

MDI Meeting #44 - 20/03/2023

Andrea Ciarma

MDI-AREA GENERATED RADIATION

Andrea Ciarma

This project is supported from the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.

MDI Meeting #44 - 20/03/2023

FCC

Andrea Ciarma

Status and Perspectives for FCC-ee Detector Background Studies (from Krakow Physics workshop)

- Repeated backgrounds tracking studies after possibility to import **magnetic field map** key4hep, including screening and compensating solenoids.
- Occupancy from incoherent pair production still tolerable
- Failure scenario losses bckg: overall reduction of a factor 2
 - horizontal primary coll. losses: not concerning at Z, high occupancy at ttbar
 - off-momentum collimators: only Z data available, occupancy above 1% for negative mom. offset
 - energy deposited in FFQs **below quenching limit**, but total power may be an issue
- SR induced background studies started:
 - still not enough statistic for tip-scattered photons
 - Efficiency of the CDR tungsten shielding (180kg)

Many Thanks to K. Andrè for the SR photons

Update on the EM radiation sources in the FCCee MDI region

In order to have a more **complete description** of the photons irradiating downstream from the IP, it is important to compare all the **major sources**:

 Beamstrahlung Radiative Bhabhas * Synchrotron Radiation from: Final Focus Quadrupoles 2T Detector Solenoid Last upstream dipole 	Source	Location	s [m]	Power at Z [kW]	Power at Top [W]
	Beamstrahlung	IP	0	370	77
	Synchrotron Radiation	Last upstream Dipole *	-2.12	6	0.3
		Solenoid	+2.1	73	4.6
		FFQs	+8.44	11	1.8
	Radiative Bhabha	IP	0	0.4	2

Just by looking at the power carried by the photons we can see that the second largest contribution comes from the **solenoid**.

The radiation cones have been propagated downstream to have a first estimate of the interested magnetic elements, in vision of the beamstrahlung **extraction line** and **photon dump** design.

*radiative bhabha not propagated downstream yet, but minor contribution in terms of power. *note that some part of this radiation is blocked by the upstream SR mask, so by using the total power we are overestimating.

E = 46.5 GeV (Z)

The radiation produced by the **solenoid** has a **"round" profile**, and is comparable in size and direction to the beamstrahlung. SR from **FFQs** instead is much **flatter** and with a larger divergence.

E = 46.5 GeV (Z)

The radiation produced by the **solenoid** has a **"round" profile**, and is comparable in size and direction to the beamstrahlung. SR from **FFQs** instead is much **flatter** and with a larger divergence.

6

E = 182.5GeV (Top)

Similar behavior is found at the Top energy. Here the **vertical contribution** is more important. Also the stronger kick due to **beam beam** is more evident on the beamstrahlung.

7

E = 182.5GeV (Top)

Similar behavior is found at the Top energy. Here the **vertical contribution** is more important. Also the stronger kick due to **beam beam** is more evident on the beamstrahlung.

Summary

Update on other **sources of radiation** coming from the MDI area and impinging on the "beamstrahlung dump" location has been presented.

Dominant contribution after beamstrahlung comes from the **solenoid SR**. The spot size is comparable to the beamstrahlung, but without the horizontal kick due to beam beam.

- Study only SR photons surviving after the IP
- Propagate also the Radiative Bhabha photons downstream (not much power, but maybe useful for monitoring)
- Other features to be characterised? Please comment!

MDI Meeting #44 - 20/03/2023

Andrea Ciarma

Beamstrahlung radiation Characterisation

The photons are emitted **collinear to the beam** with an angle proportional to the beam-beam kick. This radiation is extremely intense **O(100kW)** and **hits the beam pipe** at the end of the first downstream dipole.

The generator for the beamstrahlung radiation is GuineaPig++

The design of a **dedicated extraction line** and **beam dump** for the beamstrahlung photons is currently in progress, exploring tunnel integration, magnets design, cooling system, and different materials for the beam dump.

	Total Power [kW]	Mean Energy [MeV]		
Z	370	1.7		
WW	236	7.2		
ZH	147	22.9		
Тор	77	62.3		

Radiative Bhabha photons

The radiation emitted in Bhabha events at the IP consists in **very hard photons** emitted collinear to the **beam direction**, so it will hit the beam pipe in the same location of the beamstrahlung photons, but with much **lower intensity**.

The RB photons energy spectrum endpoint is the nominal energy of the e+/e- beams, and have been generated using **BBBrem** (courtesy of H. Burkhardt)

Dedicated tracking of the **very off-energy e+/e-** after the emission should be performed in order to assess the **beam losses** due to this effect.

Considerations on the possibility to have a **selective beam dump** will be discussed by A. Di Domenico on Thursday 27/10

