MadGOLEM and the NLO Subtleties

MadGraph Spring Meeting 2011

Dorival Gonçalves Netto

in collaboration with D. Lopez-Val, F. Gross, T. Plehn K. Mawatari (Vrije U. Brussel) & I. Wigmore (U. Edinburgh)

ITP - Universität Heidelberg

Institut für Theoretische Physik Ruprecht-Karls Universität Heidelberg

Outline

- Motivations
- Catani & Seymour Subtraction Method for SUSY
- On-Shell Subtraction Method
- Conclusions

Motivations

- Leading order (LO)
 - Finite by definition: external partons well separated in phase space
 - Mighly automated: MadGraph/MadEvent, CompHep, Alpgen, Amegic++/Sherpa...
- Next-to-leading order (NLO)
 - More Precise! Less sensibility from factorization/renormalization scales
 - Not yet fully automated in a process independent approach
 - MadGOLEM: Fully automated tool to perform NLO (SUSY-QCD) in a process independent approach (main focus on SUSY models)
 - Under development

Motivations

- MadGOLEM approach against divergencies:
 - IR divergencies
 - On-shell propagators
- Two main technics in the market to overcome these problems:
 - I) Phase space slicing
 - Introduce a phase space cut δ to be set very small
 - Very crude and increasingly unpopular method

II) Subtraction Methods

- Introduces a local counter term which exactly matches the singular behaviour

Motivations

- MadGOLEM approach against divergencies:
 - IR divergencies

Catani-Seymour Subtraction Method

Massless: S. Catani, M.H. Seymour, 1997

Massive: S. Catani, S. Dittmaier, M.H. Seymour, Z. Trocsanyi, 2002

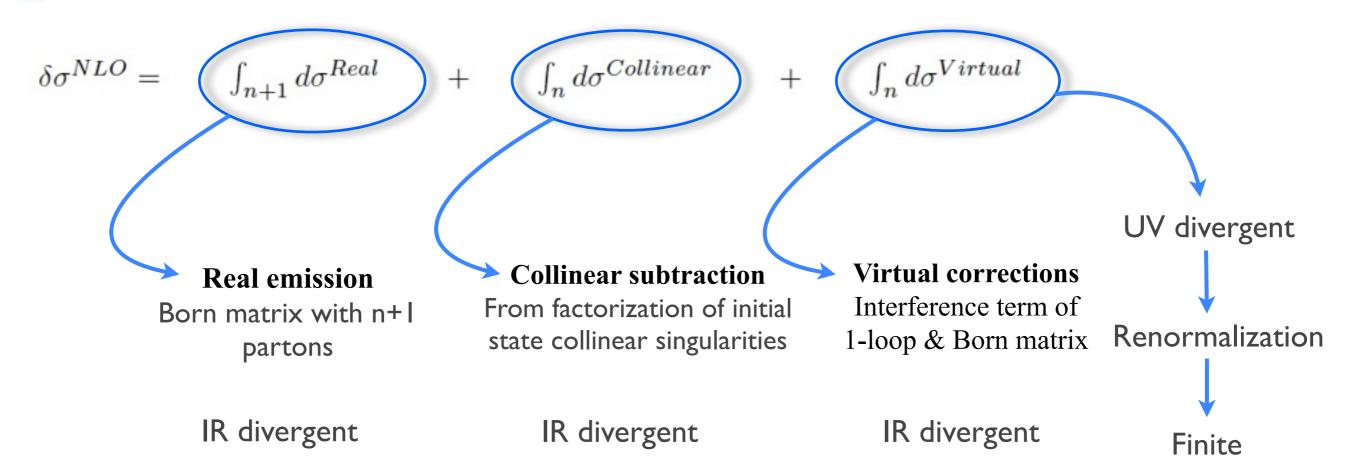
On-shell propagators

On-Shell Subtraction Method

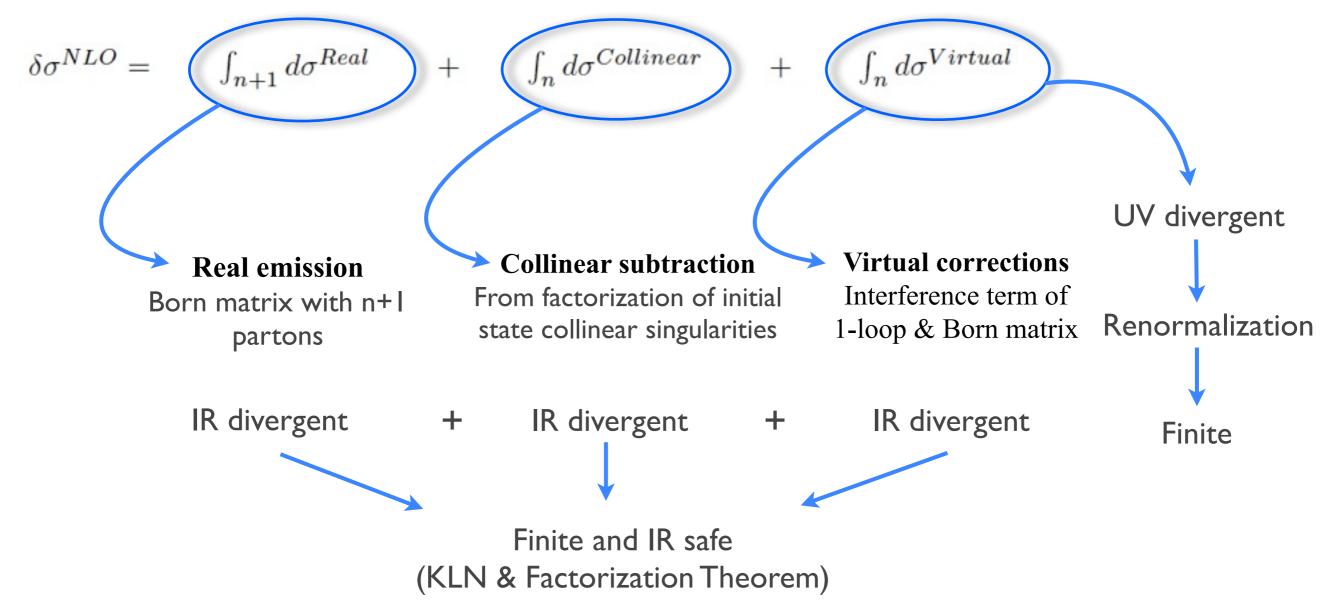
W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Nucl. Phys. B 492, 51 (1997)

- Two main technics in the market to overcome these problems:
 - I) Phase space slicing
 - Introduce a phase space cut δ to be set very small
 - Very crude and increasingly unpopular method
 - II) Subtraction Methods
 - Introduces a local counter term which exactly matches the singular behaviour

NLO schematically



NLO schematically



Problem:

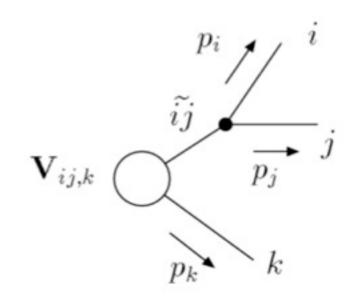
How to get finite individual contributions from MC methods?

CS Subtraction Method: construction of local counter terms using the universality of soft and collinear limits

$$|\mathcal{M}_{n+1}|^2 \to |\mathcal{M}_n|^2 \otimes V_{ij,k}$$
 $d\sigma^A \equiv \sum_{dipoles} d\sigma^B \otimes dV_{dipole}$

$$\delta\sigma^{NLO} = \int_{n+1} \left(d\sigma^{Real}_{\varepsilon=0} \, - \, \frac{d\sigma^A_{\varepsilon=0}}{} \right) \ + \ \int_n \left(d\sigma^{Collinear} \, + \, d\sigma^{Virtual} \, + \, \int_1 \frac{d\sigma^A}{} \right)_{\varepsilon=0}$$

Vij,k is a singular factor, and depends only on the quantum numbers of i, j and k, and on their momenta. It is completely process independent.

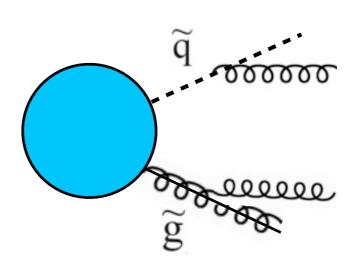


CS Subtraction Method: construction of local counter terms using the universality of soft and collinear limits

$$|\mathcal{M}_{n+1}|^2 \to |\mathcal{M}_n|^2 \otimes V_{ij,k}$$
 $d\sigma^A \equiv \sum_{dipoles} d\sigma^B \otimes dV_{dipole}$

$$\delta\sigma^{NLO} = \int_{n+1} \left(d\sigma^{Real}_{\varepsilon=0} \, - \, \frac{d\sigma^{A}_{\varepsilon=0}}{d\sigma^{\varepsilon}} \right) \ + \ \int_{n} \left(d\sigma^{Collinear} \, + \, d\sigma^{Virtual} \, + \, \int_{1} \frac{d\sigma^{A}}{d\sigma^{\varepsilon}} \right)_{\varepsilon=0}$$

- We use the MadDipole package for the SM dipoles
- R. Frederix T. Gehrmann, N. Greiner hep-ph/0808.2128 & 1004.2905
- $|D_{\mu}\tilde{q}|^2 \& \bar{\tilde{g}} \not \!\! D \tilde{g}$ induces a gluon emission from the squark & gluino legs:
 - → IR singularities in the real emission
 - → Need of SUSY dipoles

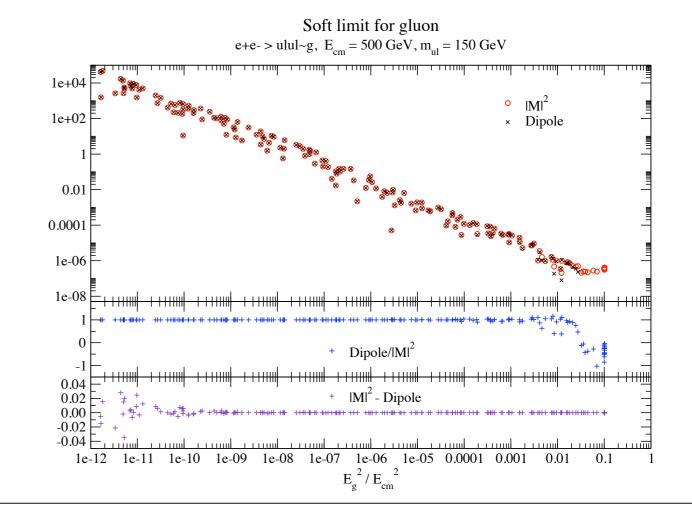


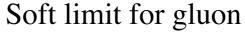
CS Subtraction Method: construction of local counter terms using the universality of soft and collinear limits

$$|\mathcal{M}_{n+1}|^2 \to |\mathcal{M}_n|^2 \otimes V_{ij,k}$$
 $d\sigma^A \equiv \sum_{dipoles} d\sigma^B \otimes dV_{dipole}$

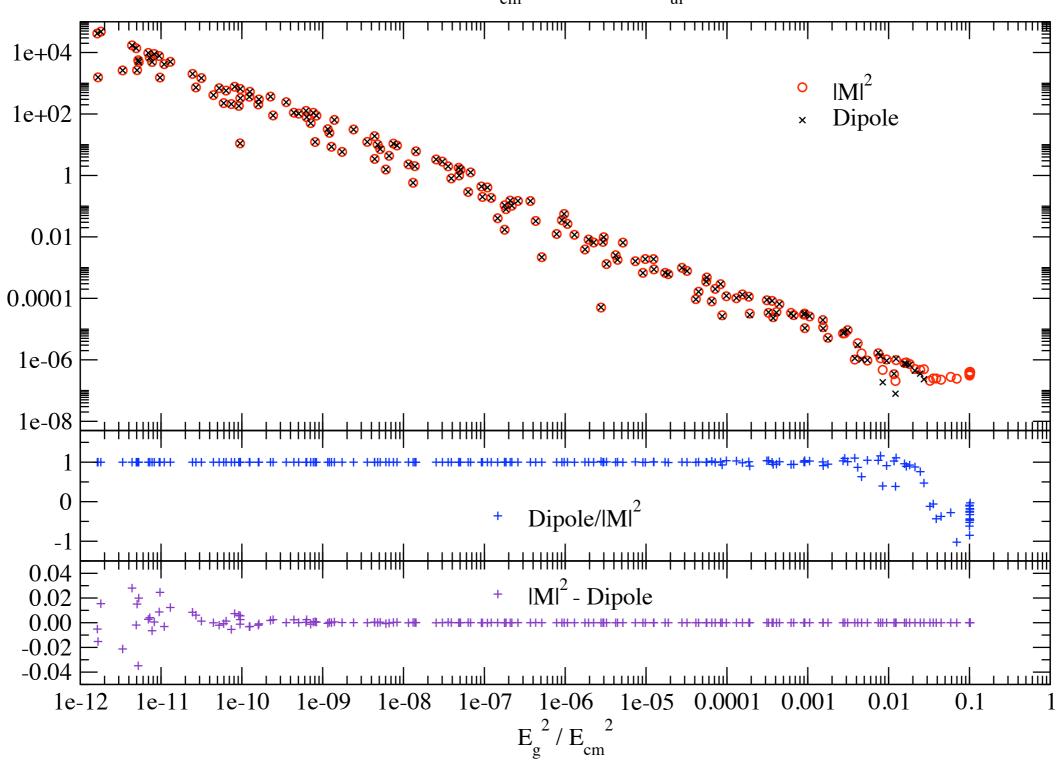
$$\delta\sigma^{NLO} = \int_{n+1} \left(d\sigma^{Real}_{\varepsilon=0} \, - \, \frac{d\sigma^{A}_{\varepsilon=0}}{d\sigma^{\varepsilon}} \right) \ + \ \int_{n} \left(d\sigma^{Collinear} \, + \, d\sigma^{Virtual} \, + \, \int_{1} \frac{d\sigma^{A}}{d\sigma^{\varepsilon}} \right)_{\varepsilon=0}$$

- We use the MadDipole package for the SM dipoles
- We extend this package with the SUSY dipoles





 $e+e- > ulul \sim g$, $E_{cm} = 500 \text{ GeV}$, $m_{ul} = 150 \text{ GeV}$



CS Subtraction Method: construction of local counter terms using the universality of soft and collinear limits

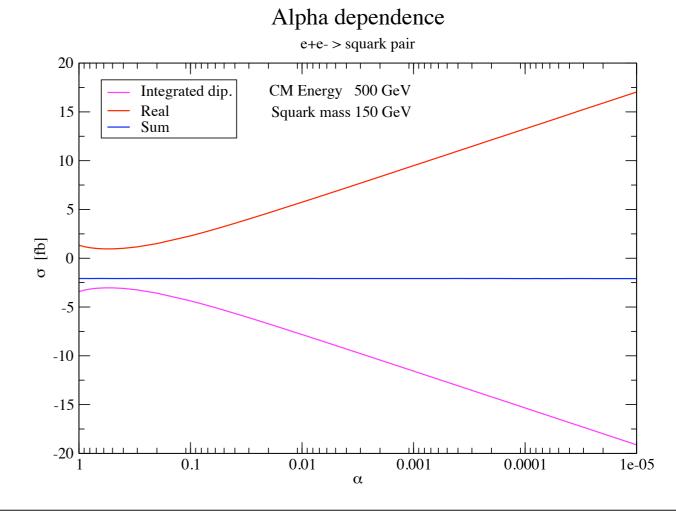
$$|\mathcal{M}_{n+1}|^2 \to |\mathcal{M}_n|^2 \otimes V_{ij,k}$$
 $d\sigma^A \equiv \sum_{dipoles} d\sigma^B \otimes dV_{dipole}$

$$\delta\sigma^{NLO} = \int_{n+1} \left(d\sigma^{Real}_{\varepsilon=0} \, - \, \frac{d\sigma^{A}_{\varepsilon=0}}{d\sigma^{\varepsilon}} \right) \ + \ \int_{n} \left(d\sigma^{Collinear} \, + \, d\sigma^{Virtual} \, + \, \int_{1} \frac{d\sigma^{A}}{d\sigma^{\varepsilon}} \right)_{\varepsilon=0}$$

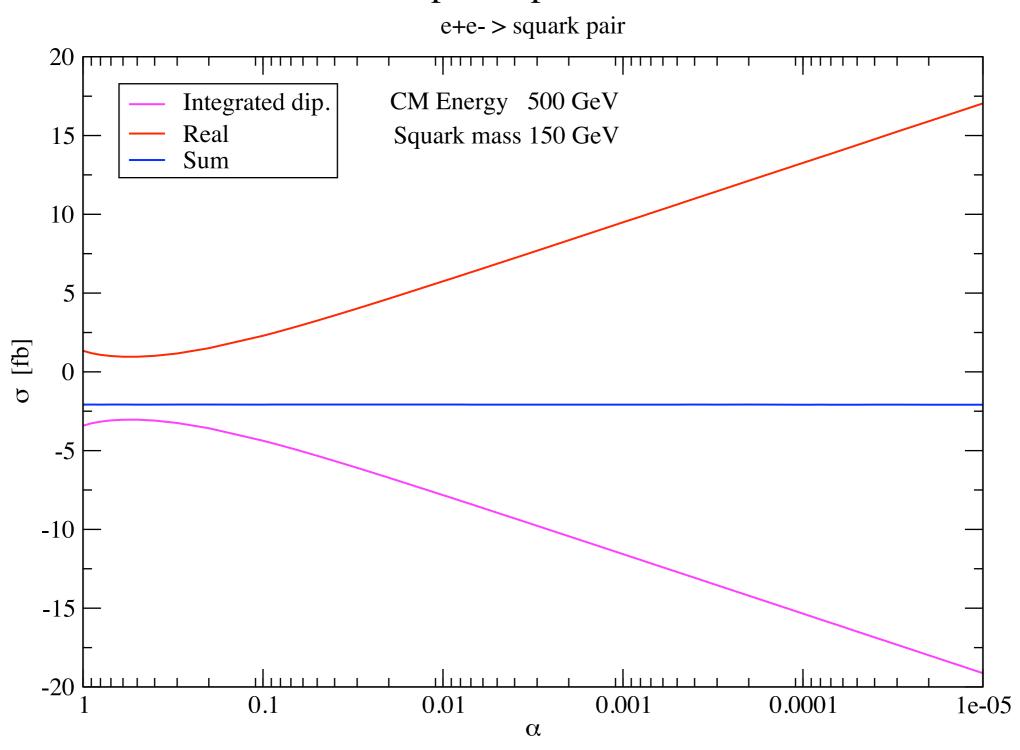
- We use the MadDipole package for the SM dipoles
- We extend this package with the SUSY dipoles
- Derivation and implementation of alpha parameter (avoid calculations far from the divergencies)

$$\mathcal{D}'_{ij,k} = \mathcal{D}_{ij,k}\theta (y_{ij,k} < \alpha), \quad \alpha \in [0,1]$$

Used in the SM case by Z. Nagy, Z. Trocsanyi. hep-ph/9806317



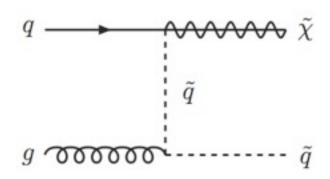
Alpha dependence

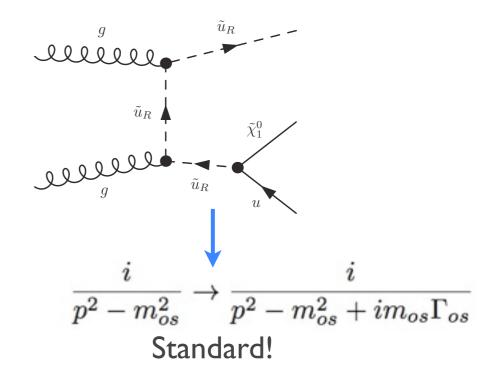


Beyond UV & IR div. another type of div. can occur, namely OS intermediate states

• Ex: $pp \rightarrow sq\chi_1$

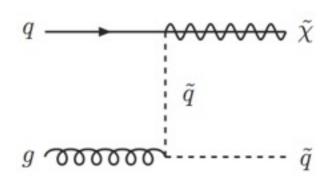
@NLO new incoming states for $(sq\chi_1 + jets)$

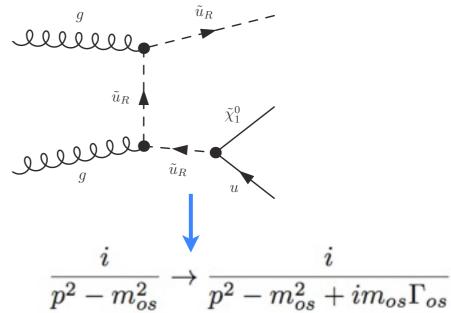




Beyond UV & IR div. another type of div. can occur, namely OS intermediate states

Ex: pp \rightarrow sq χ_1





Although this pole is showing another feature:
This higher order amplitude is smoothly connected to the Born one

Double counting!

Differentiation between Off & On-shell production to avoid double counting

$$gg \to \tilde{q}\bar{\tilde{q}}^* \to \tilde{q}\chi_1\bar{q}$$

Squark neutralino production

$$gg o ilde{q} ar{ ilde{q}} * BR(ar{ ilde{q}} o \chi_1 ar{q})$$
 Squark pair production

$$|\mathcal{M}^{\mathcal{OS}}_{gg \to \tilde{q}\chi_1 \bar{q}}|^2 \to |\mathcal{M}^{\mathcal{OS}}_{gg \to \tilde{q}\bar{\tilde{q}}}|^2 \frac{m_{\tilde{q}}\Gamma_{\tilde{q}}/\pi}{\left(M^2 - m_{\tilde{q}}^2\right)^2 + m_{\tilde{q}}^2\Gamma_{\tilde{q}}^2} BR\left(\bar{\tilde{q}} \to \chi_1 \bar{q}\right)$$

$$\xrightarrow{\Gamma_{\tilde{q}} \to 0} |\mathcal{M}^{\mathcal{OS}}_{gg \to \tilde{q}\bar{\tilde{q}}}|^2 \delta\left(M^2 - m_{\tilde{q}}^2\right) BR\left(\bar{\tilde{q}} \to \chi_1 \bar{q}\right)$$

- One way to avoid this double counting is to apply the cut $|M-m_{os}|>n\Gamma$
- Very crude approximation

Differentiation between Off & On-shell production to avoid double counting

$$gg \to \tilde{q}\bar{\tilde{q}}^* \to \tilde{q}\chi_1\bar{q}$$

Squark neutralino production

$$gg \to \tilde{q}\bar{\tilde{q}} * BR(\bar{\tilde{q}} \to \chi_1\bar{q})$$

Squark pair production

$$|\mathcal{M}^{\mathcal{OS}}_{gg\to\tilde{q}\chi_1\bar{q}}|^2 \to |\mathcal{M}^{\mathcal{OS}}_{gg\to\tilde{q}\bar{\tilde{q}}}|^2 \frac{m_{\tilde{q}}\Gamma_{\tilde{q}}/\pi}{\left(M^2-m_{\tilde{q}}^2\right)^2+m_{\tilde{q}}^2\Gamma_{\tilde{q}}^2} BR\left(\bar{\tilde{q}}\to\chi_1\bar{q}\right)$$

$$\to |\mathcal{M}^{\mathcal{OS}}_{gg\to\tilde{q}\bar{\tilde{q}}}|^2\delta\left(M^2-m_{\tilde{q}}^2\right)BR\left(\bar{\tilde{q}}\to\chi_1\bar{q}\right)$$

$$\Gamma_{\tilde{a}}\to 0 \quad |\mathcal{M}^{\mathcal{OS}}_{gg\to\tilde{q}\bar{\tilde{q}}}|^2\delta\left(M^2-m_{\tilde{q}}^2\right)BR\left(\bar{\tilde{q}}\to\chi_1\bar{q}\right)$$

- One way to avoid this double counting is to apply the cut |M-mos|>nF
- Very crude approximation
- We want a local counter term which subtracts the pole in gauge inv. approach!
 - On-Shell Subtraction Method W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Nucl. Phys. B 492, 51 (1997)

- On-Shell subtraction method (W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas '97)
- \bigcirc Propagator must contain a finite width Γ_{OS} , regarded as a regulator

$$\frac{i}{p^2-m_{OS}^2} \rightarrow \frac{i}{p^2-m_{OS}^2+im_{OS}\Gamma_{OS}}$$

 $|\mathcal{M}|^2 = |\mathcal{M}_{res}|^2 + 2Re\left[\mathcal{M}_{res}^*\mathcal{M}_{rem}\right] + |\mathcal{M}_{rem}|^2$

With spin correlations!
Gauge Invariant!

The OS Subtraction term can be written as:

$$\frac{d\sigma^{os}}{d\sigma^{os}} = \sum_{os\;part.} |\mathcal{M^{OS}}_{res}|^2 \left(m_{os}\Gamma_{os}\pi\right) \frac{m_{os}\Gamma_{os}/\pi}{(M^2 - m_{os}^2)^2 + m_{os}^2\Gamma_{os}^2} \theta \left(m_{os} - m_{os\;decay}\right)$$

$$\sigma^{Real}\left(\Gamma_{os}
ight)=\int_{n+1}d\Phi_{n+1}\left[\left(|\mathcal{M}_{res}|^2-d\sigma^{os}
ight)+2Re\left[\mathcal{M}_{res}^*\mathcal{M}_{rem}
ight]+|\mathcal{M}_{rem}|^2-d\sigma^A
ight]$$

- On-Shell subtraction method (W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas '97)
- \bigcirc Propagator must contain a finite width Γ_{OS} , regarded as a regulator

$$\frac{i}{p^2-m_{OS}^2} \rightarrow \frac{i}{p^2-m_{OS}^2+im_{OS}\Gamma_{OS}}$$

 $|\mathcal{M}|^2 = |\mathcal{M}_{res}|^2 + 2Re\left[\mathcal{M}_{res}^*\mathcal{M}_{rem}\right] + |\mathcal{M}_{rem}|^2$

With spin correlations!
Gauge Invariant!

The OS Subtraction term can be written as:

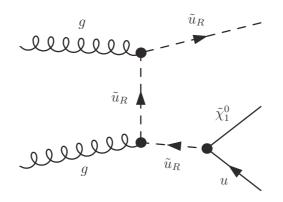
$$\frac{d\sigma^{os}}{d\sigma^{os}} = \sum_{os\ part.} |\mathcal{M}^{\mathcal{OS}}_{res}|^2 \left(m_{os} \Gamma_{os} \pi \right) \frac{m_{os} \Gamma_{os} / \pi}{(M^2 - m_{os}^2)^2 + m_{os}^2 \Gamma_{os}^2} \theta \left(m_{os} - m_{os\ decay} \right)$$

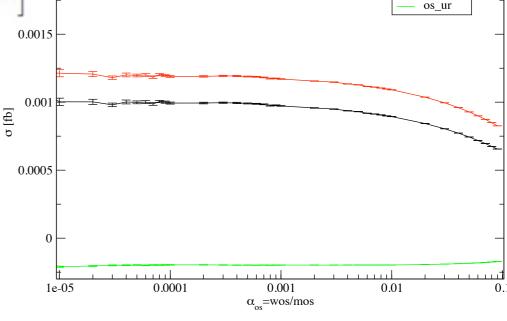
On-Shell Subtraction

Non div

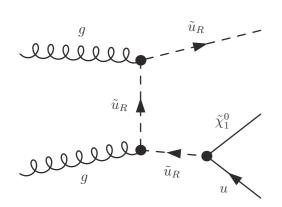
 $\sigma^{Real}\left(\Gamma_{os}
ight)=\int_{n+1}d\Phi_{n+1}\left[\left(|\mathcal{M}_{res}|^2-d\sigma^{os}
ight)+2Re\left[\mathcal{M}_{res}^*\mathcal{M}_{rem}
ight]+|\mathcal{M}_{rem}|^2-d\sigma^A
ight]_{0.0015}$

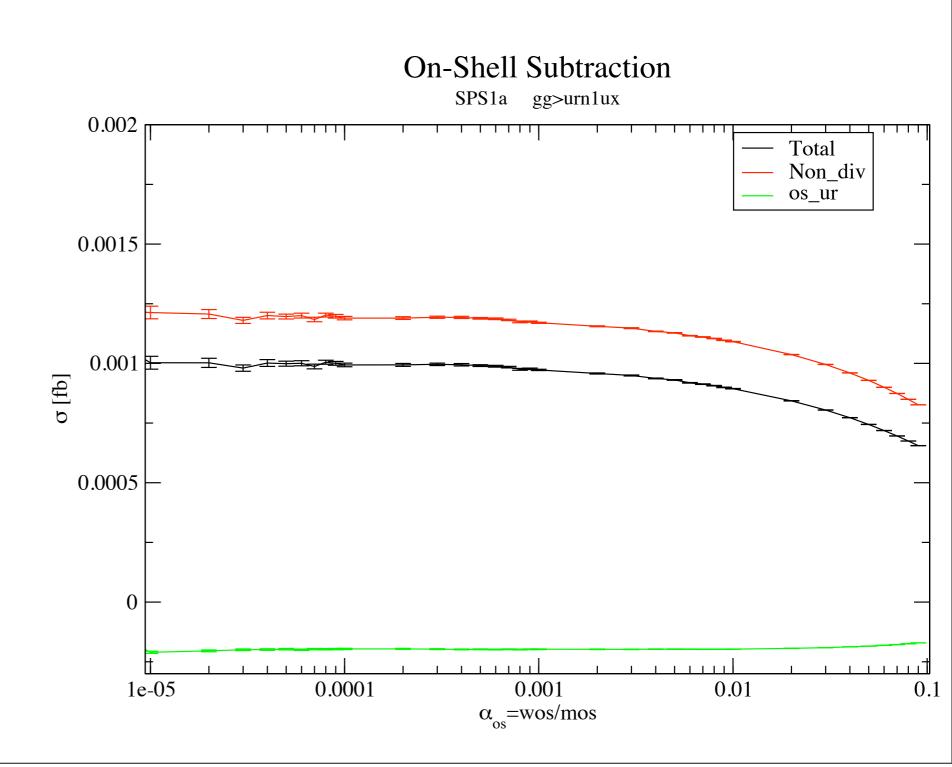
I possible OS particle: ur





I possible OS particle: ur





- On-Shell subtraction method (W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas '97)
- \odot Propagator must contain a finite width Γ_{OS} , regarded as a regulator

$$\frac{i}{p^2-m_{OS}^2} \rightarrow \frac{i}{p^2-m_{OS}^2+im_{OS}\Gamma_{OS}}$$

 $|\mathcal{M}|^2 = |\mathcal{M}_{res}|^2 + 2Re\left[\mathcal{M}_{res}^*\mathcal{M}_{rem}\right] + |\mathcal{M}_{rem}|^2$

With spin correlations!
Gauge Invariant!

The OS Subtraction term can be written as:

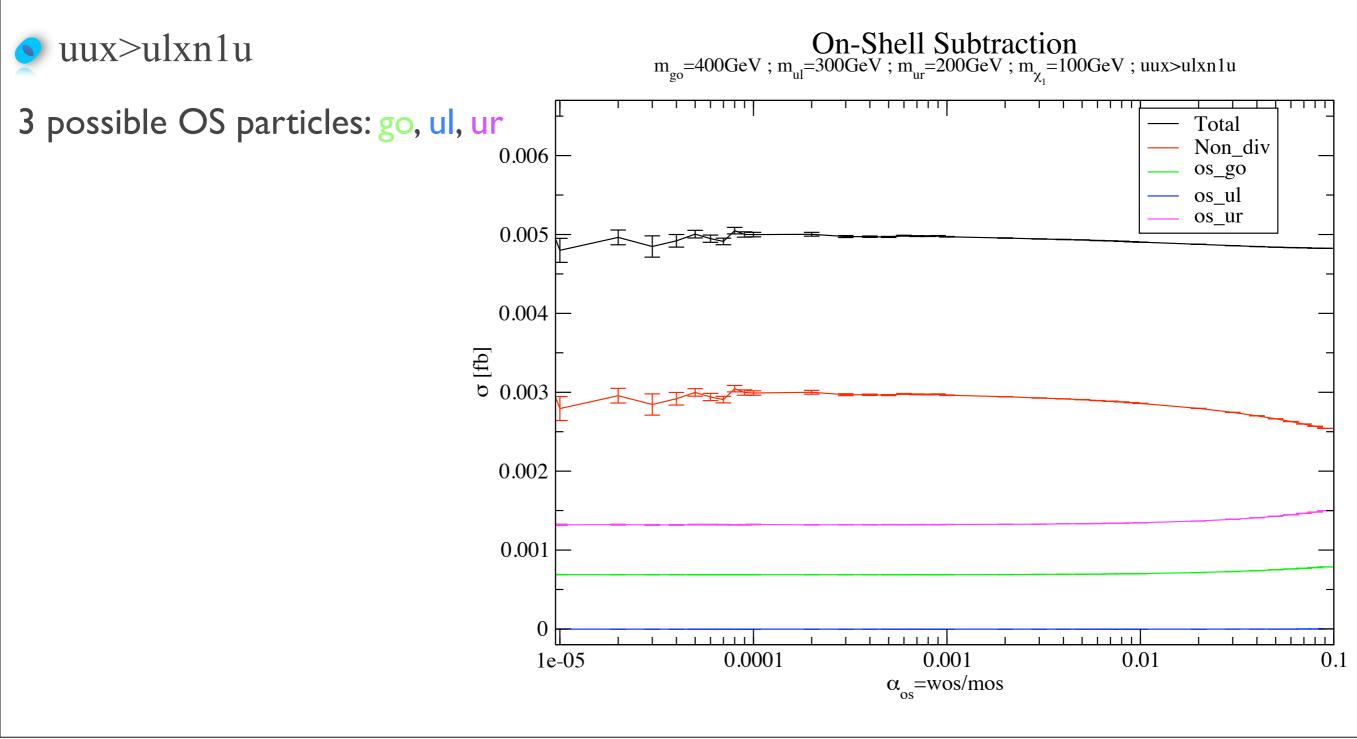
 $\frac{d\sigma^{os}}{d\sigma^{os}} = \sum_{os\ part.} |\mathcal{M}^{\mathcal{OS}}{}_{res}|^2 \left(m_{os} \Gamma_{os} \pi \right) \frac{m_{os} \Gamma_{os} / \pi}{(M^2 - m_{os}^2)^2 + m_{os}^2 \Gamma_{os}^2} \theta \left(m_{os} - m_{os\ decay} \right)$

$$\sigma^{Real}\left(\Gamma_{os}\right)=\int_{n+1}d\Phi_{n+1}\left[\left(|\mathcal{M}_{res}|^2-d\sigma^{os}\right)+2Re\left[\mathcal{M}_{res}^*\mathcal{M}_{rem}\right]+|\mathcal{M}_{rem}|^2-d\sigma^A\right]$$

uux>ulxn1u

3 possible OS particles: go, ul, ur





Summary

- Extension of the MadDipole package with the SUSY dipoles
 - Derivation and implementation of α parameter for SUSY (avoiding calculations far from the divergencies)
 - Checks: IR behaviour and α dependence
- Automation of the On-Shell Subtraction into MadGOLEM
 - Process independent approach
 - \bigcirc Checks: cancelation of div. and α_{os} dependence
- Cross checks against Prospino.
- Work in progress...

Thanks for your attention!

