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 Cross section factorization in the collinear limit
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•        virtuality of particle    (could be its     or       ...)
   it represents the hardness of the branching
•        energy fraction of parton   relative to 
•                  Altarelli - Parisi splitting kernel
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Multiple emission
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Factorized rate for multiple emission

Parton Shower Monte Carlo knows about the Leading 
Logarithmic (LL)  collinear approximation of the total rate
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Emission probability
Differential probability for the 
branching            at scale  :t

No emission probability between scales      and  :Q2 t
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Probability of first 
branching at scale  :t

dPa(Q
2, t) = ∆a(Q

2, t) dp(t)

∆a(Q
2, t) is called Sudakov form factor



Properties I: Sudakov form factor

• Sudakov form factor              is the probability of no-
   emission between scales      and 
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• Emission probability only depends on particle identity
   and scales (Markov chain)



Properties I: Sudakov form factor
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   emission between scales      and 
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• Branching + no-branching probability = 1 (unitarity):
   all virtual emissions automatically taken into account
   (approximately) 

• Emission probability only depends on particle identity
   and scales (Markov chain)



Properties II: unitarity
Cross section for 0 or 1 emission in the Parton Shower

normalization 
(Born)

no-emission
1 emission at scale t

Expand at first order in  αS
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Practical implementation

• Extract the evolution scale of the branching by
   solving the equation                     , with      a flat
   random number between 0 and 1
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Practical implementation

• Extract the evolution scale of the branching by
   solving the equation                     , with      a flat
   random number between 0 and 1

• Extract the energy sharing    and the daughters
   identities    and    according to

• Extract    uniformly between 0 and  

• Reiterate the procedure until         : if           put
   partons on-shell and hadronize (non perturbative)

∆a(Q
2, t) = R# R#
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φ 2π

t ≥ Q2
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Differences among PSMC’s

Mainly : choice of the evolution variable a
b

c
θ

• HERWIG6:
 
• Herwig++: 
 
• PYTHIA6:
 
• Pythia 8:
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Naive matching at NLO 1

Structure of an NLO cross section

Born 

Virtual (infinite)

Real (infinite) } Finite (KLN)

Naive definition

      is the PSMC emission probability obtained 
showering from a     bodies hard kinematicsk−

dσNLO = dΦB

�
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�
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I(k)MC



Naive matching at NLO II

This simple approach does not work:

• Instability: weights associated to       and         
   are separately divergent (regulate them, but inefficient
   unweighting)

I(n)MC I(n+1)
MC

dσMC@NLO = [dΦB(B + V )] I(n)MC +
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I(n+1)
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Naive matching at NLO II

This simple approach does not work:

• Instability: weights associated to       and         
   are separately divergent (regulate them, but inefficient
   unweighting)

• Double counting:              expanded at NLO does not
   coincide with NLO rate.  Some configurations are
   dealt with by both the NLO and the PSMC
   

I(n)MC I(n+1)
MC

dσMC@NLO = [dΦB(B + V )] I(n)MC +
�
dΦBdΦ(+1) R

�
I(n+1)
MC

dσ(naive)
MC@NLO



MC@NLO I: modified subtraction
Modify the naive formula

Rough structure of the Monte Carlo counterterm: 

MC =
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αS

2π

1

2π
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• It is the cross section for the first emission in the MC
   (more on the its details later)

• It essentially depends on PSMC one is interfacing to

dσMC@NLO =

�
dΦB(B + V +
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MC@NLO II: FKS
Deal with infinite cancellations: subtraction method.
MC@NLO uses Frixione-Kunszt-Signer formalism

• Partition the phase space with a set of functions each
   of which selects one soft and one collinear singularity
   and whose sum is 1
• Perform analytically the cancellation of the IR poles
  (MC is a local counterterm) in each singular region
   separately
• Sum the finite leftovers

A different parametrization in each region is possible



MC@NLO III: properties
Nice features of the modified subtraction:

• Stability: weights associated to different kinematics are
   now separately finite. The MC term has the same
   collinear poles as the real (subtlety for the soft poles)
• Double counting avoided: the rate expanded at NLO
   coincides with the total NLO cross section



MC@NLO III: properties
Nice features of the modified subtraction:

• Stability: weights associated to different kinematics are
   now separately finite. The MC term has the same
   collinear poles as the real (subtlety for the soft poles)
• Double counting avoided: the rate expanded at NLO
   coincides with the total NLO cross section
• Smooth matching: MC@NLO predictions coincide with   
   the MC in shape in the soft and collinear region, with
   the NLO in the hard region
• Normalization: MC@NLO is normalized to NLO

Integrands associated with      and            kinematics 
are called S (for standard) and H (for hard), respectively 

n− (n+ 1)−



MC@NLO IV: properties

• More on (no) double counting
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Expand at NLO
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MC@NLO IV: properties

• More on (no) double counting

• More on smooth matching
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✦ Soft-collinear region: MC � R =⇒ dσMC@NLO ∝ I(n)MC

✦ Hard region: sensible     expansion
  (shower effects cancel at         and NLO = Real)
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dσMC@NLO =

�
dΦB(B + V +
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S- and H- integrands can be negative somewhere :  
MC@NLO is not positive-definite (negative weights)
 
• Compute S- and H- integrals (        ) and integrals of
   the absolute value of the S- and H- integrands (        )

• Generate events distributed according to         
   (probability distributions are positive definite) but
   assign them a weight with sign    depending on
   (unweighting up to a sign)

IS, IH

JS, JH

Fraction of negative weights : 

MC@NLO V: implementation

JS, JH

IS, IH±

f (neg)
S,H =

1

2

�
1− IS,H

JS,H

�



MC@NLO VI: negative weights
Negative fractions expected to be reasonably small
(LO is dominant and positive definite)

Is it a problem to have negative weights?

No : after showering MC@NLO distributions are positive 
definite (asymptotically) and physical

Fraction of negative weights just affects the efficiency, i.e. 
the ‘threshold’ beyond which smooth spectra are obtained 
(the less the negative weights the smoother the spectrum) 



MC@NLO VII: old limitations

• Lack of a systematic approach
✦ One code per process / simple processes only
✦ Necessary slowness in including new processes
✦ Necessary slowness in adding a new PSMC

• Possibly different parametrizations for different
   processes
• Approximations here and there

Fortran HERWIG:   from 2002, O(30) processes
Herwig++:              from 2007, the same
Fortran PYTHIA:     from 2008, 2 processes



MC@NLO 4.0 [Oct 10]
IPROC IV IL1 IL2 Spin Process

–1350–IL ! H1H2 → (Z/γ∗ →)lILl̄IL + X
–1360–IL ! H1H2 → (Z →)lILl̄IL + X
–1370–IL ! H1H2 → (γ∗ →)lILl̄IL + X
–1460–IL ! H1H2 → (W+ →)l+ILνIL + X
–1470–IL ! H1H2 → (W− →)l−ILν̄IL + X

–1396 × H1H2 → γ∗(→
∑

i fif̄i) + X
–1397 × H1H2 → Z0 + X
–1497 × H1H2 → W+ + X
–1498 × H1H2 → W− + X

–1600–ID H1H2 → H0 + X
–1705 H1H2 → bb̄ + X
–1706 7 7 × H1H2 → tt̄ + X

–2000–IC 7 × H1H2 → t/t̄ + X
–2001–IC 7 × H1H2 → t̄ + X
–2004–IC 7 × H1H2 → t + X

–2030 7 7 × H1H2 → tW−/t̄W+ + X
–2031 7 7 × H1H2 → t̄W+ + X
–2034 7 7 × H1H2 → tW− + X
–2040 7 7 × H1H2 → tH−/t̄H+ + X
–2041 7 7 × H1H2 → t̄H+ + X
–2044 7 7 × H1H2 → tH− + X

–2600–ID 1 7 × H1H2 → H0W+ + X
–2600–ID 1 i ! H1H2 → H0(W+ →)l+i νi + X
–2600–ID -1 7 × H1H2 → H0W− + X
–2600–ID -1 i ! H1H2 → H0(W− →)l−i ν̄i + X
–2700–ID 0 7 × H1H2 → H0Z + X
–2700–ID 0 i ! H1H2 → H0(Z →)lil̄i + X

–2850 7 7 × H1H2 → W+W− + X
–2860 7 7 × H1H2 → Z0Z0 + X
–2870 7 7 × H1H2 → W+Z0 + X
–2880 7 7 × H1H2 → W−Z0 + X

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO

Slide by S. Frixione



MC@NLO 4.0 [Oct 10]

IPROC IV IL1 IL2 Spin Process
–1706 i j ! H1H2 → (t →)bkfif ′

i(t̄ →)b̄lfjf ′
j + X

–2000–IC i ! H1H2 → (t →)bkfif ′
i/(t̄ →)b̄kfif ′

i + X
–2001–IC i ! H1H2 → (t̄ →)b̄kfif ′

i + X
–2004–IC i ! H1H2 → (t →)bkfif ′

i + X
–2030 i j ! H1H2 → (t →)bkfif ′

i(W
− →)fjf ′

j/
(t̄ →)b̄kfif ′

i(W
+ →)fjf ′

j + X
–2031 i j ! H1H2 → (t̄ →)b̄kfif ′

i(W
+ →)fjf ′

j + X
–2034 i j ! H1H2 → (t →)bkfif ′

i(W
− →)fjf ′

j + X
–2040 i ! H1H2 → (t →)bkfif ′

iH
−/

(t̄ →)b̄kfif ′
iH

+ + X
–2041 i ! H1H2 → (t̄ →)b̄kfif ′

iH
+ + X

–2044 i ! H1H2 → (t →)bkfif ′
iH

− + X
–2850 i j ! H1H2 → (W+ →)l+i νi(W− →)l−j ν̄j + X
–2870 i j ! H1H2 → (W+ →)l+i νi(Z0 →)l′j l̄

′
j + X

–2880 i j ! H1H2 → (W+ →)l−i ν̄i(Z0 →)l′j l̄
′
j + X

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO

MC@NLO 3.4 is in GENSER (thanks to M. Kirsanov and A. Ribon). A
GENSERisation script is now available (F. Stoeckli) and is being tested

Slide by S. Frixione



From MC@NLO to aMC@NLO

• MC@NLO framework is solid and mature
• Limitations only in the implementation not in the
  method

To overtake old weaknesses

• Compute automatically NLO cross sections
  MadGraph (4) for the Born
  MadFKS for the poles subtraction and for the finite
  part of the Real
  MadLoop (or other) for the finite part of the Virtual

• Compute automatically MC counterterms:  aMC@NLO



aMC@NLO I: structure
MC =

�

pq,c,l∈c

δp∈l

Np

αS

(2π)2

�����
∂(t(l)p , z(l)p , φ)

∂Φ(+1)

�����
Pp→qr(z

(l)
p )|Mc|2B +Qp→qr(z

(l)
p )|�Mc|2

t(l)p

×

×Θ(DZ)dΦB(1− G(Φ(+1))) + dΦBdΦ(+1) R G(Φ(+1))

•            mother and sister particles

•            color flow / color line

•           symmetry factor (1 for quarks, 2 for gluons)

•                                       barred Born amplitude

 squared (Odagiri’s prescription)

p, q =

c, l =

Np =

|Mc|2B ≡ |Mc|2B�
c� |Mc� |2B

B =



aMC@NLO II: structure
MC =

�

pq,c,l∈c

δp∈l

Np

αS

(2π)2

�����
∂(t(l)p , z(l)p , φ)

∂Φ(+1)

�����
Pp→qr(z

(l)
p )|Mc|2B +Qp→qr(z

(l)
p )|�Mc|2

t(l)p

×

×Θ(DZ)dΦB(1− G(Φ(+1))) + dΦBdΦ(+1) R G(Φ(+1))

•                       azimuthal kernel
 
•               barred azimuthal amplitude

•                 dead zone (built-in for HERWIG, imposed to
   PYTHIA)

•                   to recover correct soft limit

Qp→qr(z
(l)
p ) =

Θ(DZ) =

|�Mc|2 =

G(Φ(+1)) =



aMC@NLO III: structure
MC =

�

pq,c,l∈c

δp∈l

Np

αS

(2π)2

�����
∂(t(l)p , z(l)p , φ)

∂Φ(+1)

�����
Pp→qr(z

(l)
p )|Mc|2B +Qp→qr(z

(l)
p )|�Mc|2

t(l)p

×

×Θ(DZ)dΦB(1− G(Φ(+1))) + dΦBdΦ(+1) R G(Φ(+1))

• Assignment of color flow and color partner (MC scales  
  and variable definitions may depend on it)
• Computation of barred amplitudes (from jamp2)
• Shower variables definitions and jacobian computation
• Assign splitting type (ISR from leg 1 or 2, FSR from
  massive or massless leg)
• Compute the G-function
• Compute the AP kernels
• Compute the MC counterterms
• Modify fks_singular.f to compute S- and H- integrands



aMC@NLO IV: events generation

• Madfks/trunk/Template
• Set parameters for MadGraph, MadLoop, ...
• ./bin/newprocess_fks_orig
• ./compile_madfks.sh with option ‘mintMC’
• It generates the so-called ‘P-directories (basically one
  per FKS phase-space partition)
• ./run_madfks.sh steps 0,  1,  2 (see below): specify the
   PSMC at this stage
• Collect (not yet physical) events in LHE files



aMC@NLO V: events generation
Uses the MINT integrator (adapted to handle negative
weighted events)

Generates events in three steps:
• 0) Compute physical integral and integral of the
   absolute value to set up grids (channel by channel)
   Combine results: possibility to discard small channels
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aMC@NLO V: events generation
Uses the MINT integrator (adapted to handle negative
weighted events)

Generates events in three steps:
• 0) Compute physical integral and integral of the
   absolute value to set up grids (channel by channel)
   Combine results: possibility to discard small channels
• 1) Refine integrals
   Combine results: compute how many events per 
   channel
• 2) Generate unweighted (up to sign) events
   Collect events in a LHE file to be showered

Possibility to run separately B,  S,  H,  V,  R,  no-V



aMC@NLO VI: showering phase

 Same structure as MC@NLO 4.0

• Set physics parameters in 
   Madfks/trunk/MCatNLO/MCatNLO_MadFKS.inputs

• Set PSMC parameters in
   Madfks/trunk/MCatNLO/srcXX/madfks_XXdriver.f

• Define analyses routines in (topdrawer)

• Run . /MCatNLO_MadFKS.inputs (and get physical plots)



aMC@NLO VII: checks / validation

• IR limits / finiteness of S- and H- integrals
• Total cross section
• Symmetry properties (I did it for simple processes)

Checks



aMC@NLO VII: checks / validation

• IR limits / finiteness of S- and H- integrals
• Total cross section
• Symmetry properties (I did it for simple processes)

Checks

Validation

• Fixed process and parameters, all spectra have to
  coincide with MC@NLO (helped spotting a small
  mistake in the non-automatic implementation)



aMC@NLO VIII: status for HERWIG6

• Validated for all kinds of emission types (ISR,  FSR
  massive...) against benchmark MC@NLO processes
   Agreement for all spectra

• Moved to new more complex processes (first time
   more than 2 final state particles)

✦                                 (paper)
✦                                           
✦                           (massive bottom: under way)
✦                          

pp → tt̄H / tt̄A+X

pp → (γ∗/Z∗) → e+e−µ+µ− +X

pp → bb̄H +X

pp → bb̄W± +X



Htt̄ and Att̄ with aMC@NLO

Solid: aMC@NLO scalar. Dashed: aMC@NLO pseudoscalar

Dotted: NLO scalar. Dotdashed: NLO pseudoscalar

Left: tt̄ invariant mass. Right: tt̄H pT

mH = mA = 120 GeV

Slide by S. Frixione



(W →)eνbb̄ with aMC@NLO

Solid: aMC@NLO. Dashed: aMC@LO Dotted: NLO. Dotdashed: LO

Left: bb̄ invariant mass (LO rescaled). Right: bb̄ pT (LO rescaled)

Slide by S. Frixione



aMC@NLO IX: status for PYTHIA6

• Validated for half of the emission types (ISR) against 
  the only available MC@NLO processes
   Agreement for all spectra

• Last checks for FSR: still one subtlety missing about 
  PSMC maximum scale (intense activity)

• Only virtuality-ordered shower at the moment



aMC@NLO X: status for other PSMC’s

• Herwig++: all needed formulae known (from 
   MC@NLO 4.0), just need to implement them and
   debug / check / validate
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aMC@NLO X: status for other PSMC’s

• Herwig++: all needed formulae known (from 
   MC@NLO 4.0), just need to implement them and
   debug / check / validate

• PYTHIA6 - pT: formulae known for ISR (very similar
   to virtuality - ordered case) just need to type them
   and check.

• Pythia8: nothing done (but no conceptual obstacles)



Outlook

• MC@NLO well established theoretically

• aMC@NLO is reaching maturity 

• Will receive huge benefits form MG5

• Approaching the era of fully matched NLO+PSMC 
computations!

Thank you


