Reliability and Availability for Particle Accelerators

> A. Apollonio (RESHAPE) andrea.apollonio@reshape.systems USPAS – 01/02/2023

Acknowledgements: C. Peters, R. Schmidt, B. Todd, J. Wenninger

RAMS/Outline

NB: in the context of particle accelerators, we speak about 'Protection' rather than 'Safety', if no personnel is involved

Basic Definitions

- **Reliability (0-1)** is the probability that a system does not fail during a defined period of time under given functional and environmental conditions
 - Example of reliability specification: "An accelerator must have a reliability of 60 % after 100 h in operation, at a current of 40 mA"
- Availability (0-1) is the probability that a system in a functional state at given point in time
 - Example of availability specification: "An accelerator must ensure beam delivery to a target for 90 % of the scheduled time for operation"

Clearly we want highly available and highly reliable accelerators \rightarrow questions to be answered in this lecture:

What are the factors that limit their reliability and availability? How can these be quantified systematically?

Metrics

Low Importance Relative Importance High Importance

Importance of Reliability Analyses

Prof. Dr. B. Bertsche, Dr. P. Zeiler, T. Herzig, IMA, Universität Stuttgart, CERN Reliability Training, 2016

Product/Accelerator Lifecycle •

The earlier reliability constraints are included in the design, the more effective the resulting measures will be Andrea Apollonio

Importance of Reliability Analyses

Given a target performance
reach (neutron fluence,
number of patients treated,
luminosity production, ...),
an optimal balance
between capital costs and
operation costs must be
found

Today: Dependability Studies

Concept Phase

Design Phase

Technology Feasibility Assessment

Technology Definition and Implementation

Exploitation Phase

Upgrade Phase

Reliability Studies Technology Field Use & Optimization

New Technology Definition and Implementation

Future: Dependability Studies

Technology Feasibility Concept Phase Assessment **Technology Definition Reliability Design Phase** and Implementation **Studies Exploitation Technology Field Use & Phase Optimization New Technology Upgrade** Phase **Definition and** Implementation

Andrea Apolionio

page 10

Risk

Risks for Particle Accelerators

- Not to complete the construction of the accelerator
 - Happened to other projects, the most expensive was the Superconducting Super Collider in Texas / USA with a length of ~80 km
 - Cost increase from 4.4 Billion US\$ to 12 Billion US\$, US congress stopped the project in 1993 after having invested more the 2 Billion US\$
- Not to be able to operate the accelerator
- **Damage** to the accelerator **beyond repair** due to an accident

Energy stored in the LHC

Stored energy in the magnet circuits is 9 GJoule Kinetic Energy of Aircraft Carrier at 50 $km/h \approx 9$ GJoulecan melt 14 tons of copper Picture source: <u>http://en.wikipedia.org/wiki/File:Alstom_AGV_Cerhenice_img_0365.jpg</u> Shared as: <u>http://creativecommons.org/licenses/by-sa/3.0/deed.en</u>

Picture source: http://militarytimes.com/blogs/scoopdeck/2010/07/07/the-airstrike-that-neverhappened/ Shared as: public domain

 $3 \cdot 10^{14}$ protons in each beam Kinetic Energy of 200 m Train at 155 km/h \approx 360 MJoule Stored energy per beam is 360 MJ

Risk Assessment (1/2)

B. Todd, M. Kwiatkowski, "Risk and Machine Protection for Stored Magnetic and Beam Energies"

- Risk is the product of the probability of occurrence of an undesired event x its impact (financial, reputation, downtime,...)
- 'Acceptable' or 'Unacceptable' risk depends on the context! Different for user-oriented facilities, medical accelerators, fundamental research,...

IMPACT

IMPACT

Catastrophic	Major	Moderate	Low
--------------	-------	----------	-----

Cost [MCHF]	> 50	1-50	0.1-1	0-0.1
Downtime [days]	> 180	20-180	3-20	0-3

IMPACT

		Per year	Catastrophic	Major	Moderate	Low
	Frequent	1				
►	Probable	0.1				
S	Occasional	0.01				
	Remote	0.001				
	Improbable	0.0001				
-	Not credible	0.00001				
	Cost [M	CHF]	> 50	1-50	0.1-1	0-0.1
	Downtime	[days]	> 180	20-180	3-20	0-3

IMPACT

		Per year	Catastrophic	Major	Moderate	Low
	Frequent	1				
~	Probable	0.1				
NC	Occasional	0.01				
DE	Remote	0.001				
REC	Improbable	0.0001				
ш	Not credible	0.00001				
	Cost [M	CHF]	> 50	1-50	0.1-1	0-0.1
	Downtime	[days]	> 180	20-180	3-20	0-3

• Assessment of the required level of risk reduction (1-4) for different failure scenarios

IMPACT

		Per year	Catastrophic	Major	Moderate	Low
	Frequent	1				
≻	Probable	0.1				
NC	Occasional	0.01				
DC	Remote	0.001				
REC	Improbable	0.0001				
ш	Not credible	0.00001				0
	Cost [M	CHF]	> 50	1-50	0.1-1	0-0.1
	Downtime	[days]	> 180	20-180	3-20	0-3

• Assessment of the required level of risk reduction (1-4) for different failure scenarios

IMPACT

		Per year	Catastrophic	Major	Moderate	Low
	Frequent	1	4			
~	Probable	0.1				
NC	Occasional	0.01				
DE	Remote	0.001				
REC	Improbable	0.0001				
ш	Not credible	0.00001				0
	Cost [M	CHF]	> 50	1-50	0.1-1	0-0.1
	Downtime	[days]	> 180	20-180	3-20	0-3

• Assessment of the required level of risk reduction (1-4) for different failure scenarios

Machine Protection Concern IMPACT Availability Co					ity Concern	
		Per year	Catastrophic	Major	Moderate	Low
	Frequent	1	4	3	3	2
-	Probable	0.1	3	3	3	2
S	Occasional	0.01	3	3	2	1
	Remote	0.001	3	2	2	1
ע צ	Improbable	0.0001	3	2	1	0
L	Not credible	0.00001	2	1	0	0
	Cost [MCHF]		> 50	1-50	0.1-1	0-0.1
	Downtime	[days]	> 180	20-180	3-20	0-3

• Assessment of the required level of risk reduction (0-4) for different failure scenarios

Machine Protection Concern IMPACT Availability Co					lity Concern	
		Per year	Catastrophic	Major	Moderate	Low
	Frequent	1	4	3	3	2
	Probable	0.1	3	3	3	2
S	Occasional	0.01	3	3	2	1
	Remote	0.001	3	2	2	1
	Improbable	0.0001	3	2	1	0
-	Not credible	0.00001	2	1	0	0
	Cost [MCHF]		> 50	1-50	0.1-1	0-0.1
	Downtime	[days]	> 180	20-180	3-20	0-3

• New approach: 'Data-driven risk matrices for CERN's accelerators', IPAC'21

Failure Frequency

Failure Behaviour of Components

Prof. Dr. B. Bertsche, Dr. P. Zeiler, T. Herzig, IMA, Universität Stuttgart, CERN Reliability Training, 2016

- The failure behaviour of a component is described by a density function
- Its integral over a certain time t_x gives the failure probability
- Reliability is the complement to 1 of the Failure Probability ('Survival' Probability) Andrea Apollonio

Failure Rate and Bathtub Curve

- In practice, it is often assumed that failures occur randomly, i.e. they are described by an exponential density function \rightarrow constant failure rate λ
- Only in the latter case Mean Time Between Failures (MTBF) = $1/\lambda$
- Clearly a **simplification** in some cases...

Prof. Dr. B. Bertsche, Dr. P. Zeiler, T. Herzig, IMA, Universität Stuttgart, CERN Reliability Training, 2016

Component Failure Rate Estimates

estimates, but in the possibility to **compare architectures** and show the **sensitivity** of system performance on reliability figures

Andrea Apollonio

• Functional Block Diagram

Description of System Failure Behaviour

• Example: Redundant magnet powering with current regulation:

Function: provide stable current to the magnet, based on the feedback of the current measurement. Each power converter can supply all the current to the magnet

Description of System Failure Behaviour

• Reliability Block Diagram:

Question: what is the minimum set of components that allows fulfilling the system functionality?

• Fault Tree:

Question: what are the combinations of failures that lead to a system failure?

Boolean Algebra allows calculating system reliability from component reliability

Redundancy

The switching magnet becomes the reliability bottleneck in this architecture

- It should be designed for high reliability
- How should it be operated? (only when required, at predefined times,...)
- A strategy has to be defined on how to operate the 'spare' Linac:
 - Continuously running 'hot spare' (quantify operation costs)
 - When required (consider additional time to recover nominal operation)

When introducing redundancy, think about remaining single points of failure!

Failure Impact

- Failures of accelerator components can lead to:
 - **Damage of the accelerator** (if no suitable protection is in place)
 - Requires significant interventions on the accelerator to restore operating conditions, typically involving experts from different fields
 - Order of magnitude: Several weeks/months

- **Downtime of the accelerator** (no damage thanks to machine protection systems, but impossibility to operate the accelerator)
- Requires a corrective action to restore operating conditions (Maintenance), typically only involving experts of the failed equipment
- Order of magnitude: Hours/days

Failure Impact: Damage

Damage in High-Power Accelerators

Failure Impact: Downtime

Accelerator Downtime

Systematic follow-up of failures \rightarrow learn from experience \rightarrow possible reduction of recovery times (faster diagnostics, faster repairs, management of spare parts,...)

Failure Duration

Failure Duration

Diagnostics

Logistics

- Mean Time to Repair (MTTR): the average time required to repair a failed component or device.
- In addition, some time might be required to recover nominal operating conditions (e.g. beam-recommissioning, source stabilization, magnetic pre-cycles,...)

Definitions

Maintenance signifies methods for the determination and evaluation of the current status as well as for the preservation and reestablishment of the nominal status of facilities, machines and components.

- Corrective maintenance methods are required for partial and total failures of facilities, devices and components. Such methods serve to the reestablishment of the nominal condition.
- **Preventive maintenance** deals with maintenance methods which are carried out preventively, that is, **at a predetermined time** or **periodically** after a certain amount of operational hours.
- **Condition-based maintenance avoids exact inspection and overhauling intervals** and thus avoids the periodical renewal of fully functional components and assemblies.

Prof. Dr. B. Bertsche, Dr. P. Zeiler, T. Herzig, IMA, Universität Stuttgart, CERN Reliability Training, 2016

Maintenance and Operability

- Maintenance and operability should be considered from **early design** phases of the accelerator
- System **architectures** can strongly influence maintainability
- Modular designs help optimizing maintenance tasks and commissioning
- Accessibility of equipment (when possible) ensures faster recoveries after failures
- Advanced diagnostics capabilities help identifying and possibly anticipate failures
 → invest in machine learning for failure prediction
- Important: reliability analyses provide the means for **spare part management**

Trade-Off

For each application, the optimal working point has to be chosen!

Thanks a lot for your attention!!

