

FeynRules Status and plans

Claude Duhr

in collaboration with N. D. Christensen and B. Fuks

MadGraph Meeting 2011 Fermilab, 05 May 2011

What is FeynRules..?

- FeynRules is a Mathematica package that allows to derive Feynman rules from a Lagrangian.
- The only requirements on the Lagrangian are:
 - → All indices need to be contracted (Lorentz and gauge invariance)
 - → Locality
 - → Supported field types: spin 0, 1/2, 1, 2 & ghosts

What is FeynRules..?

• FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix element generators.

Interfaces coming with current public version

CalcHep / CompHep

- → FeynArts / FormCalc
- → MadGraph 4 & 5
- → Sherpa
- → Whizard / Omega

What is FeynRules..?

- FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix element generators.
- Interfaces coming with current public version:
 - → CalcHep / CompHep
 - → FeynArts / FormCalc
 - → MadGraph 4 & 5
 - → Sherpa
 - → Whizard / Omega

© C. Degrande

How to use FeynRules

• The input requested form the user is twofold.

• The Model File:

Definitions of particles and parameters (e.g., a quark)

```
F[1] ==
{ClassName -> q,
SelfConjugate -> False,
Indices -> {Index[Colour]},
Mass -> {MQ, 200},
Width -> {WQ, 5} }
```

• The Lagrangian:

$$\mathcal{L} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a + i\bar{q} \gamma^{\mu} D_{\mu} q - M_q \bar{q} q$$

L=

-1/4 FS[G,mu,nu,a] FS[G,mu,nu,a]

+ I qbar.Ga[mu].del[q,mu]

- MQ qbar.q

How to use FeynRules

• Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model:

FeynmanRules[L]

• Equivalently, we can export the Feynman rules to a matrix element generator, e.g., for MadGraph 4,

WriteMGOutput[L]

• This produces a set of files that can be directly used in the matrix element generator ("plug 'n' play").

FeynRules

Once upon a time in a land far away...

- ... FeynRules models needed to be implemented in component fields.
 - → Painful especially for SUSY models.
- ... almost all matrix element generators could only handle renormalizable interactions.
 - → Puts enormous restrictions on the models that can be simulated.
- ... the simulation of non-standard color structures was very hard, if not impossible.

The road to BSM physics

Weyl fermions and superfields

- Full support for two-component fermions.
- Full support for superfields, automatic solving of eq. of motions for auxiliary fields, etc.
 → See Benj's talk

Spin 3/2

- The super-space module opens a completely new way to implement *any* SUSY, with gravitino.
- Spin 3/2 is fully supported (privately), and all vertices have been checked against the literature.

```
R[1] == {
    ClassName -> rG,
    SelfConjugate -> True,
    Mass -> {MrG, 1000},
    Width -> {WrG, 20},
    FullName -> "Spin 3/2 G particle" },
```

FA[mu,nu] fNbar[r].(gfNrG1.Ga[mu,r,t] +gfNrG2.Ga[mu,r,s].Ga[5,s,t]).rG[t,nu]

 $(\partial_{\mathrm{nu}}(A_{\mathrm{mu}}) - \partial_{\mathrm{mu}}(A_{\mathrm{nu}})) \, \mathrm{fN}_r. \big(\mathrm{gfNrG1} \, \gamma_{r,t}^{\mathrm{mu}} + \mathrm{gfNrG2} \, \gamma^{\mathrm{mu}}. \gamma^5_{r,t}\big). \mathrm{rG}_{t,\mathrm{nu}}$

Spin 3/2

- The super-space module opens a completely new way to implement *any* SUSY, with gravitino.
- Spin 3/2 is fully supported (privately), and all vertices have been checked against the literature.

Sextet color structures

- So far, FeynRules was limited to triplet and octet color structures (mostly because there was no ME generator for higher representations).
- The new FeynRules version allows to include also particles in the sextet representation.

• Together with MG5, this allows to generate for the first time sextet production without having to 'hack' the ME generator.

FeynArts interface (C. Degrande, CD)

 A new interface to FeynArts is being developed that allows to implement arbitrary Lorentz structures.

FeynArts interface (C. Degrande, CD)

• A new interface to FeynArts is being developed that allows to implement arbitrary Lorentz structures.

• This development goes along with a new version of FormCalc able to deal with multi-fermion interactions.

The UFO

(C. Degrande, CD, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter)

UFO = Universal FeynRules Output

- → See Olivier's talk
- Idea: Create Python modules that can be linked to other codes and contain all the information on a given model.
- The UFO is a self-contained Python code, and not tied to a specific matrix element generator.
- The content of the FR model files, together with the vertices, is translated into a library of Python objects, that can be linked to other codes.
- Golem, MadGraph 5 and Herwig++ will use the UFO.
- In particular, the UFO is the default model format for MadGraph 5.

The UFO & ALOHA

- The development of the UFO goes hand in hand with the development of ALOHA.
- Idea: ALOHA uses the information contained in the UFO to create the required HELAS routines on the fly!

The road to BSM physics

Towards FR@NLO

- In its current version, FeynRules allows already to implement *any* BSM model into tree-level matrix element generators.
- With the release of MadLoops, the bar has been raised, and tree-level Feynman rules are no longer enough.
 - → UV counterterms
 - → Feynman rules for rational (R2) terms.
- Since FeynRules works with the Lagrangian, it has all the information to extract the new NLO building blocks

Towards FR@NLO

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Ima
- neil@hep.wisc.edu
- ■fuks@cern.ch

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

Miscellaneous (0)

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Ima
- neil@hep.wisc.edu
- ■fuks@cern.ch

Available models

Simple extensions of the SM (9)	
	<
Supersymmetric Models (4)	
Extra-dimensional Models (4)	
Strongly coupled and effective field theo (4)	ries
Miscellaneous (0)	

Model	Contact
Higgs effective theory	C. Duhr
4th generation model	C. Duhr
Standard model + Scalars	C. Duhr
Hidden Abelian Higgs Model	C. Duhr
Hill Model	P. de Aquino, C. Duhr
The general 2HDM	C. Duhr, M. Herquet
Triplet diquarks	J. Alwall, C. Duhr
Sextet diquarks	J. Alwall, C. Duhr

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- claude.duhr@durham.ac.uk
- neil@hep.wisc.edu
- In the second of the second of

Available models

Standard Model

Simple extensions of the SM (9)

Supersymmetric Models (4)

Extra-dimensional Models (4)

Strongly coupled and effective field theories (4)

Miscellaneous (0)

Model	Contact
MSSM	⊠ B. Fuks
NMSSM	⊠ B. Fuks
RPV-MSSM	⊠ B. Fuks
R-MSSM	⊠ B. Fuks

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Ima
- neil@hep.wisc.edu
- ■fuks@cern.ch

Available models

Standard Model		
Simple extensions of	the SM (9)	
Supersymmetric Mod	iels (4)	
Extra-dimensional M	odels (4)	
Strongly coupled and (4)	d effective field theories	
Miscellaneous (0)		

Model	Contact	
Mimimal Higgsless Model (3-Site Model)	N. Christensen	
Minimal UED	P. de Aquino	
Large Extra Dimensions	P. de Aquino	
Compact HEIDI	C. Speckner	

We encourage model builders writing order to make them useful to a comm FeynRules model database, please ser

- Image: Ima
- neil@hep.wisc.edu
- ■fuks@cern.ch

Available models

Standa	rd Model
Simple	extensions of the SM (9)
Supers	ymmetric Models (4)
Extra-d	imensional Models (4)
Strongl (4)	y coupled and effective field theories
Miscella	aneous (0)

Contact
N. Christensen
C. Degrande
C. Degrande
M. Järvinen, T. Hapola, E. Del Nobile, C. Pica

Validation of new models

- FeynRules does not only provide the power to develop and validate new models, but also to validate them to an unprecedented level!
- A given model can be output to more than one matrix element generator, and their results can be compared
 - → Different conventions
 - → Different gauges
 - → Different ways of handling large cancellations.
- This procedure can easily be automatized!

Web validation

Conclusion

- The new version of FeynRules comes with lots of new features.
 - → Superfields
 - → Spin 3/2 (still private)
 - → Sextets
 - → New FeynArts interface
 - → Interface to UFO, and hence to MadGraph 5
- The chain

FR \rightarrow UFO \rightarrow ALOHA \rightarrow MG5 is about to open a completely new era of HE phenomenology!

Towards a database of models...

