Towards a full Run 2 W mass measurement at LHCb

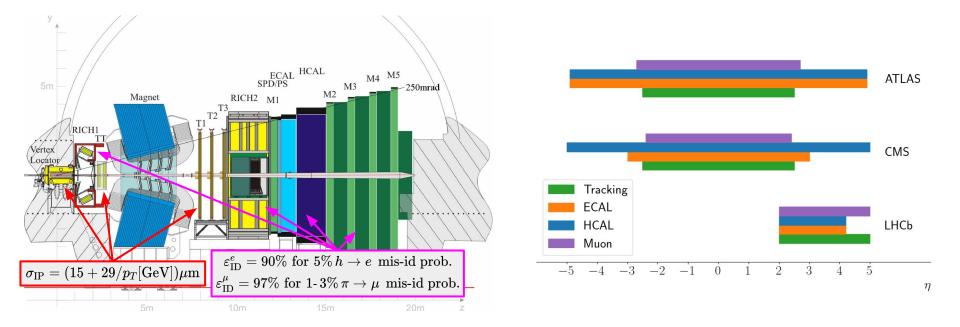
Miguel Ramos Pernas

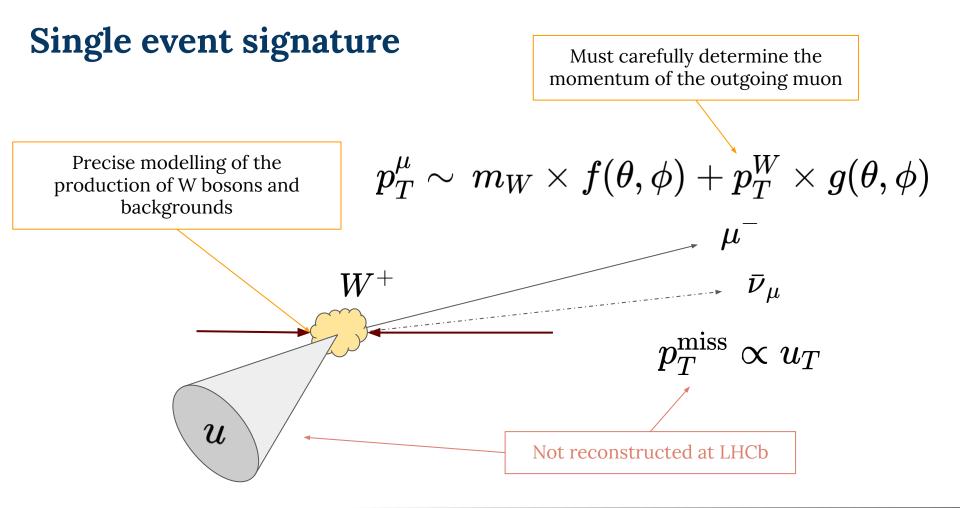
on behalf of the LHCb Collaboration

University of Warwick

miguel.ramos.pernas@cern.ch

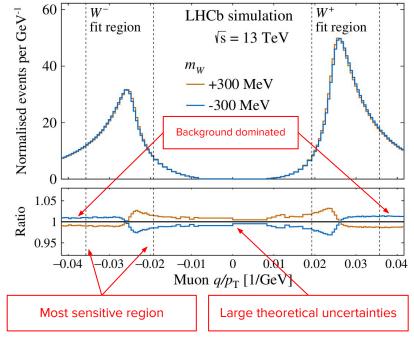
MWDays23, CERN, 17-20/04/2023




European Research Council

Established by the European Commission

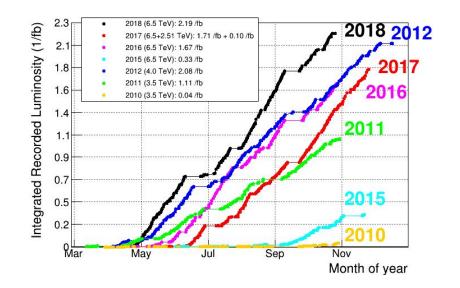
The LHCb detector at the LHC



- Detector in the forward region with excellent momentum and vertex resolutions
- Coverage is complementary to ATLAS and CMS (with some overlapping at low pseudorapidity)

Analysis strategy

- Carefully measure the muon transverse momentum
- Use plain LHCb Pythia8 simulation and reweight using samples with generator-level information from different models
- Correct the simulation efficiencies of the different selection steps (reconstruction, trigger, topological, offline selection)
- Study and determine backgrounds through simulation and data-driven approaches
- Beeston-Barlow fit of the different templates and physics modelling to the data



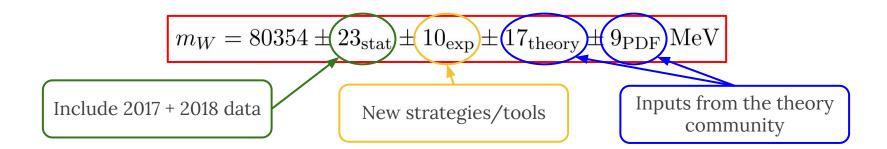
 $\mathrm{fit} \ \mathrm{region} \ \Rightarrow \ \eta \in [2.2, \ 4.4], \ p_T^\mu \in [28, \ 52] \, \mathrm{GeV}$

[JHEP 01 (2022) 036]

Expected sensitivity for the full Run 2 analysis

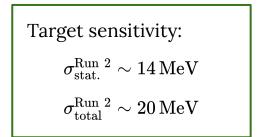
- We expect to reduce the overall experimental uncertainty to ~14 MeV
- The systematic uncertainties increase their relevance:
 - A more careful treatment of the detector effects must be adopted
 - Improvements in the physics modelling become crucial

$$m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$$


(2016 result) [JHEP 01 (2022) 036]

MWDays23, CERN

Is including 2017 and 2018 data straight-forward?


- We have currently measured the W mass with 2016 data only [JHEP 01 (2022) 036]
- Including 2017 and 2018 data is straight-forward, but we must ask ourselves the following questions:
 - Can we optimize any part of the analysis strategy?
 - Can we use any of the new options available in the market?
 - Are there ways to make the result more accessible/easy to people in the community?
- The result using 2016 data shows the capabilities of the LHCb detector to contribute to this measurement, but it is worth re-considering our strategy before studying the full Run 2 data sample

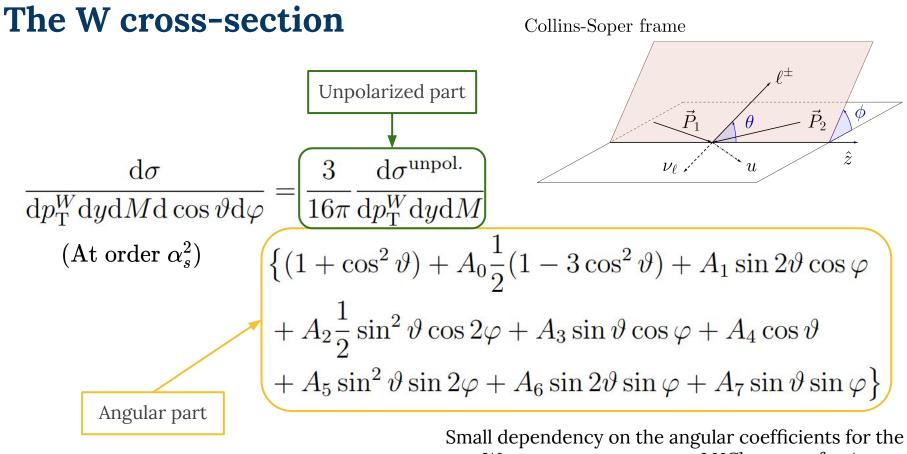
Overall summary of the 2016 result

The overall strategy remains the same as for the 2016 analysis:

- Calibration using J/ ψ , Y(1S) and Z decays:
 - Dedicated alignment and momentum scaling
 - Momentum smearing and selection efficiencies
- Reweighting the simulation at generator level in 5 dimensions
- Template fit to W and Z events using a Beeston-Barlow method

Uncertainties from the previous result (2016 analysis)

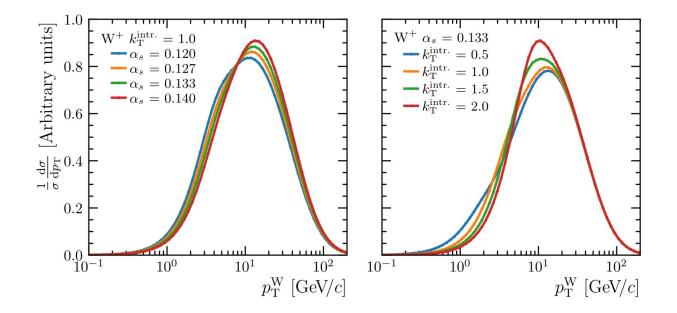
[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024] (supplementary)

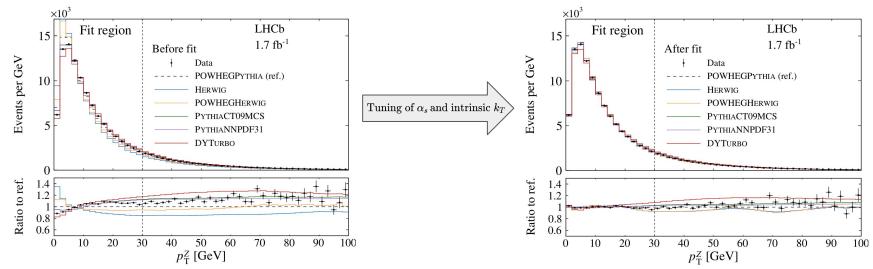

		Average of NNPDF3.1, CT18 and I
Source	Size (MeV)	systematic uncertainties
Parton distribution functions	9 -	
Total theoretical syst. uncertainty (excluding PDFs)	17	Envelope of five different mo
Transverse momentum model	11 -	
Angular coefficients	10	Uncertainty due to scale varia
QED FSR model	7 -	
Additional electroweak corrections	5 -	Envelope of the QED FSR f
Total experimental syst. uncertainty	10	Pythia, Photos and Herwi Additional correction fro
Momentum scale and resolution modelling	7	Powheg-EW
Muon ID, tracking and trigger efficiencies	6	
Isolation efficiency	4	Variation of ranges, number of
QCD background	2	parametrizations,
Statistical	23	1
Total uncertainty	32	

CALL DO DO

1

Current work

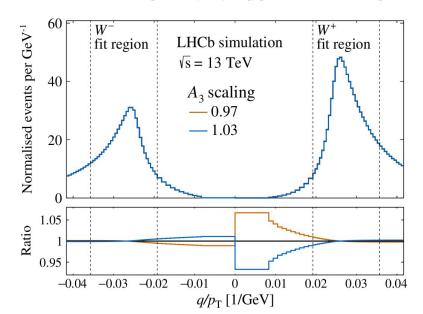

- Currently processing full Run 2 data (2016, 2017, 2018) with a similar strategy as for the 2016 analysis (additional 4 fb⁻¹ of data)
- The result is blinded (for all years); currently revisiting different parts of the analysis:
 - Production model (QCD, QED)
 - Momentum scaling, curvature biases, efficiencies
- Keeping track of the evolution of the systematic uncertainties and their coverage
- Aim at updating the result to facilitate a prompt update of the LHC combination and reduce the combined uncertainty to the global EW fit precision (~6 MeV)


W mass measurement at LHCb except for A_3

Modelling the W boson transverse momentum

The limited knowledge on the transverse momentum of the W bosons can be compensated by floating QCD floating parameters [arXiv:1907.09958]

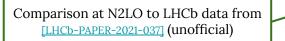
Simulating signal decays (2016 analysis)

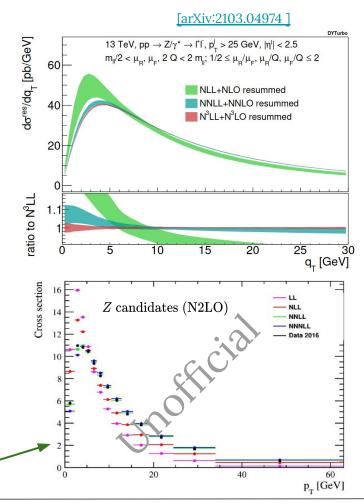


[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024]

- POWHEG + Pythia gave the best description of the unpolarized cross-section in the 2016 analysis
 - Varied success with other generators, used to determine systematic uncertainties
- DYTurbo performed well at reproducing the angular cross-section, but prefers larger values of the Z transverse momentum

Polarized cross-section

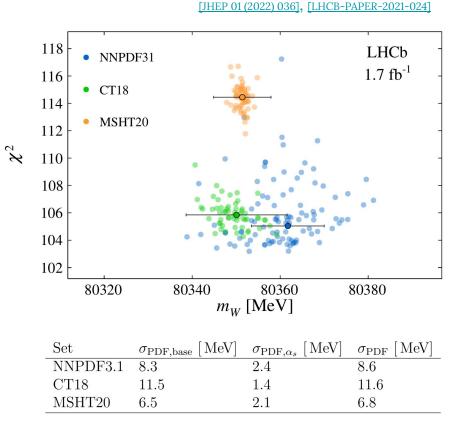

- The angular part of the cross-section is better described with DYTurbo
- However, the angular coefficients suffer low accuracy at low transverse momentum values [JHEP 11 (2017) 003]
- Uncertainties from DYTurbo mitigated by floating A₃
 - Otherwise the uncertainty would be O(30 MeV)
 - The preferred value in the fit is however consistent with DYTurbo predictions



[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024]

An updated production model

- Aim at using a single generator to describe the cross-section
- Considering to switch into more modern generators to fully describe the cross-section:
 - \circ $% \ensuremath{\mathsf{We}}$ we expect that the difference between $\alpha_{_{S}}$ for W and Z is reduced
 - Attempt to move to N2LO, N2LL predictions of both cross-sections
 - \circ $\,$ $\,$ Partial calculations at N3LO, N3LL worth to study $\,$
 - Exploring the usage of NNPDF 4.0
- Cross-checks to be made with POWHEG + Pythia


MWDays23, CERN

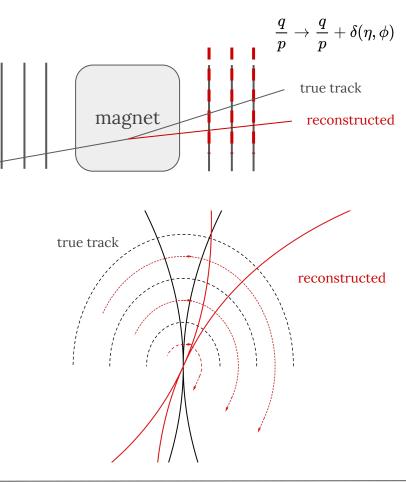
Studying QED effects

- Need a more careful study of final-state radiation to reduce the QED systematic uncertainty (currently 9 MeV):
 - 7 MeV comes from differences between bare- and born-level information (Pythia, Photos, Herwig)
 - An additional 5 MeV systematic comes from pseudoexperiments using POWHEG-EW
- Aim for a more systematic approach to the perturbative uncertainty
 - Currently exploring how to reweight the base (Pythia-based) full event simulation samples
 - Aim at using POWHEG-EW interfaced with Pythia/Photos

The average of PDF sets (2016 analysis)

- For 2016, the PDFs were chosen from three different recent sets
 - NNPDF3.1: [Eur. Phys. J. C 77, 663 (2017)]
 - CT18: [Phys. Rev. D 103, 014013]
 - MSHT20: Eur. Phys. J. C 81, 341 (2021)
- The 2016 result is an average of the three assuming 100% correlation
- There is no high cost of providing the result for any other set of PDFs

Improving the simulation

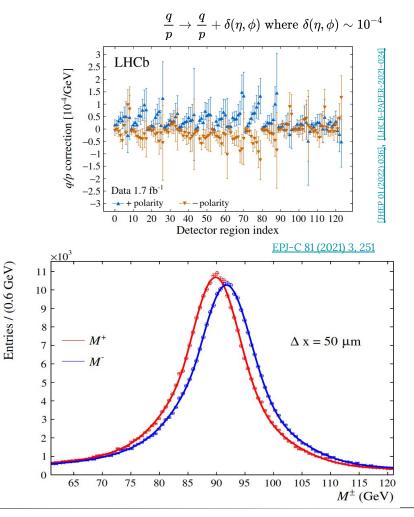

- Take advantage of the latest developments on the theory side
 - Switch to more accurate predictors of the boson production
 - New PDF sets (NNPDF 4.0)
- Change the treatment generators / PDF sets when calculating systematic uncertainties
 - Drop known less accurate PDF sets
 - Revisit the way to handle the different predictors and the order in perturbative theory and resummation
- Ongoing studies, feedback is really welcome!

Experimental challenges

- Highly sensitive to detector misalignments
- Need to optimize (often re-run) the alignment using Z decays
- Some detector deformations do not modify the track quality or the momentum estimate of single muons

$$\chi^2_{ ext{align.}}(heta_j) = rac{1}{N}\sum_{i=1}^N \chi^2_i(heta_j)$$

- Different techniques adopted by different experiments:
 - \circ $\,$ CDF: using quarkonia to calibrate and cross-check with the $\,$ Z mass
 - ATLAS: mass-constrained momentum variations in Z decays [EPJC 74 (2014) 3130]
 - LHCb : pseudomass method with the Z [Phys. Rev. D 91, 072002]

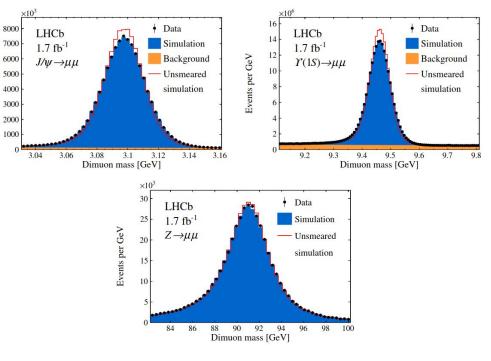


Curvature biases

- The analysis relies highly on the detector alignment
 - Misalignment of $10\mu m$ translates into a O(50MeV) shift
- For the 2016 analysis we re-run the alignment and calibration offline using Z events
- Additionally, we corrected for charge-dependent curvature biases using the pseudo-mass method

$$M^{\pm} = \sqrt{2p^{\pm}p_T^{\pm}\frac{p^{\mp}}{p_T^{\mp}}(1-\cos\theta)} \quad \text{Inspired by Phys. Rev. D 91, 072002}$$

• For the full Run 2 measurement we fully rely on the pseudomass to account for curvature biases

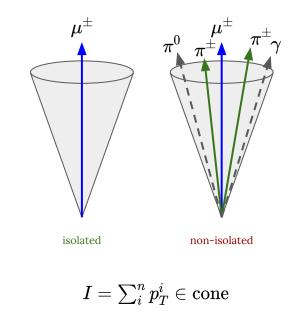

Corrections to simulation

Need to smear the momentum determined from simulation to account for:

- momentum scale
- multiple scattering

Revisiting the model and the systematic uncertainties:

- Decouple the curvature bias parameters from the smearing model
- Avoid overcoverage when considering variations of the smearing and momentum scaling

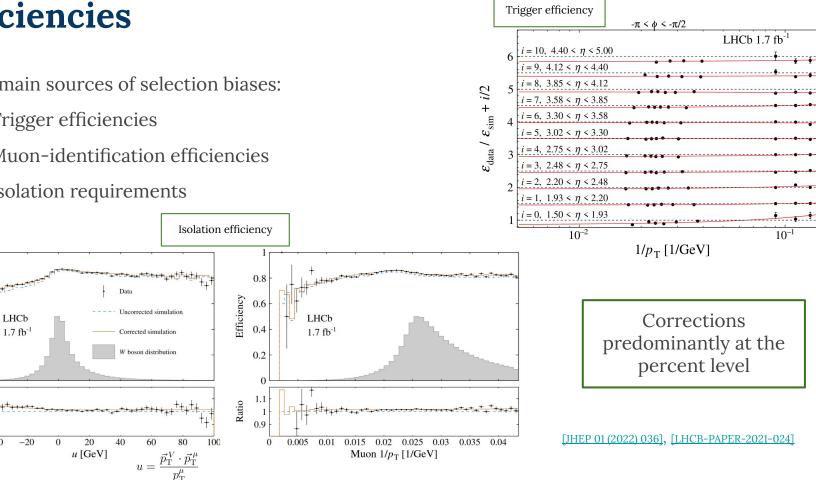


[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024] (supplementary)

Events per GeV

Selections

- EW physics with leptons in the final state can be done at LHCb with simple selections based on the transverse momentum, impact parameter, isolation and particle identification
- Selection biases studied in data and simulation for Z and Y(1S) decays (isolation biases only studied in the former)
- Efficiency corrections are parametrized using simulation and real data
 - Associated systematic uncertainties determined by varying the binning scheme, parametrizations and selections



$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2 ig(\mathrm{rad}^{-2} ig)}$$

Efficiencies

Three main sources of selection biases:

- Trigger efficiencies
- Muon-identification efficiencies
- Isolation requirements

Miguel Ramos Pernas

-40

0.8

0.6

0.4

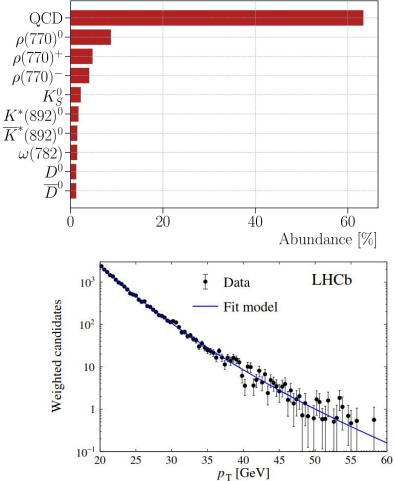
0.2

0

0.9

-60

Efficiency

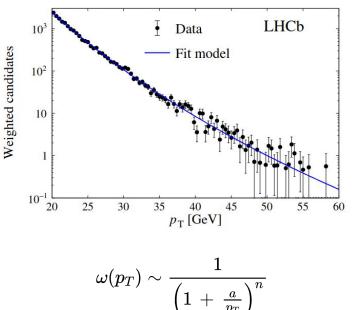

Ratio

┶┼┰╩

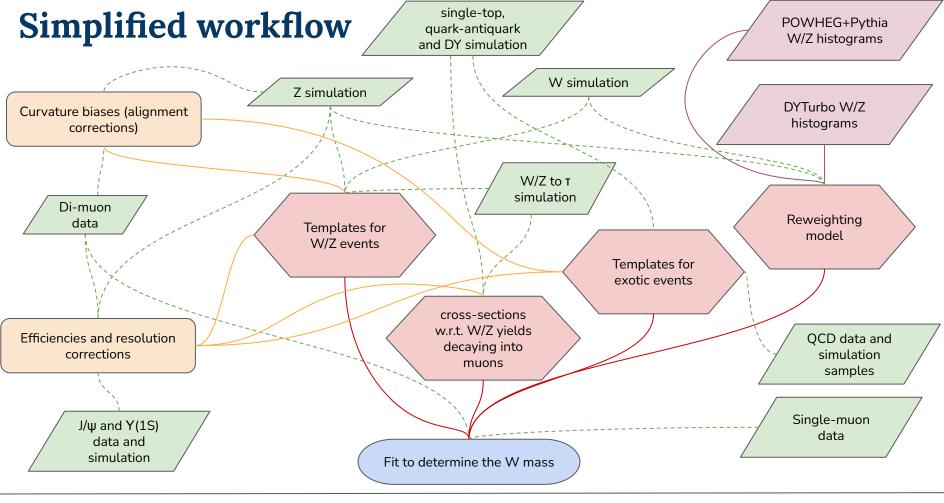
MWDays23, CERN

Backgrounds

- Most of them modelled from dedicated simulated samples
 - Single-top, quark/anti-quark (t, b, c), Z/W decays, Drell-Yan
 - Cross-sections normalized to W and Z events
- Description of the QCD background (decays-in-flight) obtained from data in the 2016 analysis
 - Sample with inverted muon-identification requirements
 - Weight and parametrize the data using a Hagedorn distribution
 - \circ Accurately describes the Jacobian peak (region with the highest sensitivity to $m_{\rm w}$)

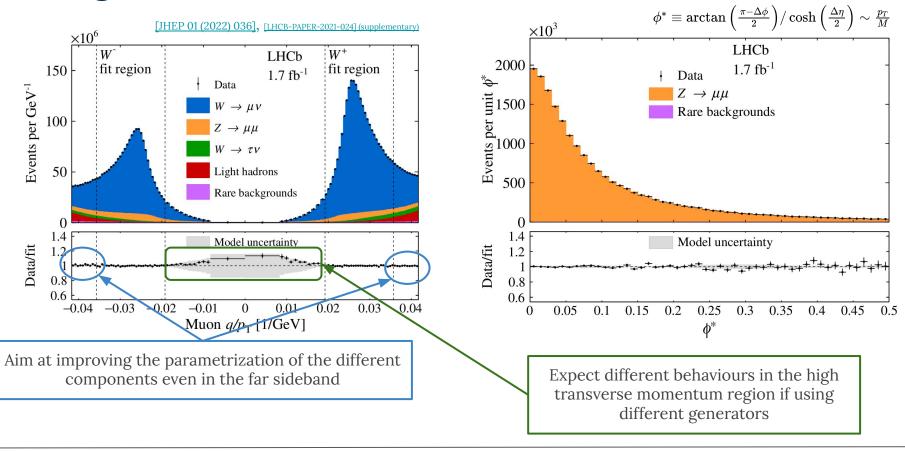


Modelling misidentified hadrons


- In the 2016 analysis we used fast simulation from a parametrization of real data
 - Misidentification rate assumed to be inversely proportional to the momentum

 $ext{decay probability} = 1 - e^{-rac{md}{ au p}} \sim rac{md}{ au p}$

- For the full Run 2 analysis we now profit from samples with the full detector simulation
 - The charge asymmetry and corrections to the momentum distribution are also obtained from a data-driven approach
 - Different systematic uncertainties cover composition, mismodelling, ...
 - The systematic uncertainty remains similar to the previous O(3 MeV)


Hagedorn PDF that accurately describes transverse momenta of hadrons at high energies [Riv. Nuovo Cim. 6N10 (1983) 1]

Miguel Ramos Pernas

MWDays23, CERN

Fitting the transverse momentum (2016 analysis)

Cross-checks

Cross-checks are vital to validate different aspects of the analysis:

- Differences in magnet polarity
- Curvature biases in candidates bending in the same direction
- Possible detector biases in different η/ϕ regions
- W-like Z mass measurement, which validates the fit procedure (agreement at one standard deviation)
- Use of NNLO PDFs to test next-order effects of the PDFs (1 MeV variation)
- Separate W⁺/W⁻ mass measurement, to study charge-dependent biases (results in agreement)

Subset	$\chi^2_{ m tot}/{ m ndf}$	$\delta m_W \; [\mathrm{MeV}]$
Polarity = -1	92.5/102	_
Polarity = +1	97.3/102	-57.5 ± 45.4
$\eta > 3.3$	115.4/102	—
$\eta < 3.3$	85.9/102	$+56.9\pm45.5$
Polarity $\times q = +1$	95.9/102	—
Polarity $\times q = -1$	98.2/102	$+16.1\pm45.4$
$ \phi > \pi/2$	98.8/102	_
$ \phi < \pi/2$	115.0/102	$+66.7\pm45.5$
$\phi < 0$	91.8/102	_
$\phi > 0$	103.0/102	-100.5 ± 45.3

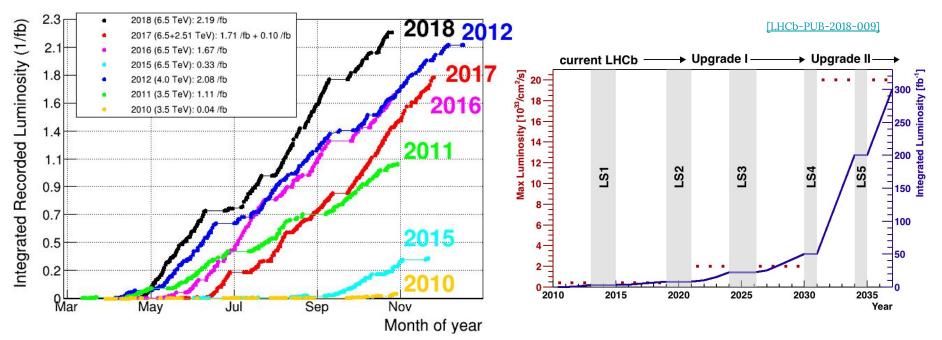
Additionally we also checked:

- Variations of the fit range
- Freedom of the fit model

More on this in the backup

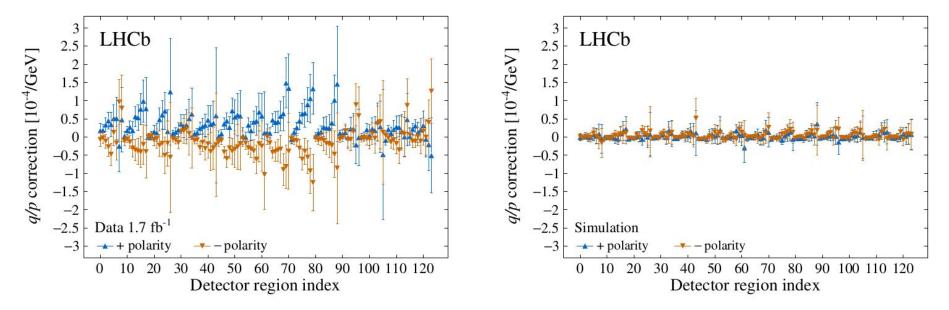
Long-term plans

- The W mass determination at LHCb with full Run 2 data will allow to clarify the picture about this measurement
- Afterwards, LHCb can provide very useful data to further tune the generators and understand QCD and EW effects
 - Cross-sections at different energies (5 TeV, 13 TeV) of W and Z bosons
 - Drell-Yan studies
 - Weak mixing angle (forward-backward asymmetry)
- On Run 3, with a similar detector and analysis environment the precision will increase with the square root of the luminosity
- On Run 4 and beyond, an improved electromagnetic calorimeter system might open the door to study the electron mode at LHCb


Conclusions

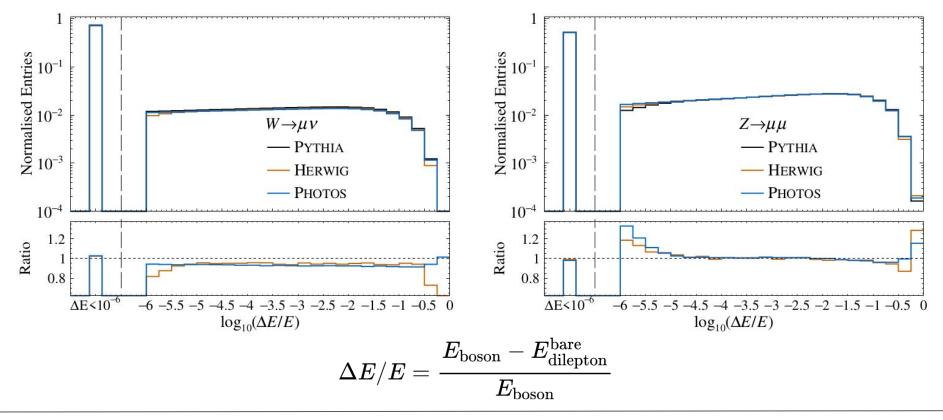
- Analysis in good shape and progressing with no big surprises
- Currently tackling the major sources of systematic uncertainty
- Tentative next steps:
 - Finalize the optimization of the momentum scaling
 - Improve the QED modelling
 - Carefully review all the parts of the analysis and polish the different parts
- Feedback on the theoretical description is highly valuable (QCD, QED, ...)
- Willing to provide any results that could facilitate combinations/cross-checks in the future

Thank you!



LHCb luminosities

[LHCb operation plots]


Curvature corrections (2016 analysis)

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024] (supplementary)

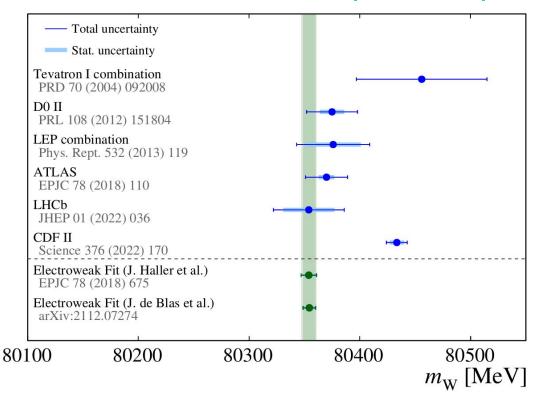
QED corrections (2016 analysis)

[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024] (supplementary)

Number of candidates per experiment

Experiment	Muon channel	Electron channel	Result (MeV)	Stat. Unc. (MeV)	Total Unc. (MeV)
ATLAS	7.8 x 10 ⁶	5.9 x 10 ⁶	80370	7	19
LHCb	2.4 x 10 ⁶	N/A	80354	23	32
CDF-II	2.4 x 10 ⁶	1.8 x 10 ⁶	80433.5	6.4	9.4

ATLAS: [EPJC 78 (2018) 110]

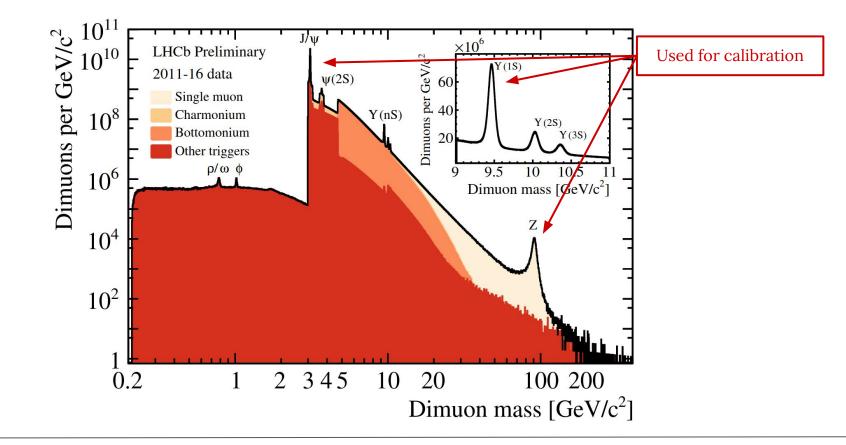

LHCb: [JHEP 01 (2022) 036], [LHCB-PAPER-2021-024] (supplementary)

CDF: [Science, 376, 6589, (136-136), (2022)]

MWDays23, CERN

Current picture on the W mass

[LHCB-FIGURE-2022-003]


More on cross-checks (2016 analysis)

Change to fit range	$\chi^2_{\rm tot}/{\rm ndf}$	$\delta m_W \; [\mathrm{MeV}]$	$\sigma(m_W) \; [\mathrm{MeV}]$
$p_{\rm T}^{\rm min} = 24 {\rm GeV}$	96.5/102	+6.8	19.7
$p_{\rm T}^{\rm min} = 26 {\rm GeV}$	97.7/102	+9.6	20.9
$p_{\rm T}^{\rm min} = 30 {\rm GeV}$	102.7/102	+3.0	25.7
$p_{\rm T}^{\rm min} = 32 {\rm GeV}$	84.9/102	-21.6	30.8
$p_{\rm T}^{\rm max} = 48 {\rm GeV}$	105.3/102	-3.8	23.2
$p_{\rm T}^{\rm max} = 50 {\rm GeV}$	103.0/102	-2.1	23.0
$p_{\rm T}^{\rm max} = 54 {\rm GeV}$	96.3/102	-8.6	22.6
$p_{\rm T}^{\rm max} = 56 {\rm GeV}$	103.7/102	-14.3	22.4

Subset	$\chi^2_{\rm tot}/{\rm ndf}$	$\delta m_W \; [\mathrm{MeV}]$
Polarity $= -1$	92.5/102	_
Polarity = +1	97.3/102	-57.5 ± 45.4
$\eta > 3.3$	115.4/102	—
$\eta < 3.3$	85.9/102	$+56.9\pm45.5$
Polarity $\times q = +1$	95.9/102	_
Polarity $\times q = -1$	98.2/102	$+16.1\pm45.4$
$ \phi > \pi/2$	98.8/102	—
$ \phi < \pi/2$	115.0/102	$+66.7\pm45.5$
$\phi < 0$	91.8/102	
$\phi > 0$	103.0/102	-100.5 ± 45.3

Configuration change	$\chi^2_{ m tot}/{ m ndf}$	$\delta m_W \; [\mathrm{MeV}]$	$\sigma(m_W) \; [\mathrm{MeV}]$	
$2 \rightarrow 3 \alpha_s$ parameters	103.4/101	-6.0	± 23.1	Together with a W-like Z mass measurement, the usage of
$2 \rightarrow 1 \ \alpha_s$ and $1 \rightarrow 2 \ k_{\rm T}^{\rm intr}$ parameters	116.1/102	+13.9	± 22.4	NNLO PDFs and separate W^+/W^-
$1 \rightarrow 2 \ k_{\rm T}^{\rm intr}$ parameters	104.0/101	+0.4	± 22.7	mass measurements
$1 \rightarrow 3 \ k_{\rm T}^{\rm intr}$ parameters	102.8/100	-2.7	± 22.9	
No A_3 scaling	106.0/103	+4.4	± 22.2	
Varying QCD background asymmetry	103.8/101	-0.7	± 22.7	[JHEP 01 (2022) 036], [LHCB-PAPER-2021-024] (supplementary)

Calibration using muons

