
The automation of
MC@NLO

Paolo Torrielli

in collaboration with
Stefano Frixione and Rikkert Frederix

MadGraph Workshop, May 2011

Outline

• Generalities of PSMC

• MC@NLO

• aMC@NLO

• Implementation and status of aMC@NLO

• Outlook

a
c

b

a
c

bMn+1 Mn

 Cross section factorization in the collinear limit

|Mn+1|2dΦn+1 � |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

• virtuality of particle (could be its or ...)
 it represents the hardness of the branching
• energy fraction of parton relative to
• Altarelli - Parisi splitting kernel

p⊥a Eaθ

z =

t =

b a

Pa→bc(z) =

θ

θ −→ 0

Collinear factorization

Multiple emission

a
c

b
e

dθ
θ�

a
c

bMn

θ, θ� −→ 0
θ� � θ

e
dMn+2

|Mn+2|2dΦn+2 � |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

dt�

t�
dz�

dφ�

2π

αS

2π
Pb→de(z

�)

Factorized rate for multiple emission

Parton Shower Monte Carlo knows about the Leading
Logarithmic (LL) collinear approximation of the total rate

σn+j ∝
� Q2

Q2
0

dt

t

� t

Q2
0

dt�

t�
...

� t(j−2)

Q2
0

dt(j−1)

t(j−1)
∝ σn

�αS

2π

�j
logj(Q2/Q2

0)

Emission probability
Differential probability for the
branching at scale :t

No emission probability between scales and :Q2 t

a → bc
dp(t) =

dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

∆a(Q
2, t) = lim

dtj→0

�

j

�
1−

�

bc

dtj
tj

�
dz

dφ

2π

αS(tj)

2π
Pa→bc(z)

�
=

exp

�
−
�

bc

� Q2

t

dt�

t�
dz

dφ

2π

αS(t�)

2π
Pa→bc(z)

�

Probability of first
branching at scale :t

dPa(Q
2, t) = ∆a(Q

2, t) dp(t)

∆a(Q
2, t) is called Sudakov form factor

Properties I: Sudakov form factor

• Sudakov form factor is the probability of no-
 emission between scales and

d∆a(Q
2, t) = ∆a(Q

2, t)
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z) = dPa(Q

2, t)

=⇒
� Q2

t
dPa(Q

2, t�) =

� Q2

t
d∆a(Q

2, t�) = 1−∆a(Q
2, t)

∆a(Q
2, t)

Q2 t

Properties I: Sudakov form factor

• Sudakov form factor is the probability of no-
 emission between scales and

d∆a(Q
2, t) = ∆a(Q

2, t)
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z) = dPa(Q

2, t)

=⇒
� Q2

t
dPa(Q

2, t�) =

� Q2

t
d∆a(Q

2, t�) = 1−∆a(Q
2, t)

∆a(Q
2, t)

Q2 t

• Emission probability only depends on particle identity
 and scales (Markov chain)

Properties I: Sudakov form factor

• Sudakov form factor is the probability of no-
 emission between scales and

d∆a(Q
2, t) = ∆a(Q

2, t)
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z) = dPa(Q

2, t)

=⇒
� Q2

t
dPa(Q

2, t�) =

� Q2

t
d∆a(Q

2, t�) = 1−∆a(Q
2, t)

∆a(Q
2, t)

Q2 t

• Branching + no-branching probability = 1 (unitarity):
 all virtual emissions automatically taken into account
 (approximately)

• Emission probability only depends on particle identity
 and scales (Markov chain)

Properties II: unitarity
Cross section for 0 or 1 emission in the Parton Shower

normalization
(Born)

no-emission
1 emission at scale t

Expand at first order in αS

σ(MC)
a

σB
� 1−

�

bc

� Q2

Q2
0

dt�

t�
dz

dφ

2π

αS(t�)

2π
Pa→bc(z) +

�

bc

dz
dt

t

dφ

2π

αS(t)

2π
Pa→bc(z)

virtual contribution
(approximate)

real contribution
(approximate)

dσ(MC)
a = dσB

�
∆a(Q

2, Q2
0) + ∆a(Q

2, t)
�

bc

dz
dt

t

dφ

2π

αS(t)

2π
Pa→bc(z)

�

Practical implementation

• Extract the evolution scale of the branching by
 solving the equation , with a flat
 random number between 0 and 1

∆a(Q
2, t) = R# R#

Practical implementation

• Extract the evolution scale of the branching by
 solving the equation , with a flat
 random number between 0 and 1

• Extract the energy sharing and the daughters
 identities and according to

∆a(Q
2, t) = R# R#

b c

z

Pa→bc(z)

Practical implementation

• Extract the evolution scale of the branching by
 solving the equation , with a flat
 random number between 0 and 1

• Extract the energy sharing and the daughters
 identities and according to

• Extract uniformly between 0 and

∆a(Q
2, t) = R# R#

b c

z

Pa→bc(z)

φ 2π

Practical implementation

• Extract the evolution scale of the branching by
 solving the equation , with a flat
 random number between 0 and 1

• Extract the energy sharing and the daughters
 identities and according to

• Extract uniformly between 0 and

• Reiterate the procedure until : if put
 partons on-shell and hadronize (non perturbative)

∆a(Q
2, t) = R# R#

b c

z

Pa→bc(z)

φ 2π

t ≥ Q2
0 t < Q2

0

Differences among PSMC’s

Mainly : choice of the evolution variable a
b

c
θ

• HERWIG6:

• Herwig++:

• PYTHIA6:

• Pythia 8:

t =
pb · pc
EbEc

� 1− cos θ

t =
(pb⊥)2

z2(1− z)2
, z =

n · pa
n · (pa + pc)

t = (pb + pc)
2

t = z(1− z)(pb + pc)
2 , z =

Eb

Eb + Ec

Naive matching at NLO 1

Structure of an NLO cross section

Born

Virtual (infinite)

Real (infinite) } Finite (KLN)

Naive definition

 is the PSMC emission probability obtained
showering from a bodies hard kinematicsk−

dσNLO = dΦB

�
B + V +

�
dΦ(+1) R

�

dσMC@NLO = [dΦB(B + V)] I(n)MC +
�
dΦBdΦ(+1) R

�
I(n+1)
MC

I(k)MC

Naive matching at NLO II

This simple approach does not work:

• Instability: weights associated to and
 are separately divergent (regulate them, but inefficient
 unweighting)

I(n)MC I(n+1)
MC

dσMC@NLO = [dΦB(B + V)] I(n)MC +
�
dΦBdΦ(+1) R

�
I(n+1)
MC

Naive matching at NLO II

This simple approach does not work:

• Instability: weights associated to and
 are separately divergent (regulate them, but inefficient
 unweighting)

• Double counting: expanded at NLO does not
 coincide with NLO rate. Some configurations are
 dealt with by both the NLO and the PSMC

I(n)MC I(n+1)
MC

dσMC@NLO = [dΦB(B + V)] I(n)MC +
�
dΦBdΦ(+1) R

�
I(n+1)
MC

dσ(naive)
MC@NLO

MC@NLO I: modified subtraction
Modify the naive formula

Rough structure of the Monte Carlo counterterm:

MC =

����
∂(tMC, zMC, φ)

∂Φ(+1)

����
1

tMC

αS

2π

1

2π
P (zMC)B

• It is the cross section for the first emission in the MC
 (more on the its details later)

• It essentially depends on PSMC one is interfacing to

dσMC@NLO =

�
dΦB(B + V +

�
dΦ(+1)MC)

�
I(n)MC +

�
dΦBdΦ(+1) (R−MC)

�
I(n+1)
MC

MC@NLO II: FKS
Deal with infinite cancellations: subtraction method.
MC@NLO uses Frixione-Kunszt-Signer formalism

• Partition the phase space with a set of functions each
 of which selects one soft and one collinear singularity
 and whose sum is 1
• Perform analytically the cancellation of the IR poles
 (MC is a local counterterm) in each singular region
 separately
• Sum the finite leftovers

A different parametrization in each region is possible

MC@NLO III: properties
Nice features of the modified subtraction:

• Stability: weights associated to different kinematics are
 now separately finite. The MC term has the same
 collinear poles as the real (subtlety for the soft poles)
• Double counting avoided: the rate expanded at NLO
 coincides with the total NLO cross section

MC@NLO III: properties
Nice features of the modified subtraction:

• Stability: weights associated to different kinematics are
 now separately finite. The MC term has the same
 collinear poles as the real (subtlety for the soft poles)
• Double counting avoided: the rate expanded at NLO
 coincides with the total NLO cross section
• Smooth matching: MC@NLO predictions coincide with
 the MC in shape in the soft and collinear region, with
 the NLO in the hard region
• Normalization: MC@NLO is normalized to NLO

Integrands associated with and kinematics
are called S (for standard) and H (for hard), respectively

n− (n+ 1)−

MC@NLO IV: properties

• More on (no) double counting

dσMC@NLO =

�
dΦB(B + V +

�
dΦ(+1)MC)

�
I(n)MC +

�
dΦBdΦ(+1) (R−MC)

�
I(n+1)
MC

Expand at NLO

I(1
stem)

MC = 1−
� Q2

Q2
0

dt

t
dz

dφ

2π

αS

2π
P (z) + dz

dt

t

dφ

2π

αS

2π
P (z) ≡ 1−

�
dΦ(+1)

MC

B
+ dΦ(+1)

MC

B

dσMC@NLO =

�
dΦB(B + V +

�
dΦ(+1)MC)

� �
1−

�
dΦ(+1)

MC

B
+ dΦ(+1)

MC

B

�

+
�
dΦBdΦ(+1) (R−MC)

�
� dΦB(B + V + dΦ(+1) R) = dσNLO

MC@NLO IV: properties

• More on (no) double counting

• More on smooth matching

dσMC@NLO =

�
dΦB(B + V +

�
dΦ(+1)MC)

�
I(n)MC +

�
dΦBdΦ(+1) (R−MC)

�
I(n+1)
MC

Expand at NLO

I(1
stem)

MC = 1−
� Q2

Q2
0

dt

t
dz

dφ

2π

αS

2π
P (z) + dz

dt

t

dφ

2π

αS

2π
P (z) ≡ 1−

�
dΦ(+1)

MC

B
+ dΦ(+1)

MC

B

✦ Soft-collinear region: MC � R =⇒ dσMC@NLO ∝ I(n)MC

✦ Hard region: sensible expansion
 (shower effects cancel at and NLO = Real)

=⇒ dσMC@NLO � dΦBdΦ(+1) RαS

dσMC@NLO =

�
dΦB(B + V +

�
dΦ(+1)MC)

� �
1−

�
dΦ(+1)

MC

B
+ dΦ(+1)

MC

B

�

+
�
dΦBdΦ(+1) (R−MC)

�
� dΦB(B + V + dΦ(+1) R) = dσNLO

O(αS)

dσMC@NLO =

�
dΦB(B + V +

�
dΦ(+1)MC)

�
I(n)MC +

�
dΦBdΦ(+1) (R−MC)

�
I(n+1)
MC

S- and H- integrands can be negative somewhere :
MC@NLO is not positive-definite (negative weights)

• Compute S- and H- integrals () and integrals of
 the absolute value of the S- and H- integrands ()

• Generate events distributed according to
 (probability distributions are positive definite) but
 assign them a weight with sign depending on
 (unweighting up to a sign)

IS, IH

JS, JH

Fraction of negative weights :

MC@NLO V: implementation

JS, JH

IS, IH±

f (neg)
S,H =

1

2

�
1− IS,H

JS,H

�

MC@NLO VI: negative weights
Negative fractions expected to be reasonably small
(LO is dominant and positive definite)

Is it a problem to have negative weights?

No : after showering MC@NLO distributions are positive
definite (asymptotically) and physical

Fraction of negative weights just affects the efficiency, i.e.
the ‘threshold’ beyond which smooth spectra are obtained
(the less the negative weights the smoother the spectrum)

MC@NLO VII: old limitations

• Lack of a systematic approach
✦ One code per process / simple processes only
✦ Necessary slowness in including new processes
✦ Necessary slowness in adding a new PSMC

• Possibly different parametrizations for different
 processes
• Approximations here and there

Fortran HERWIG: from 2002, O(30) processes
Herwig++: from 2007, the same
Fortran PYTHIA: from 2008, 2 processes

MC@NLO 4.0 [Oct 10]
IPROC IV IL1 IL2 Spin Process

–1350–IL ! H1H2 → (Z/γ∗ →)lILl̄IL + X
–1360–IL ! H1H2 → (Z →)lILl̄IL + X
–1370–IL ! H1H2 → (γ∗ →)lILl̄IL + X
–1460–IL ! H1H2 → (W+ →)l+ILνIL + X
–1470–IL ! H1H2 → (W− →)l−ILν̄IL + X

–1396 × H1H2 → γ∗(→
∑

i fif̄i) + X
–1397 × H1H2 → Z0 + X
–1497 × H1H2 → W+ + X
–1498 × H1H2 → W− + X

–1600–ID H1H2 → H0 + X
–1705 H1H2 → bb̄ + X
–1706 7 7 × H1H2 → tt̄ + X

–2000–IC 7 × H1H2 → t/t̄ + X
–2001–IC 7 × H1H2 → t̄ + X
–2004–IC 7 × H1H2 → t + X

–2030 7 7 × H1H2 → tW−/t̄W+ + X
–2031 7 7 × H1H2 → t̄W+ + X
–2034 7 7 × H1H2 → tW− + X
–2040 7 7 × H1H2 → tH−/t̄H+ + X
–2041 7 7 × H1H2 → t̄H+ + X
–2044 7 7 × H1H2 → tH− + X

–2600–ID 1 7 × H1H2 → H0W+ + X
–2600–ID 1 i ! H1H2 → H0(W+ →)l+i νi + X
–2600–ID -1 7 × H1H2 → H0W− + X
–2600–ID -1 i ! H1H2 → H0(W− →)l−i ν̄i + X
–2700–ID 0 7 × H1H2 → H0Z + X
–2700–ID 0 i ! H1H2 → H0(Z →)lil̄i + X

–2850 7 7 × H1H2 → W+W− + X
–2860 7 7 × H1H2 → Z0Z0 + X
–2870 7 7 × H1H2 → W+Z0 + X
–2880 7 7 × H1H2 → W−Z0 + X

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO

Slide by S. Frixione

MC@NLO 4.0 [Oct 10]

IPROC IV IL1 IL2 Spin Process
–1706 i j ! H1H2 → (t →)bkfif ′

i(t̄ →)b̄lfjf ′
j + X

–2000–IC i ! H1H2 → (t →)bkfif ′
i/(t̄ →)b̄kfif ′

i + X
–2001–IC i ! H1H2 → (t̄ →)b̄kfif ′

i + X
–2004–IC i ! H1H2 → (t →)bkfif ′

i + X
–2030 i j ! H1H2 → (t →)bkfif ′

i(W
− →)fjf ′

j/
(t̄ →)b̄kfif ′

i(W
+ →)fjf ′

j + X
–2031 i j ! H1H2 → (t̄ →)b̄kfif ′

i(W
+ →)fjf ′

j + X
–2034 i j ! H1H2 → (t →)bkfif ′

i(W
− →)fjf ′

j + X
–2040 i ! H1H2 → (t →)bkfif ′

iH
−/

(t̄ →)b̄kfif ′
iH

+ + X
–2041 i ! H1H2 → (t̄ →)b̄kfif ′

iH
+ + X

–2044 i ! H1H2 → (t →)bkfif ′
iH

− + X
–2850 i j ! H1H2 → (W+ →)l+i νi(W− →)l−j ν̄j + X
–2870 i j ! H1H2 → (W+ →)l+i νi(Z0 →)l′j l̄

′
j + X

–2880 i j ! H1H2 → (W+ →)l−i ν̄i(Z0 →)l′j l̄
′
j + X

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO

MC@NLO 3.4 is in GENSER (thanks to M. Kirsanov and A. Ribon). A
GENSERisation script is now available (F. Stoeckli) and is being tested

Slide by S. Frixione

From MC@NLO to aMC@NLO

• MC@NLO framework is solid and mature
• Limitations only in the implementation not in the
 method

To overtake old weaknesses

• Compute automatically NLO cross sections
 MadGraph (4) for the Born
 MadFKS for the poles subtraction and for the finite
 part of the Real
 MadLoop (or other) for the finite part of the Virtual

• Compute automatically MC counterterms: aMC@NLO

aMC@NLO I: structure
MC =

�

pq,c,l∈c

δp∈l

Np

αS

(2π)2

�����
∂(t(l)p , z(l)p , φ)

∂Φ(+1)

�����
Pp→qr(z

(l)
p)|Mc|2B +Qp→qr(z

(l)
p)|�Mc|2

t(l)p

×

×Θ(DZ)dΦB(1− G(Φ(+1))) + dΦBdΦ(+1) R G(Φ(+1))

• mother and sister particles

• color flow / color line

• symmetry factor (1 for quarks, 2 for gluons)

• barred Born amplitude

 squared (Odagiri’s prescription)

p, q =

c, l =

Np =

|Mc|2B ≡ |Mc|2B�
c� |Mc� |2B

B =

aMC@NLO II: structure
MC =

�

pq,c,l∈c

δp∈l

Np

αS

(2π)2

�����
∂(t(l)p , z(l)p , φ)

∂Φ(+1)

�����
Pp→qr(z

(l)
p)|Mc|2B +Qp→qr(z

(l)
p)|�Mc|2

t(l)p

×

×Θ(DZ)dΦB(1− G(Φ(+1))) + dΦBdΦ(+1) R G(Φ(+1))

• azimuthal kernel

• barred azimuthal amplitude

• dead zone (built-in for HERWIG, imposed to
 PYTHIA)

• to recover correct soft limit

Qp→qr(z
(l)
p) =

Θ(DZ) =

|�Mc|2 =

G(Φ(+1)) =

aMC@NLO III: structure
MC =

�

pq,c,l∈c

δp∈l

Np

αS

(2π)2

�����
∂(t(l)p , z(l)p , φ)

∂Φ(+1)

�����
Pp→qr(z

(l)
p)|Mc|2B +Qp→qr(z

(l)
p)|�Mc|2

t(l)p

×

×Θ(DZ)dΦB(1− G(Φ(+1))) + dΦBdΦ(+1) R G(Φ(+1))

• Assignment of color flow and color partner (MC scales
 and variable definitions may depend on it)
• Computation of barred amplitudes (from jamp2)
• Shower variables definitions and jacobian computation
• Assign splitting type (ISR from leg 1 or 2, FSR from
 massive or massless leg)
• Compute the G-function
• Compute the AP kernels
• Compute the MC counterterms
• Modify fks_singular.f to compute S- and H- integrands

aMC@NLO IV: events generation

• Madfks/trunk/Template
• Set parameters for MadGraph, MadLoop, ...
• ./bin/newprocess_fks_orig
• ./compile_madfks.sh with option ‘mintMC’
• It generates the so-called ‘P-directories (basically one
 per FKS phase-space partition)
• ./run_madfks.sh steps 0, 1, 2 (see below): specify the
 PSMC at this stage
• Collect (not yet physical) events in LHE files

aMC@NLO V: events generation
Uses the MINT integrator (adapted to handle negative
weighted events)

Generates events in three steps:
• 0) Compute physical integral and integral of the
 absolute value to set up grids (channel by channel)
 Combine results: possibility to discard small channels

aMC@NLO V: events generation
Uses the MINT integrator (adapted to handle negative
weighted events)

Generates events in three steps:
• 0) Compute physical integral and integral of the
 absolute value to set up grids (channel by channel)
 Combine results: possibility to discard small channels
• 1) Refine integrals
 Combine results: compute how many events per
 channel

aMC@NLO V: events generation
Uses the MINT integrator (adapted to handle negative
weighted events)

Generates events in three steps:
• 0) Compute physical integral and integral of the
 absolute value to set up grids (channel by channel)
 Combine results: possibility to discard small channels
• 1) Refine integrals
 Combine results: compute how many events per
 channel
• 2) Generate unweighted (up to sign) events
 Collect events in a LHE file to be showered

Possibility to run separately B, S, H, V, R, no-V

aMC@NLO VI: showering phase

 Same structure as MC@NLO 4.0

• Set physics parameters in
 Madfks/trunk/MCatNLO/MCatNLO_MadFKS.inputs

• Set PSMC parameters in
 Madfks/trunk/MCatNLO/srcXX/madfks_XXdriver.f

• Define analyses routines in (topdrawer)

• Run . /MCatNLO_MadFKS.inputs (and get physical plots)

aMC@NLO VII: checks / validation

• IR limits / finiteness of S- and H- integrals
• Total cross section
• Symmetry properties (I did it for simple processes)

Checks

aMC@NLO VII: checks / validation

• IR limits / finiteness of S- and H- integrals
• Total cross section
• Symmetry properties (I did it for simple processes)

Checks

Validation

• Fixed process and parameters, all spectra have to
 coincide with MC@NLO (helped spotting a small
 mistake in the non-automatic implementation)

aMC@NLO VIII: status for HERWIG6

• Validated for all kinds of emission types (ISR, FSR
 massive...) against benchmark MC@NLO processes
 Agreement for all spectra

• Moved to new more complex processes (first time
 more than 2 final state particles)

✦ (paper)
✦
✦ (massive bottom: under way)
✦

pp → tt̄H / tt̄A+X

pp → (γ∗/Z∗) → e+e−µ+µ− +X

pp → bb̄H +X

pp → bb̄W± +X

Htt̄ and Att̄ with aMC@NLO

Solid: aMC@NLO scalar. Dashed: aMC@NLO pseudoscalar

Dotted: NLO scalar. Dotdashed: NLO pseudoscalar

Left: tt̄ invariant mass. Right: tt̄H pT

mH = mA = 120 GeV

Slide by S. Frixione

(W →)eνbb̄ with aMC@NLO

Solid: aMC@NLO. Dashed: aMC@LO Dotted: NLO. Dotdashed: LO

Left: bb̄ invariant mass (LO rescaled). Right: bb̄ pT (LO rescaled)

Slide by S. Frixione

aMC@NLO IX: status for PYTHIA6

• Validated for half of the emission types (ISR) against
 the only available MC@NLO processes
 Agreement for all spectra

• Last checks for FSR: still one subtlety missing about
 PSMC maximum scale (intense activity)

• Only virtuality-ordered shower at the moment

aMC@NLO X: status for other PSMC’s

• Herwig++: all needed formulae known (from
 MC@NLO 4.0), just need to implement them and
 debug / check / validate

aMC@NLO X: status for other PSMC’s

• Herwig++: all needed formulae known (from
 MC@NLO 4.0), just need to implement them and
 debug / check / validate

• PYTHIA6 - pT: formulae known for ISR (very similar
 to virtuality - ordered case) just need to type them
 and check.

aMC@NLO X: status for other PSMC’s

• Herwig++: all needed formulae known (from
 MC@NLO 4.0), just need to implement them and
 debug / check / validate

• PYTHIA6 - pT: formulae known for ISR (very similar
 to virtuality - ordered case) just need to type them
 and check.

• Pythia8: nothing done (but no conceptual obstacles)

Outlook

• MC@NLO well established theoretically

• aMC@NLO is reaching maturity

• Will receive huge benefits form MG5

• Approaching the era of fully matched NLO+PSMC
computations!

Thank you

