

Outline

- The GSI farm
 - Cores
 - Data storage
 - People
- Calibration
- Analysis train
 - Composition
 - Schedule and performance

GSI-wide

(1000 employees, effectively: Hades, CBM, PANDA, theory ..)

- 2500 active cores
- ALICE sponsored 1800 cores, now effectively **1440** (aging) with a special BMBF grant for GSI Tier2/Tier3
- 800 cores blocked at all times for GRID jobs (Tier2, pledged)
- Cores available for calibration and analysis:
 - From a minimum of ~200 (sharing GSI-wide)
 - To a maximum of ~1700 (free farm)

GSI farm: storage and network

Data storage is also GSI wide: Lustre system, 1 PByte

ALICE data:

	N. of events (10 ⁶)	Data set size (TBytes)
2010 pp data, pass 2	320	80
2010 pp MC	280	75
2010 PbPb data, pass 1	24 (all)	60
2010 PbPb MC	0.2	2
Total		217 TB

Essential component: adequate network!!!

GSI farm: people

- Linux / High Performance Cluster (GSI wide): 4-5 people involved, ~2-3 FTE
- ALICE group
 4-5 people deeply involved, <1 FTE
- Weekly computing meetings since May 2008
- ALICE users: about 60-70 people (calibration and analysis train)

Primary goal of the extra computing resources is the

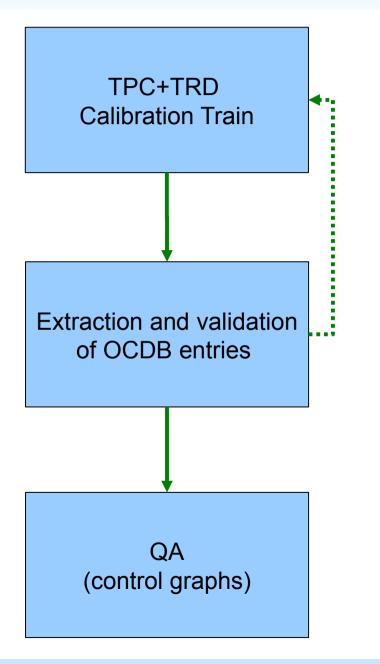
DEVELOPMENT of the detector calibration procedures

- This requires fast and frequent iterations over a subset of data (over the WHOLE data taking period)
- Iterative improvement of the calibration algorithm
- When well understood and stable, the calibration procedure can become one stable step in the chain on GRID (e.g. Pass0)

This has been crucial for the readiness of the calibration of TPC and TRD on a relatively short time scale

5

Pass0 Complexity


Pass0 functionality

- TRD and TPC calibration (gain, v-drift, t0 ...)
- Validation of the calibration values
- Extraction of the OCDB entries
- Input
 - ESD and ESDfriends
 - OCDB entries from the previous run

Output

- Calibration objects
- QA information

Pass0 Development at GSI

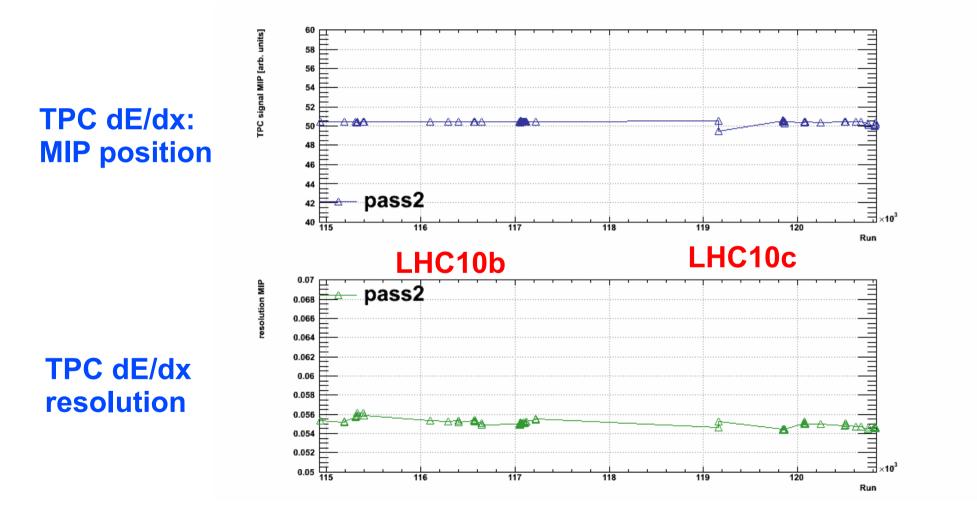
- Analysis flow (as many iterations as needed)
- Production of calibration object (TPC + TRD calibration train)
- Creation of OCDB entries (merging, validation, extraction)
- QA for OCDB entries (trend graphs)
 - The calibration algorithms successfully tested on LHC10b, LHC10c (10% statistics) before running on the GRID

Jacek Otwinowski

2 February 2011

Analysis train

- ~40 directories ≈ "modules" (analyses)
- Normally 20-40 tasks
- Output used by a very large community:
 - single users
 - analysis groups:
 - γ conversion
 - identified particle spectra
 - HFE
 - J/ψ
 - R_{AA}
 - HBT
 - Check of total cross section by ALICE (!)
- All official analyses are in AliRoot and on the central trains
- Software: AliRoot revisions + local development of own task (same as if running privately with the plugin on GRID)



- 4 train flavours: pp data, pp MC, PbPb data, PbPb MC
- A data set is processed:
 - Per run
 - In jobs of e.g. 100 pp data chunks, 200 pp MC ESD files
- **RECURSIVE MERGING**:
 - Per run
 - Per LHC period
- Reporting (train performance, basic quantities)
- Test and feedback to calibration!

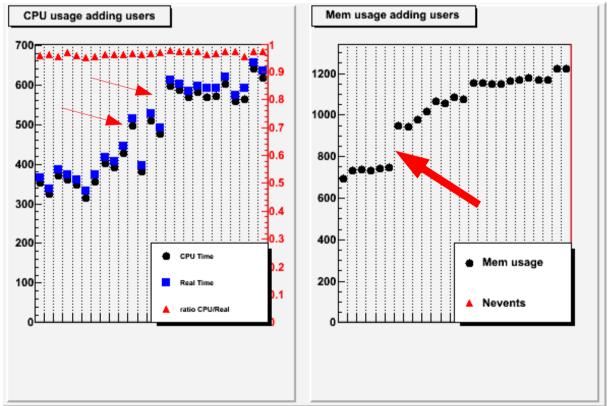
9

Just one simple example:

Time from job submission to the very last individual merging ("average" train, about 800 cores)

	N. of events (10 ⁶)	Time for the complete train	Schedule
2010 pp data, pass 2	320	Order 6 hours	Each Tuesday, Each Friday
2010 pp MC	280	Order 8 hours	Each Tuesday, Each Friday
2010 PbPb data, pass 1	24	Order 5 hours	Each Monday, Each Thursday
2010 PbPb MC	0.2	Order 2 hours	Each Monday, Each Thursday

EACH TRAIN TYPE \rightarrow 2 TIMES PER WEEK


11

Analysis train: goodies

- A fixed schedule helps people to organize their development
- With the frequent running, there is no longer the need for large scale individual analysis
- "Educational" effect: Strict monitor of resource usage by analysis!!

Add one task at the time

When jumps in CPU or memory \rightarrow task out (till the next train, in 3 or 4 days)

G S 1

