FCC-ee
 - A complete model of the collimation system available, including SR collimators, for the Z and ttbar modes
 - Radiation and tapering have been added to the tracking
 - Simulations of beam loss scenarios ongoing
 - Beam halo losses studied Z and ttbar mode, iteration with the MDI team
 - No show-stoppers identified so far
 - Input on equipment loss tolerances needed to optimize performance
- Next steps
 - Study other beam loss scenarios
 - Obtain input for the equipment loss tolerances superconducting magnets, collimators, other
 - Energy deposition studies required for magnets, collimators, and masks
 - Detailed evaluation of detector backgrounds required shielding, muon backgrounds
 - Study all beam modes

Thank you!

Backup slides

FCC-ee parameters used

Beam energy	[GeV]	45.6	80	120	182.5
Layout		PA31-1.0			
# of IPs		4			
Circumference	$[\mathrm{km}]$	91.174117 91.174107			
Bending radius of arc dipole	$[\mathrm{km}]$	9.937			
Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0
SR power / beam	[MW]	50			
Beam current	[mA]	1280	135	26.7	5.00
Bunches / beam		10000	880	248	40
Bunch population	$[10^{11}]$	2.43	2.91	2.04	2.37
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49
Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98
Arc cell		Long 90/90 90/90			
Momentum compaction α_p	$[10^{-6}]$	28.5		7.33	
Arc sextupole families		75 146			
$eta_{x/y}^*$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6
Transverse tunes/IP $Q_{x/y}$		$53.563 \ / \ 53.600$		$100.565 \ / \ 98.595$	
Energy spread (SR/BS) σ_{δ}	[%]	$0.038 \ / \ 0.132$	$0.069 \ / \ 0.154$	$0.103 \ / \ 0.185$	0.157 / 0.221
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	$3.34 \ / \ 6.00$	1.95 / 2.75
RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	2.5 / 8.8
Harmonic number for 400 MHz		121648			
RF freuquency (400 MHz)	MHz	399.994581		399.994627	
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826
Long. damping time	[turns]	1168	217	64.5	18.5
RF acceptance	[%]	1.6	3.4	1.9	3.0
Energy acceptance (DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5
Beam-beam $\xi_x/\xi_y{}^a$		$0.0023 \ / \ 0.135$	$0.011 \ / \ 0.125$	$0.014 \ / \ 0.131$	$0.093 \ / \ 0.140$
Luminosity / IP	$[10^{34}/{ m cm^2 s}]$	182	19.4	7.26	1.25
Lifetime $(q + BS)$	[sec]	-		1065	4062
Lifetime (lum)	[sec]	1129	1070	596	744

K. Oide (talk)

^aincl. hourglass.

Fast losses in the FCC-ee

- Huge anomalous losses reported by SuperKEKB (T. Ishibashi, talk)
 - Informally referred to as 'crazy beam'
 - Up to 80% of beam intensity lost over 2 turns
 - Damage to collimators due to the beam loss
 - The cause is not identified yet

• Some considerations for FCC-ee fast beam losses

- These beam loss scenarios are difficult to study without good knowledge of the driving process
 - Time-scale, location, type and magnitude of beam disturbance
- Can consider first studies of the response to such losses in synthetic cases
 - Controlled beam excitation in simulations
 - Multi-turn tracking

Z-mode fast losses

- Study fast beam blow-up in simulations
 - Random uniform per-particle kicks applied at 18 locations in the ring
 - Excitation amplitude adjusted to give different beam lifetime
 - This simulation setup may not be representative of real-world losses

Using different excitation amplitude for the B1H setup

Z-mode fast losses - simulation

Z-mode fast losses

Huge losses observed in the simulation scenario

- Losses in the order of MJ / m in the superconducting final focus quadrupoles
- This loss energy is likely destructive for the final focus doublets, detectors, and / or the tungsten SR collimators there (not modelled for these simulations)
- Due to the large excitation amplitude, particles impact the aperture bottlenecks directly, before being intercepted by the collimation system in PF
 - Primary losses outside the collimation insertion are possible for other types of fast beam losses

Mitigation

- This loss scenario (80% intensity loss over 2 turns) is likely not tolerable without additional collimators, close to and in-phase with the aperture bottlenecks, like the LHC tertiary collimators
- Sacrificial protection devices can also be considered
- The loss scenario must also be defined better for the FCC-ee
 - Time-scale and percentage intensity loss
 - Driving process (location, transverse vs. longitudinal, etc.)
 - Protection cannot be designed before it is understood how SuperKEKB losses translate to FCC-ee

