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DRELL YAN — A STANDARD CANDLE

๏ clean signature  ( , )   
  &  large cross section:  
       (~ 1000   &  ~ 4000 ) / sec * 

๏ detector calibration, BSM searches, 
luminosity monitor, quark PDFs,  …

๏ precision measurements:  ,    
      
  control shape at few ‰ 
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* ℒ = 2 × 1034 cm−2 s−1

Stefano Camarda 8

W mass – Measurement strategy

mW extracted from the pT lepton and transverse mass (mT) distributions

pT lepton has a Jacobian 
edge at mW/2

mT has a Jacobian edge at mW

Vary the W-boson mass values in the 
theory prediction, and predict the pT lepton 
and mT distributions

Compare to data, and determine the best 
fit value of the W-boson mass

arXiv:1701.07240

Challenges:

Ultra-precise detector calibration ~ 10-4

Accurate theory predictions

Talk by Camarda

big TH challenge!
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DRELL YAN — A STANDARD CANDLE

๏ clean signature  ( , )   
  &  large cross section:  
       (~ 1000   &  ~ 4000 ) / sec * 

๏ detector calibration, BSM searches, 
luminosity monitor, quark PDFs,  …

๏ precision measurements:  ,    
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๏ recoil    direct sensitivity to     
                    &  PDFs (high-  gluon) 

๏ precision QCD tests 
  non-perturbative QCD, resummation,  

      fixed-order, EW Sudakovs, … 
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๏ fixed-order N3LO predictions  
[NNLOJET + T-Z. Yang, H.X. Zhu] 

  inclusive cross sections 
  rapidity distributions 
  fiducial  predictions for CDF 

๏ transverse momentum resummation 
[NNLOJET + RADISH] 

   ratio  
  fiducial cross sections 

        &  linear power corrections 
  fiducial distributions 

↪
↪
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T
↪

↪
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[Baglio, Duhr, Mistlberger, Szafron ’22]
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Figure 3: Dependence of the neutral-current �/Z Drell-Yan cross sections on the invariant
mass Q of the lepton pair in the final state (in GeV) normalized to the N3LO cross
section at various center of mass energies for the pp (left column) and pp̄ collisions
(right column). The bands indicate the 7-point scale uncertainty at each corresponding
perturbative order.
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Figure 4: Same as figure 3, but for W+ production.
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 @13TeV*pp → W+

DY PROCESSES

* similar for W−

UNCERTAINTIES

๏ scales      

๏ PDFs       
 
 
 
 
 

๏ missing N3LO PDFs 
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Figure 12: Dependence on the choice of the PDF set of the neutral-current Drell-Yan
di↵erential cross section at N3LO in QCD as a function of the invariant mass Q of the
final-state lepton pair, at the 13 TeV LHC. The results are normalized to the central
PDF4LHC15 PDF set and the 68% CL PDF uncertainties are represented by bands
for all sets and calculated according to the prescription of ref. [67]. The comparison is
between PDF4LHC15 and: PDF4LHC21 (upper left panel); NNPDF 3.1 and NNPDF
4.0 (upper right panel); ABMP16 als118 (lower left panel); CT18 and MSHT 20 (lower
right panel).
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Figure 12: Dependence on the choice of the PDF set of the neutral-current Drell-Yan
di↵erential cross section at N3LO in QCD as a function of the invariant mass Q of the
final-state lepton pair, at the 13 TeV LHC. The results are normalized to the central
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for all sets and calculated according to the prescription of ref. [67]. The comparison is
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4.0 (upper right panel); ABMP16 als118 (lower left panel); CT18 and MSHT 20 (lower
right panel).
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) = 1
2

∣∣∣σNNLO(NNLO PDF) − σNNLO(NLO PDF)
∣∣∣

σNNLO(NNLO PDF) .

๏ all  known to N3LO

‣ ,  

‣

‣ public code:  n3loxs 

๏ similar features 
   DYprocs @ LHC 

   
  non-overlapping bands 
   

๏ origin:  NNLO likely 
underestimated (  vs. ) 

σtot
DY

pp → γ* pp → W±

pp → γ*/Z

∀
↪ KN3LO ∼ − 2 %
↪
↪ ΔNNLO

scl ≃ ΔN3LO
scl

qq̄ qg

improvable 
with more data

recently:  aN3LO 
PDFs from MSHT

[C. Duhr, F. Dulat, B. Mistlberger ’20]

[C. Duhr, B. Mistlberger ’21]
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Figure 3: Dependence of the neutral-current �/Z Drell-Yan cross sections on the invariant
mass Q of the lepton pair in the final state (in GeV) normalized to the N3LO cross
section at various center of mass energies for the pp (left column) and pp̄ collisions
(right column). The bands indicate the 7-point scale uncertainty at each corresponding
perturbative order.
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Figure 3: Dependence of the neutral-current �/Z Drell-Yan cross sections on the invariant
mass Q of the lepton pair in the final state (in GeV) normalized to the N3LO cross
section at various center of mass energies for the pp (left column) and pp̄ collisions
(right column). The bands indicate the 7-point scale uncertainty at each corresponding
perturbative order.
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Figure 3: Dependence of the neutral-current �/Z Drell-Yan cross sections on the invariant
mass Q of the lepton pair in the final state (in GeV) normalized to the N3LO cross
section at various center of mass energies for the pp (left column) and pp̄ collisions
(right column). The bands indicate the 7-point scale uncertainty at each corresponding
perturbative order.
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Figure 3. Dependence of the neutral-current γ/Z Drell-Yan cross sections on the invariant mass Q
of the lepton pair in the final state (in GeV) normalized to the N3LO cross section at various center
of mass energies for the pp (left column) and pp̄ collisions (right column). The bands indicate the
7-point scale uncertainty at each corresponding perturbative order.
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 @1.97TeVpp̄ → Z

ENGY

COLL

ENGY

better pert. behaviour for 
lower collider energies 

only minor impact 
from    pp ⟶ pp̄

* similar for W±



GOING DIFFERENTIAL @ N3LO — qT SUBTRACTION

✓     fiducial cuts, 
arbitrary distributions, …

✗ computationally 
expensive  
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[Catani, Grazzini ’07]

V+jet @ NNLO resummationqT

 as small as possible         as large as possibleqcut
T ↭ qcut

T
  suppress power corrections↪   numerical stability & efficiency↪

๏ expand to fixed order 

๏  ingredients: 

‣ hard function  

‣ soft function  

‣ beam function 
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[Gehrmann, Glover, Huber, Ikizlerli, Studerus '10]

[Li, Zhu '16]

[Luo, Yang, Zhu, Zhu '19]  
[Ebert, Mistlberger, Vita '20]

slicing error

FULLY INCLUSIVE

FULLY DIFFERENTIAL

✗ limited to  

✓ very efficient   
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STEP 0 — VALIDATION

๏ fully independent calculation of the 
inclusive cross section

๏      analytic result 

๏ “fake” plateau:   
  12% error on N3LO!  

๏ converges to correct result for 

๏ fit & extrapolate?   
  marginal gains for 

         potentially uncontrolled systematics

- - - - ↭

qcut
T ∈ [2, 5] GeV

↪ δ

qcut
T ≲ 1 GeV

⇝

8
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and the beam functions [70–72], using the rapidity reg-
ulator proposed in [73]. These newly available results
provide the key ingredients for applying qT -subtraction
to processes with colorless final states at N3LO. The
perturbative beam functions are expressed in terms of
harmonic polylogarithms [74] up to weight 5, which can
be evaluated numerically with standard tools [75].

The resolved contribution above the q
cut
T for N3LO

Drell-Yan production contains the same ingredients of
the NNLO calculation with one extra jet. Fully di↵eren-
tial NNLO contributions for Drell-Yan-plus-jet produc-
tion have been computed in [76–78]. The application to
N3LO qT -subtraction further requires stable fixed-order
predictions at small qT [79–81], enabling the cancella-
tion of the q

cut
T between resolved and unresolved contri-

butions to su�cient accuracy. In this Letter, we em-
ploy the antenna subtraction method [82–85] to compute
Drell-Yan production above q

cut
T up to NNLO in pertur-

bation theory, implemented in the parton-level event gen-
erator NNLOJET [76, 79]. To achieve stable and reliable
fixed order predictions down to the qT ⇠ 0.4 GeV re-
gion, NNLOJET has been developing dedicated optimiza-
tions of its phase space generation based on the work
in [68]. This ensures su�cient coverage in the multiply
unresolved regions required for the qT -subtraction.

RESULTS

Applying the qT -subtraction method described above,
we compute Drell-Yan lepton pair production to N3LO
accuracy. For the phenomenological analysis, we restrict
ourselves to the production of a di-lepton pair through a
virtual photon only. We take ECM = 13 TeV as center
of mass collision energy and fix the invariant mass of
the di-lepton pair at Q = 100 GeV. Central scales for
renormalization (µR) and factorization (µF ) are taken at
Q, allowing us to compare with the N3LO total cross
section results from [14]. We use the central member of
PDF4LHC15_nnlo PDFs [86] throughout the calculation.

To establish the cancellation of qcutT -dependent terms
between resolved and unresolved contributions, Fig. 1
displays the qT distribution of virtual photon obtained
with NNLOJET (used for the resolved contribution) and
obtained by expanding the leading-power factorised pre-
diction at small qT using Eq. (2) up to O(↵3

s). The high-
est logarithms at this order are 1/qT ln5(Q/qT ). The
singular qT distribution is expected to match between
NNLOJET and SCET, which is a prerequisite for the
qT -subtraction method. This requirement is fulfilled by
the nonsingular contribution (NNLOJET minus SCET)
demonstrated in the bottom panel of Fig. 1. Remarkably,
the agreement starts for qT at about 2 GeV and extends
down to 0.32 GeV for each perturbative order. Numerical
uncertainties from phase space integrations are displayed
as error bars. We emphasize that the observed agreement

FIG. 1: Perturbative contributions to transverse mo-
mentum distribution of the virtual photon up to ↵

3
s.

The upper panel displays the qT -distribution obtained
from NNLOJET and from expanding SCET to each
order. The bottom panel contains the nonsingular re-

mainder (NNLOJET minus SCET).

FIG. 2: Inclusive N3LO QCD corrections to total
cross section for Drell-Yan production through a vir-

tual photon.

is highly nontrivial, providing very strong support to the
correctness of the NNLOJET and SCET predictions.

In Fig. 2, we display the N3LO QCD corrections to
the total cross section for Drell-Yan production through
a virtual photon, using the qT -subtraction procedure, de-
composed into di↵erent partonic channels. The cross
section is shown as a function of the unphysical cut-
o↵ parameter q

cut
T , which separates resolved and un-

resolved contributions. Integrated over qT , both the

qq̄
gg
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Σ
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is highly nontrivial, providing very strong support to the
correctness of the NNLOJET and SCET predictions.

In Fig. 2, we display the N3LO QCD corrections to
the total cross section for Drell-Yan production through
a virtual photon, using the qT -subtraction procedure, de-
composed into di↵erent partonic channels. The cross
section is shown as a function of the unphysical cut-
o↵ parameter q

cut
T , which separates resolved and un-

resolved contributions. Integrated over qT , both the
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[Chen, Gehrmann, Glover, AH, Yang Zhu ‘21, ‘22]

[Duhr, Dulat, Mistlberger ’20]
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[Chen, Gehrmann, Glover, AH, Yang, Zhu ‘21,‘22]4

Fixed order �pp!�⇤(fb)

LO 339.62+34.06
�37.48

NLO 391.25+10.84
�16.62

NNLO 390.09+3.06
�4.11

N3LO 382.08+2.64
�3.09 [14]

N3LO only qcutT = 0.63 GeV qcutT ! 0 fit [14]

qg �15.32(32) �15.34(54) �15.29

qq̄ + qQ̄ +5.06(12) +5.05(12) +4.97

gg +2.17(6) +2.19(6) +2.12

qq + qQ +0.09(13) +0.09(17) +0.17

Total �7.98(36) �8.01(58) �8.03

TABLE I: Inclusive cross sections with up to N3LO
QCD corrections to Drell-Yan production through
a virtual photon. N3LO results are from the qT -
subtraction method and from the analytic calculation
in [14]. Cross sections at central scale of Q = 100 GeV
are presented together with 7-point scale variation.
Numerical integration errors from qT -subtraction are

indicated in brackets.

NNLOJET and SCET predictions involve logarithms up
to ln6(Q/q

cut
T ), which become explicit in the SCET cal-

culation. The NNLOJET calculation produces the same
large logarithms but with opposite sign, as well as power
suppressed logarithms (qcutT )m lnn(Q/q

cut
T ), where m � 2

and n  6. The physical N3LO total cross section con-
tribution must not depend on the unphysical cuto↵ q

cut
T ;

therefore it is important to choose a su�ciently small qcutT
to suppress such power corrections.

Figure 2 demonstrates the dependence on q
cut
T of the

SCET+NNLOJET predictions is negligible for values be-
low 1 GeV. In fact, for all partonic channels except qg,
the cross section predictions become flat and therefore
reliable already at qcutT ⇠ 5 GeV. It is only the qg chan-
nel that requires a much smaller q

cut
T , indicating more

sizeable power corrections than in other channels.

Also shown in Fig. 2 in dashed lines are the inclusive
predictions from [14], decomposed into di↵erent partonic
channels. We observe an excellent agreement at small-qT
region with a detailed comparison given in Table I. We
present total cross sections at small qcutT value (0.63 GeV)
and results from fitting the next-to-leading power sup-
pressed logarithms with q

cut
T extrapolated to zero. This

agreement provides a fully independent confirmation of
the analytic calculation [14], and lends strong support to
the correctness for our qT -subtraction-based calculation.
We observe large cancellations between qg channel (blue)
and qq̄ channel (orange). While the inclusive N3LO cor-
rection is about �8 fb, the qg channel alone can be as
large as �15.3 fb. Similar cancellations between qg and
qq̄ channel can already be observed at NLO and NNLO.
The numerical smallness of the NNLO corrections (and
of its associated scale uncertainty) is due to these cancel-

FIG. 3: Di-lepton rapidity distribution from LO to
N3LO. The colored bands represent theory uncer-
tainties from scale variations. The bottom panel is
the ratio of the N3LO prediction to NNLO, with dif-

ferent cuto↵ q
cut
T .

lations, which may potentially lead to an underestimate
of theory uncertainties at NNLO.
In Fig. 3, we show for the first time the N3LO pre-

dictions for the Drell-Yan di-lepton rapidity distribution,
which constitutes the main new result of this Letter. Pre-
dictions of increasing perturbative orders up to N3LO
are displayed. We estimate the theory uncertainty band
on our predictions by independently varying µR and µF

around 100 GeV with factors of 1/2 and 2 while elimi-
nating the two extreme combinations (7-point scale vari-
ation). With large QCD corrections from LO to NLO,
the NNLO corrections are only modest and come with
scale uncertainties that are significantly reduced [5, 7, 8].
However, as has been observed for the total cross sec-
tion, the smallness of NNLO corrections is due to cancel-
lations between the qg and qq̄ channels. Indeed, Fig. 3
shows clearly that the N3LO correction is large compared
with NNLO, and that the NNLO scale uncertainty band
fails to overlap with N3LO over the full rapidity range.
It should however be noted that the uncertainties from
PDFs, especially from the missing N3LO e↵ects in their
evolution, can be at the percent level [14], which high-
lights the necessity for a consistent PDF evolution and
extraction at N3LO in the future.
In the bottom panel of Fig. 3, we show the ratio of

the N3LO rapidity distribution to the previously known
NNLO result [7, 8]. As can be seen, the corrections are
about �2% of the NNLO results, and are flat over a
large rapidity range. There is minimal overlap between
the scale uncertainty bands only at large y�⇤ . To test the
numerical stability at N3LO, three values of qcutT are ex-
amined in the bottom panel. We observe the qcutT depen-
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FIG. 2: W boson charge asymmetry distribution from
LO to N3LO at the LHC. The colored bands rep-
resent theory uncertainties from 31 scale variations.
The bottom panel is the ratio with respect to NNLO.

from the 7-point scale variation and the error bars indi-
cate the numerical integration error. Our state-of-the-art
predictions at N3LO accuracy amount to a contribution
of about �2.5% with respect to NNLO with relatively
flat corrections for all rapidities. While the NLO and
NNLO scale variation bands overlap, the N3LO predic-
tion is found to be non-overlapping with the previous
order within the respective scale uncertainties. This fea-
ture at N3LO has already been observed for the total
cross sections for neutral current [57, 58] and charged-
current [13] Drell-Yan production and for the neutral-
current Drell-Yan rapidity distribution [33] and fiducial
cross sections [59]. The relative size of scale variation
remains comparable at NNLO and N3LO at about ±1%
for central rapidity and slightly increasing at large ra-
pidity. We use three di↵erent qcutT values (1, 1.5 and
2GeV) to confirm the qcutT -independence of the results
within integration errors. A strong check on our results
is provided by the rapidity-integrated charged current
Drell-Yan cross section at N3LO, where our results for
qcutT = 1.5 GeV agree with [13] within our numerical in-
tegration error of 1.5 per-mille.

The W boson charge asymmetry AW at hadron collid-
ers reveals details of the proton structure. It has been
measured at the Tevatron [60, 61] and the LHC [7, 9, 62]
and is defined as

AW(|yW|) =
d�/d|yW+ |� d�/d|yW� |

d�/d|yW+ |+ d�/d|yW� |
. (2)

In Fig. 2, we display the predictions of AW(|yW|) at
13TeV center of mass energy with up to N3LO correc-
tions. We independently vary the scale choices between
the numerator and the denominator of Eq. (2) while re-

FIG. 3: Normalised W± transverse mass distribution
from LO to N3LO accuracy at the Tevatron without
(upper) and with (lower) CDFII fiducial cuts. The
colored bands represent theory uncertainties from 7-
point scale variation. The bottom panel is the ratio
with respect to NNLO, with di↵erent cuto↵ qcutT .

quiring 1/2  µ/µ0
 2 for any pair of scales, leading to

31 combinations. Their envelope is used to estimate the
theoretical uncertainty. We observe positive N3LO cor-
rections of about 2% relative to the NNLO predictions.
The N3LO contribution is not flat in rapidity. In con-
trast to the individual rapidity distributions, the charge
asymmetry converges well from NLO to N3LO with scale
variation uncertainty reduced to about ±1.5% at N3LO.
Finally, we consider the transverse mass distribution

in charged-current Drell-Yan production. The transverse
mass is constructed as

mW
±

T =
q

2E`±
T E⌫

T (1� cos��), (3)

with E`±(⌫)
T denoting the transverse energies of the final

AW( |yW | ) ≡
dσW+/d |yW+ | − dσW−/d |yW− |
dσW+/d |yW+ | + dσW−/d |yW− |
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resent theory uncertainties from 31 scale variations.
The bottom panel is the ratio with respect to NNLO.
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of about �2.5% with respect to NNLO with relatively
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tion is found to be non-overlapping with the previous
order within the respective scale uncertainties. This fea-
ture at N3LO has already been observed for the total
cross sections for neutral current [57, 58] and charged-
current [13] Drell-Yan production and for the neutral-
current Drell-Yan rapidity distribution [33] and fiducial
cross sections [59]. The relative size of scale variation
remains comparable at NNLO and N3LO at about ±1%
for central rapidity and slightly increasing at large ra-
pidity. We use three di↵erent qcutT values (1, 1.5 and
2GeV) to confirm the qcutT -independence of the results
within integration errors. A strong check on our results
is provided by the rapidity-integrated charged current
Drell-Yan cross section at N3LO, where our results for
qcutT = 1.5 GeV agree with [13] within our numerical in-
tegration error of 1.5 per-mille.

The W boson charge asymmetry AW at hadron collid-
ers reveals details of the proton structure. It has been
measured at the Tevatron [60, 61] and the LHC [7, 9, 62]
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theoretical uncertainty. We observe positive N3LO cor-
rections of about 2% relative to the NNLO predictions.
The N3LO contribution is not flat in rapidity. In con-
trast to the individual rapidity distributions, the charge
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W PRODUCTION — NORMALIZED SPECTRUM 
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Figure 10. Lepton transverse momentum spectrum for on-resonance W+ production at the LHC
at fixed order (left) and including the resummation of fiducial power corrections to N3LL (right).
The horizontal axes shows the distance to the Jacobian peak at p`T = mW /2.

Thus, the leptonic power corrections in this case scale as qT /(Q � 2pmin

T
), and so as long

as pmin

T
⌧ Q/2, the e↵ect of pmin

T
can be treated as a linear fiducial power correction as

discussed for the qT spectrum with fiducial cuts in section 4.2.

4.3.2 Numerical results

There are two key insights from our analysis of the di↵erential p`
T
phase space. First, the

p`
T
spectrum near the Jacobian peak is directly sensitive to the small transverse momentum

qT of the decaying vector boson. This causes fixed-order predictions to become unreliable

in this region, which is a well-known e↵ect. Second, the strict qT ! 0 limit by itself cannot

describe the p`
T
spectrum in this region, which means the strict LP qT resummation is also

insu�cient. Both problems are cured simultaneously by combining the exact leptonic ten-

sor, which encodes the exact decay kinematics and automatically retains all leptonic power

corrections, with the qT -resummed hadronic tensor, thus allowing us to obtain physical

predictions around the Jacobian peak.

We illustrate this in figure 10 for the p`
T
spectrum in W+

! `+⌫` decays, where we

show the spectrum both at fixed order (left) and after resummation including fiducial

power corrections (right). In both panels, the horizontal axis shows the distance of p`
T

to the Jacobian peak at p`
T

= mW /2, and to avoid smearing out the peak we consider

the spectrum at a fixed point Q = mW . The fixed-order spectrum (left) is shown at LO0

(green dotted), NLO0 (blue dashed), and NNLO0 (red solid). The LO0 result corresponds

to Born kinematics and clearly shows the kinematic edge at p`
T
= Q/2. Starting at NLO0,

the W boson can have nonvanishing qT , which opens up the phase space beyond the edge.

However, in the vicinity of the edge, the fixed-order predictions become unstable due to the

sensitivity to small qT , which is clearly visible by the diverging NLO0 and NNLO0 curves,

and in particular by the sign change between NLO0 and NNLO0 at p`
T
⇡ Q/2.

In the right panel in figure 10, we show the resummed p`
T

spectrum at NLL(0+L)

(green dotted), NNLL(0+L)+NLO0 (blue dashed), and N3LL(0+L)+NNLO0 (red solid). The

resummation including leptonic power corrections cures the unphysical behaviour of the

fixed-order results, yielding a well-behaved spectrum in the full p`
T
range, with a resummed

– 58 –
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FIG. 2. Dependence of the extracted NkLO fiducial cross
sections shown in Tab. I on the pcut

T infrared parameter, both
for the symmetric (2a) and product (2b) cuts. In the latter
case, the NLO correction has been rescaled by a factor 1/4.
The dashed vertical line indicates our default value pcut

T =
0.81GeV. The blue band is obtained by combining linearly
the statistical and slicing errors.

0.04%, which indicates that the predictions with product
cuts can be computed accurately with fixed-order per-
turbation theory. Nevertheless, we still observe a more
reliable estimate of the theoretical uncertainties when re-
summation is included.

In order to study the stability of our predictions
against variations of the infrared parameter pcutT , in Fig. 2
we show the dependence of the NkLO correction (i.e. the
O(↵k

s ) term in the expansion of the fiducial cross sec-
tion) on pcutT down to pcutT ' 0.4GeV. In the case of
symmetric cuts (2a), we observe that the inclusion of the
linear power corrections is essential to reach a plateau at
small pcutT , achieving the necessary independence of the
result on the slicing parameter. We thus obtain an excel-
lent control over the estimate of the slicing error quoted
in Tab. I. Fig. 2 also clearly shows that the omission of
such linear corrections leads to an incorrect result for the
fiducial cross section computed with the qT -subtraction
method, unless d�NNLO

DY+jet
can be computed precisely down

to pcutT ⌧ 1GeV. Conversely, in the case of the prod-
uct cuts (2b), we observe a much milder dependence of
the NkLO correction on pcutT , and the further inclusion

FIG. 3. Lepton transverse momentum distribution up to
N3LO+N3LL order in the fiducial phase space (2a). The la-
bels indicate the order in the fiducial cross section.

of power corrections does not lead to any visible di↵er-
ence, consistent with the fact that such corrections are
quadratic in most of the phase space [100]. As an addi-
tional sanity check, we have repeated the test of Fig. 2 for
each individual flavour channel contributing to the N3LO
Drell–Yan cross section. The results are collected in the
supplementary material [103], together with a discussion
on alternative approaches to qT subtraction employing a
fitting procedure, and a comparison to the literature.

Finally, the computation presented in this letter al-
lows us to obtain, for the first time, N3LO+N3LL predic-
tions for the kinematical distributions of the final-state
leptons. A particularly relevant distribution is the lep-
tonic transverse momentum, which plays a central role
in the precise extraction of the W -boson mass at the
LHC [2, 6]. Fig. 3 shows the di↵erential distribution of
the negatively charged lepton at three di↵erent orders,
for our default value pcutT = 0.81GeV. Unlike for the
fiducial cross section, the inclusion of p``T resummation in
this observable is crucial to cure local (integrable) diver-
gences in the spectrum due to the presence of a Sudakov
shoulder [119] at p`

�

T ⇠ m``/2. The figure shows an ex-
cellent convergence of the perturbative prediction, with
residual uncertainties at N3LO+N3LL of the order of a
few percent to the right of the shoulder, which grow at
most up to the O(5%) level for p`

�

T . m``/2.

Conclusions.— In this letter, we have presented
state-of-the-art predictions for the fiducial cross section
and di↵erential distributions in the Drell–Yan process at
the LHC, through both N3LO and N3LO+N3LL in QCD.
These new predictions are obtained through the combi-
nation of an accurate NNLO calculation for the produc-
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case, the NLO correction has been rescaled by a factor 1/4.
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0.81GeV. The blue band is obtained by combining linearly
the statistical and slicing errors.

0.04%, which indicates that the predictions with product
cuts can be computed accurately with fixed-order per-
turbation theory. Nevertheless, we still observe a more
reliable estimate of the theoretical uncertainties when re-
summation is included.

In order to study the stability of our predictions
against variations of the infrared parameter pcutT , in Fig. 2
we show the dependence of the NkLO correction (i.e. the
O(↵k

s ) term in the expansion of the fiducial cross sec-
tion) on pcutT down to pcutT ' 0.4GeV. In the case of
symmetric cuts (2a), we observe that the inclusion of the
linear power corrections is essential to reach a plateau at
small pcutT , achieving the necessary independence of the
result on the slicing parameter. We thus obtain an excel-
lent control over the estimate of the slicing error quoted
in Tab. I. Fig. 2 also clearly shows that the omission of
such linear corrections leads to an incorrect result for the
fiducial cross section computed with the qT -subtraction
method, unless d�NNLO

DY+jet
can be computed precisely down

to pcutT ⌧ 1GeV. Conversely, in the case of the prod-
uct cuts (2b), we observe a much milder dependence of
the NkLO correction on pcutT , and the further inclusion

FIG. 3. Lepton transverse momentum distribution up to
N3LO+N3LL order in the fiducial phase space (2a). The la-
bels indicate the order in the fiducial cross section.

of power corrections does not lead to any visible di↵er-
ence, consistent with the fact that such corrections are
quadratic in most of the phase space [100]. As an addi-
tional sanity check, we have repeated the test of Fig. 2 for
each individual flavour channel contributing to the N3LO
Drell–Yan cross section. The results are collected in the
supplementary material [103], together with a discussion
on alternative approaches to qT subtraction employing a
fitting procedure, and a comparison to the literature.

Finally, the computation presented in this letter al-
lows us to obtain, for the first time, N3LO+N3LL predic-
tions for the kinematical distributions of the final-state
leptons. A particularly relevant distribution is the lep-
tonic transverse momentum, which plays a central role
in the precise extraction of the W -boson mass at the
LHC [2, 6]. Fig. 3 shows the di↵erential distribution of
the negatively charged lepton at three di↵erent orders,
for our default value pcutT = 0.81GeV. Unlike for the
fiducial cross section, the inclusion of p``T resummation in
this observable is crucial to cure local (integrable) diver-
gences in the spectrum due to the presence of a Sudakov
shoulder [119] at p`

�

T ⇠ m``/2. The figure shows an ex-
cellent convergence of the perturbative prediction, with
residual uncertainties at N3LO+N3LL of the order of a
few percent to the right of the shoulder, which grow at
most up to the O(5%) level for p`

�

T . m``/2.

Conclusions.— In this letter, we have presented
state-of-the-art predictions for the fiducial cross section
and di↵erential distributions in the Drell–Yan process at
the LHC, through both N3LO and N3LO+N3LL in QCD.
These new predictions are obtained through the combi-
nation of an accurate NNLO calculation for the produc-
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FIDUCIAL CUTS AND LINEAR POWER CORRECTIONS — N3LO SLICING

๏ fiducial cuts      can induce linear power corrections 

‣ can jeopardise  slicing        

⇝

qT 𝒪 ((qcut
T /Q)2) ⇝ 𝒪 (qcut

T /Q)
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Cuts and linear power corrections

Symmetric and asymmetric cuts induce a linear dependence on the acceptance 
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0.04%, which indicates that the predictions with product
cuts can be computed accurately with fixed-order per-
turbation theory. Nevertheless, we still observe a more
reliable estimate of the theoretical uncertainties when re-
summation is included.

In order to study the stability of our predictions
against variations of the infrared parameter pcutT , in Fig. 2
we show the dependence of the NkLO correction (i.e. the
O(↵k

s ) term in the expansion of the fiducial cross sec-
tion) on pcutT down to pcutT ' 0.4GeV. In the case of
symmetric cuts (2a), we observe that the inclusion of the
linear power corrections is essential to reach a plateau at
small pcutT , achieving the necessary independence of the
result on the slicing parameter. We thus obtain an excel-
lent control over the estimate of the slicing error quoted
in Tab. I. Fig. 2 also clearly shows that the omission of
such linear corrections leads to an incorrect result for the
fiducial cross section computed with the qT -subtraction
method, unless d�NNLO

DY+jet
can be computed precisely down

to pcutT ⌧ 1GeV. Conversely, in the case of the prod-
uct cuts (2b), we observe a much milder dependence of
the NkLO correction on pcutT , and the further inclusion

FIG. 3. Lepton transverse momentum distribution up to
N3LO+N3LL order in the fiducial phase space (2a). The la-
bels indicate the order in the fiducial cross section.

of power corrections does not lead to any visible di↵er-
ence, consistent with the fact that such corrections are
quadratic in most of the phase space [100]. As an addi-
tional sanity check, we have repeated the test of Fig. 2 for
each individual flavour channel contributing to the N3LO
Drell–Yan cross section. The results are collected in the
supplementary material [103], together with a discussion
on alternative approaches to qT subtraction employing a
fitting procedure, and a comparison to the literature.

Finally, the computation presented in this letter al-
lows us to obtain, for the first time, N3LO+N3LL predic-
tions for the kinematical distributions of the final-state
leptons. A particularly relevant distribution is the lep-
tonic transverse momentum, which plays a central role
in the precise extraction of the W -boson mass at the
LHC [2, 6]. Fig. 3 shows the di↵erential distribution of
the negatively charged lepton at three di↵erent orders,
for our default value pcutT = 0.81GeV. Unlike for the
fiducial cross section, the inclusion of p``T resummation in
this observable is crucial to cure local (integrable) diver-
gences in the spectrum due to the presence of a Sudakov
shoulder [119] at p`

�

T ⇠ m``/2. The figure shows an ex-
cellent convergence of the perturbative prediction, with
residual uncertainties at N3LO+N3LL of the order of a
few percent to the right of the shoulder, which grow at
most up to the O(5%) level for p`
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T . m``/2.

Conclusions.— In this letter, we have presented
state-of-the-art predictions for the fiducial cross section
and di↵erential distributions in the Drell–Yan process at
the LHC, through both N3LO and N3LO+N3LL in QCD.
These new predictions are obtained through the combi-
nation of an accurate NNLO calculation for the produc-
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0.04%, which indicates that the predictions with product
cuts can be computed accurately with fixed-order per-
turbation theory. Nevertheless, we still observe a more
reliable estimate of the theoretical uncertainties when re-
summation is included.

In order to study the stability of our predictions
against variations of the infrared parameter pcutT , in Fig. 2
we show the dependence of the NkLO correction (i.e. the
O(↵k

s ) term in the expansion of the fiducial cross sec-
tion) on pcutT down to pcutT ' 0.4GeV. In the case of
symmetric cuts (2a), we observe that the inclusion of the
linear power corrections is essential to reach a plateau at
small pcutT , achieving the necessary independence of the
result on the slicing parameter. We thus obtain an excel-
lent control over the estimate of the slicing error quoted
in Tab. I. Fig. 2 also clearly shows that the omission of
such linear corrections leads to an incorrect result for the
fiducial cross section computed with the qT -subtraction
method, unless d�NNLO

DY+jet
can be computed precisely down

to pcutT ⌧ 1GeV. Conversely, in the case of the prod-
uct cuts (2b), we observe a much milder dependence of
the NkLO correction on pcutT , and the further inclusion

FIG. 3. Lepton transverse momentum distribution up to
N3LO+N3LL order in the fiducial phase space (2a). The la-
bels indicate the order in the fiducial cross section.

of power corrections does not lead to any visible di↵er-
ence, consistent with the fact that such corrections are
quadratic in most of the phase space [100]. As an addi-
tional sanity check, we have repeated the test of Fig. 2 for
each individual flavour channel contributing to the N3LO
Drell–Yan cross section. The results are collected in the
supplementary material [103], together with a discussion
on alternative approaches to qT subtraction employing a
fitting procedure, and a comparison to the literature.

Finally, the computation presented in this letter al-
lows us to obtain, for the first time, N3LO+N3LL predic-
tions for the kinematical distributions of the final-state
leptons. A particularly relevant distribution is the lep-
tonic transverse momentum, which plays a central role
in the precise extraction of the W -boson mass at the
LHC [2, 6]. Fig. 3 shows the di↵erential distribution of
the negatively charged lepton at three di↵erent orders,
for our default value pcutT = 0.81GeV. Unlike for the
fiducial cross section, the inclusion of p``T resummation in
this observable is crucial to cure local (integrable) diver-
gences in the spectrum due to the presence of a Sudakov
shoulder [119] at p`

�

T ⇠ m``/2. The figure shows an ex-
cellent convergence of the perturbative prediction, with
residual uncertainties at N3LO+N3LL of the order of a
few percent to the right of the shoulder, which grow at
most up to the O(5%) level for p`

�

T . m``/2.

Conclusions.— In this letter, we have presented
state-of-the-art predictions for the fiducial cross section
and di↵erential distributions in the Drell–Yan process at
the LHC, through both N3LO and N3LO+N3LL in QCD.
These new predictions are obtained through the combi-
nation of an accurate NNLO calculation for the produc-

can compute & subtract the linear term: 
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FIDUCIAL CUTS AND LINEAR POWER CORRECTIONS — INCLUSIVE QUANTITIES

๏ can compute the N3LO cross section reliably  ✓  
but:  potential sensitivity on soft physics in inclusive quantities  ⍰  
         c.f.      

๏ can be resummed to all orders  
with the same recoil prescription 

๏ How strongly is the Drell-Yan fiducial cross section impacted by this?

gg → H → γγ
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III. THE TOTAL FIDUCIAL CROSS SECTION

If (and only if) the singular distributional structure of
d�(0)

/dqT is known, the qT spectrum can be integrated
to obtain the total cross section. This is the basis of qT
subtractions [44],

� = �
sub(qo↵

T
)+

Z
dqT


d�

dqT
�

d�sub

dqT
✓(qT  q

o↵

T
)

�
. (14)

Here, d�sub = d�(0)[1+O(qT /mH)] contains the singular
terms, with �

sub(qo↵
T

) its distributional integral over qT 

q
o↵

T
, while the term in brackets is numerically integrable.

Taking �
sub

⌘ �
sing, we get

� = �
sing(qo↵

T
) +

Z
q
off
T

0

dqT
d�nons

dqT
+

Z

q
off
T

dqT
d�

dqT
, (15)

which is exactly the integral of Eq. (13). The subtrac-
tions here are di↵erential in qT , where qo↵T ⇠ 10�100GeV
determines the range over which they act and exactly
cancels between all terms.

To integrate d�nons
/dqT in Eq. (15) down to qT = 0,

we parametrize the fixed-order coe�cients in Eq. (12) by
their leading behavior,

qT
d�nons

FO

dqT

����
↵n

s

=
q
2

T

m
2

H

2n�1X

k=0

ak ln
k q

2

T

m
2

H

+ · · · , (16)

and perform a fit to this parameterization, which we then
integrate analytically. To obtain reliable, unbiased fit re-
sults, we must account for the uncertainties in the pa-
rameterization from yet higher-power corrections. We
do so by including additional higher-power coe�cients
as nuisance parameters. In the fiducial case, we include
all O(q3

T
/m

3

H
) coe�cients. The fit procedure is an ex-

tension of the one described in Refs. [103, 104]. It has
been validated extensively, and more details will be given
elsewhere. As a benchmark, we correctly reproduce the
↵s (↵2

s
) coe�cients of the total inclusive cross section to

better than 10�5 (10�4) relative precision.
At N3LO, we use existing NNLOjet results [41, 42] to

get nonsingular data for 0.74GeV (4GeV)  qT  q
o↵

T

for inclusive log bins (for inclusive and fiducial linear
bins). While these data are not yet precise enough to-
wards small qT to give a stable fit on their own, we ex-
ploit that in the inclusive case, the known ↵

3
s
coe�cient

of the total inclusive cross section [25, 105] provides a
su�ciently strong additional constraint to obtain a reli-
able fit. In the fiducial case, we exploit that the inclusive
and fiducial ak arise from the same Y -dependent coef-
ficient functions integrated either inclusively or against
A(0, Y ;⇥). At NLO and NNLO, their ratios are between
0.4 to 0.55. At N3LO, we thus perform a simultaneous
fit to inclusive and fiducial data, using this range as a
1� constraint on the ratio of fiducial and inclusive ak.

FIG. 2. Fiducial and nonsingular power corrections integrated
up to qT  q

cut
T . The yellow band shows �nons from the fit.
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FIG. 3. Total fiducial gg ! H ! �� cross section at fixed or-
der and including resummation, where �resum ⌘ �qT ��' �
�match, compared to preliminary ATLAS measurements [26].

This yields a stable fit, with an acceptable ⇠ 0.1 pb un-
certainty for the fiducial nonsingular integral (�nons).

The often-used qT slicing approach amounts to taking
q
o↵

T
! q

cut

T
⇠ 1GeV and simply dropping the power cor-

rections below q
cut

T
. The nonsingular and fiducial power

corrections are shown in Fig. 2. The latter are huge at
↵
3
s
, and even at ↵

2
s
only become really negligible below

q
cut

T
<
⇠ 10�2 GeV. This is why it is critical for us to

include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

ten times larger than at ↵
2
s
, and at q

cut

T
= 1 � 5GeV

still contribute 5 � 10% of the total ↵3
s
coe�cient. To-

gether with the current precision of the nonsingular data,
this makes the above di↵erential subtraction procedure
essential to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power

[Billis, Dehnadi, Ebert, Michel, Tackmann '21] 
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FIG. 3. Total fiducial gg ! H ! �� cross section at
fixed N3LO (this work) and including resummation (also this
work), where �resum ⌘ �qT � �' � �match, compared to
preliminary ATLAS measurements [26].

include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

10 times larger than at ↵
2
s
, and at q

cut

T
= 1–5GeV still

contribute 5%–10% of the total ↵3
s
coe�cient. Together

with the current precision of the nonsingular data, this
makes the above di↵erential subtraction procedure essen-
tial to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power
corrections. To see this,

�
FO

incl
= 13.80 [1 + 1.291 + 0.783 + 0.299] pb ,

�
FO

fid
/B�� = 6.928 [1 + (1.300 + 0.129fpc)

+ (0.784� 0.061fpc)

+ (0.331 + 0.150fpc)] pb . (17)

The successive terms are the contributions from each or-
der in ↵s. The numbers with “fpc” subscript are the
contributions of the fiducial power corrections in Eq. (7)
integrated over qT  130GeV. The corrections with-
out them are almost identical to the inclusive case. The
fiducial power corrections break this would-be universal
acceptance e↵ect, causing a 10% correction at NLO and
NNLO and a 50% correction at N3LO and showing no
perturbative convergence.

Integrating W
(0) over qT , all qT logarithms and re-

summation e↵ects formally have to cancel. (Numerically,
this strongly depends on the specific implementation of
resummation and matching. We have verified explicitly
that it is well satisfied in our approach.) For the fiducial
power corrections, the nontrivial qT dependence of the
acceptance spoils this cancellation and induces residual
logarithmic dependence on pL/mH in the integral. This
causes the large corrections in Eq. (17), which get re-
summed using the resummed �

sing in Eq. (15). Together

with timelike resummation, this leads to the excellent
convergence of the resummed results in Fig. 3, very sim-
ilar to the inclusive case [73],

�incl = 24.16 [1 + 0.756 + 0.207 + 0.024] pb ,

�fid/B�� = 12.89 [1 + 0.749 + 0.171 + 0.053] pb . (18)

To conclude, our best result for the fiducial Higgs cross
section at N3LL0+N3LO for the cuts in Eq. (1) reads

�fid/B�� = (25.41± 0.59FO ± 0.21qT ± 0.17'

± 0.06match ± 0.20nons) pb

= (25.41± 0.68pert) pb . (19)

Multiplying by B�� = (2.270± 0.047)⇥ 10�3 [107–109],

�fid = 57.69 (1± 2.7%pert ± 2.1%B (20)

± 3.2%PDF+↵s ± 2%EW ± 2%t,b,c) fb ,

where we also included approximations of additional un-
certainties. The PDF+↵s uncertainty is taken from the
inclusive case [24, 109]. For the inclusive cross section,
NLO electroweak e↵ects give a +5% correction [110],
while the net e↵ect of finite top-mass, bottom, and charm
contributions is�5% (in the pole scheme we use). We can
expect roughly similar acceptance corrections for both,
and therefore keep the central result unchanged but in-
clude a conservative 2% uncertainty (40% of the expected
correction) for each e↵ect. Their proper treatment re-
quires incorporating them into the resummation frame-
work, which we leave for future work.
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Note added. While finalizing this work, we became

aware of complementary work computing fiducial ra-
pidity spectra in Higgs production at N3LO using the
Projection-to-Born approach [111]. The perturbative in-
stabilities observed there are avoided here by resumming
the responsible fiducial power corrections.
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FIDUCIAL Z CROSS SECTION @ N3LO+N3LL 

๏ ;  outside scale bands (fixed order) 

๏ fixed order  vs.  +resummation — similar central values 
  smaller fiducial power corrections than ;   nonetheless, not negligible

๏ N3LO+N3LL  more robust error estimate (matching scale )   

KN3LO ∼ − 2.5 %

⇝ gg → H → γγ

Q
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!e Drell-Yan fiducial cross section at N3LO and N3LO+N3LL
3

Order � [pb] Symmetric cuts � [pb] Product cuts

k NkLO NkLO+NkLL NkLO NkLO+NkLL

0 721.16+12.2%
�13.2% — 721.16+12.2%

�13.2% —

1 742.80(1)+2.7%
�3.9% 748.58(3)+3.1%

�10.2% 832.22(1)+2.7%
�4.5% 831.91(2)+2.7%

�10.4%

2 741.59(8)+0.42%
�0.71% 740.75(5)+1.15%

�2.66% 831.32(3)+0.59%
�0.96% 830.98(4)+0.74%

�2.73%

3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
�0.73% ± 0.8 816.6(1.1)+0.87%

�0.69%

TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66GeV < m`` < 116GeV and the lepton rapidi-
ties are confined to |⌘`

±
| < 2.5. The transverse momen-

tum of the two leptons is constrained as

Symmetric cuts [113]: |~p `±

T | > 27GeV , (2a)

Product cuts [100]:
q

|~p `+
T | |~p `�

T | > 27GeV ,

min{|~p `±

T |} > 20GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
q

m``
2 + p``T

2
and the cen-

tral resummation scale is set to Q = m``/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2  µR/µF  2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p``T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p``T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet
�
⇥
d�N

3
LL

DY

⇤
O(↵3

s)
in Eq. (1) gives a non-

negligible contribution even for p``T  15GeV. The resid-
ual theoretical uncertainty in the intermediate p``T region
is at the few-percent level, and it increases to about 5%
for p``T & 50GeV. A more accurate description of the

large-p``T region requires the inclusion of EW corrections,
which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcutT as low as 0.81GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results toO(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcutT in the range [0.45, 1.48]GeV and taking the
average di↵erence from the result with pcutT = 0.81GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.
We observe that the new N3LO corrections decrease

the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di↵erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p``T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.
A possible solution to this problem [100] is to slightly

modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di↵erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the

• 2.5% negative correction at N3LO in the ATLAS fiducial region. N3LO larger than the 
NNLO correction and outside its error band 

• More robust estimate of the theory uncertainty when resummation effects are included 

• Slicing error computed conservatively by considering the cutoff within the [0.45-1.5] GeV 
interval 
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3

Order � [pb] Symmetric cuts � [pb] Product cuts

k NkLO NkLO+NkLL NkLO NkLO+NkLL

0 721.16+12.2%
�13.2% — 721.16+12.2%

�13.2% —

1 742.80(1)+2.7%
�3.9% 748.58(3)+3.1%

�10.2% 832.22(1)+2.7%
�4.5% 831.91(2)+2.7%

�10.4%

2 741.59(8)+0.42%
�0.71% 740.75(5)+1.15%

�2.66% 831.32(3)+0.59%
�0.96% 830.98(4)+0.74%

�2.73%

3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
�0.73% ± 0.8 816.6(1.1)+0.87%

�0.69%

TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66GeV < m`` < 116GeV and the lepton rapidi-
ties are confined to |⌘`

±
| < 2.5. The transverse momen-

tum of the two leptons is constrained as

Symmetric cuts [113]: |~p `±

T | > 27GeV , (2a)

Product cuts [100]:
q

|~p `+
T | |~p `�

T | > 27GeV ,

min{|~p `±

T |} > 20GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
q

m``
2 + p``T

2
and the cen-

tral resummation scale is set to Q = m``/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2  µR/µF  2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p``T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p``T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet
�
⇥
d�N

3
LL

DY

⇤
O(↵3

s)
in Eq. (1) gives a non-

negligible contribution even for p``T  15GeV. The resid-
ual theoretical uncertainty in the intermediate p``T region
is at the few-percent level, and it increases to about 5%
for p``T & 50GeV. A more accurate description of the

large-p``T region requires the inclusion of EW corrections,
which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcutT as low as 0.81GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results toO(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcutT in the range [0.45, 1.48]GeV and taking the
average di↵erence from the result with pcutT = 0.81GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.
We observe that the new N3LO corrections decrease

the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di↵erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p``T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.
A possible solution to this problem [100] is to slightly

modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di↵erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the

Symmetric cuts: 

pℓ±

T > 27 GeV

  regulator?ΓV ↭

get rid of these  
completely by solving  
the problem at its core

[Chen, Gehrmann, Glover, AH, Monni, Rottoli, Re, Torrielli '22]
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Order � [pb] Symmetric cuts � [pb] Product cuts

k NkLO NkLO+NkLL NkLO NkLO+NkLL

0 721.16+12.2%
�13.2% — 721.16+12.2%

�13.2% —

1 742.80(1)+2.7%
�3.9% 748.58(3)+3.1%

�10.2% 832.22(1)+2.7%
�4.5% 831.91(2)+2.7%

�10.4%

2 741.59(8)+0.42%
�0.71% 740.75(5)+1.15%

�2.66% 831.32(3)+0.59%
�0.96% 830.98(4)+0.74%

�2.73%

3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
�0.73% ± 0.8 816.6(1.1)+0.87%

�0.69%

TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66GeV < m`` < 116GeV and the lepton rapidi-
ties are confined to |⌘`

±
| < 2.5. The transverse momen-

tum of the two leptons is constrained as

Symmetric cuts [113]: |~p `±

T | > 27GeV , (2a)

Product cuts [100]:
q

|~p `+
T | |~p `�

T | > 27GeV ,

min{|~p `±

T |} > 20GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
q

m``
2 + p``T

2
and the cen-

tral resummation scale is set to Q = m``/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2  µR/µF  2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p``T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p``T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet
�
⇥
d�N

3
LL

DY

⇤
O(↵3

s)
in Eq. (1) gives a non-

negligible contribution even for p``T  15GeV. The resid-
ual theoretical uncertainty in the intermediate p``T region
is at the few-percent level, and it increases to about 5%
for p``T & 50GeV. A more accurate description of the

large-p``T region requires the inclusion of EW corrections,
which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcutT as low as 0.81GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results toO(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcutT in the range [0.45, 1.48]GeV and taking the
average di↵erence from the result with pcutT = 0.81GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.
We observe that the new N3LO corrections decrease

the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di↵erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p``T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.
A possible solution to this problem [100] is to slightly

modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di↵erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the

• 2.5% negative correction at N3LO in the ATLAS fiducial region. N3LO larger than the 
NNLO correction and outside its error band 

• More robust estimate of the theory uncertainty when resummation effects are included 

• Slicing error computed conservatively by considering the cutoff within the [0.45-1.5] GeV 
interval 

• Central value very similar at NkLO and NkLO+NkLL for product cuts, compatible with the 
absence of linear power corrections
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Order � [pb] Symmetric cuts � [pb] Product cuts

k NkLO NkLO+NkLL NkLO NkLO+NkLL

0 721.16+12.2%
�13.2% — 721.16+12.2%

�13.2% —

1 742.80(1)+2.7%
�3.9% 748.58(3)+3.1%

�10.2% 832.22(1)+2.7%
�4.5% 831.91(2)+2.7%

�10.4%

2 741.59(8)+0.42%
�0.71% 740.75(5)+1.15%

�2.66% 831.32(3)+0.59%
�0.96% 830.98(4)+0.74%

�2.73%

3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
�0.73% ± 0.8 816.6(1.1)+0.87%

�0.69%

TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66GeV < m`` < 116GeV and the lepton rapidi-
ties are confined to |⌘`

±
| < 2.5. The transverse momen-

tum of the two leptons is constrained as

Symmetric cuts [113]: |~p `±

T | > 27GeV , (2a)

Product cuts [100]:
q

|~p `+
T | |~p `�

T | > 27GeV ,

min{|~p `±

T |} > 20GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
q

m``
2 + p``T

2
and the cen-

tral resummation scale is set to Q = m``/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2  µR/µF  2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p``T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p``T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet
�
⇥
d�N

3
LL

DY

⇤
O(↵3

s)
in Eq. (1) gives a non-

negligible contribution even for p``T  15GeV. The resid-
ual theoretical uncertainty in the intermediate p``T region
is at the few-percent level, and it increases to about 5%
for p``T & 50GeV. A more accurate description of the

large-p``T region requires the inclusion of EW corrections,
which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcutT as low as 0.81GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results toO(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcutT in the range [0.45, 1.48]GeV and taking the
average di↵erence from the result with pcutT = 0.81GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.
We observe that the new N3LO corrections decrease

the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di↵erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p``T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.
A possible solution to this problem [100] is to slightly

modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di↵erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the
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Order � [pb] Symmetric cuts � [pb] Product cuts

k NkLO NkLO+NkLL NkLO NkLO+NkLL

0 721.16+12.2%
�13.2% — 721.16+12.2%

�13.2% —

1 742.80(1)+2.7%
�3.9% 748.58(3)+3.1%

�10.2% 832.22(1)+2.7%
�4.5% 831.91(2)+2.7%

�10.4%

2 741.59(8)+0.42%
�0.71% 740.75(5)+1.15%

�2.66% 831.32(3)+0.59%
�0.96% 830.98(4)+0.74%

�2.73%

3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
�0.73% ± 0.8 816.6(1.1)+0.87%
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TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66GeV < m`` < 116GeV and the lepton rapidi-
ties are confined to |⌘`

±
| < 2.5. The transverse momen-

tum of the two leptons is constrained as

Symmetric cuts [113]: |~p `±

T | > 27GeV , (2a)

Product cuts [100]:
q

|~p `+
T | |~p `�

T | > 27GeV ,

min{|~p `±

T |} > 20GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
q

m``
2 + p``T

2
and the cen-

tral resummation scale is set to Q = m``/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2  µR/µF  2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p``T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p``T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet
�
⇥
d�N

3
LL

DY

⇤
O(↵3

s)
in Eq. (1) gives a non-

negligible contribution even for p``T  15GeV. The resid-
ual theoretical uncertainty in the intermediate p``T region
is at the few-percent level, and it increases to about 5%
for p``T & 50GeV. A more accurate description of the

large-p``T region requires the inclusion of EW corrections,
which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcutT as low as 0.81GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results toO(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcutT in the range [0.45, 1.48]GeV and taking the
average di↵erence from the result with pcutT = 0.81GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.
We observe that the new N3LO corrections decrease

the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di↵erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p``T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.
A possible solution to this problem [100] is to slightly

modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di↵erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the
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TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66GeV < m`` < 116GeV and the lepton rapidi-
ties are confined to |⌘`

±
| < 2.5. The transverse momen-

tum of the two leptons is constrained as

Symmetric cuts [113]: |~p `±

T | > 27GeV , (2a)

Product cuts [100]:
q

|~p `+
T | |~p `�

T | > 27GeV ,

min{|~p `±

T |} > 20GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
q

m``
2 + p``T

2
and the cen-

tral resummation scale is set to Q = m``/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2  µR/µF  2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p``T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p``T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet
�
⇥
d�N

3
LL

DY

⇤
O(↵3

s)
in Eq. (1) gives a non-

negligible contribution even for p``T  15GeV. The resid-
ual theoretical uncertainty in the intermediate p``T region
is at the few-percent level, and it increases to about 5%
for p``T & 50GeV. A more accurate description of the

large-p``T region requires the inclusion of EW corrections,
which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcutT as low as 0.81GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results toO(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcutT in the range [0.45, 1.48]GeV and taking the
average di↵erence from the result with pcutT = 0.81GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.
We observe that the new N3LO corrections decrease

the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di↵erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p``T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.
A possible solution to this problem [100] is to slightly

modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di↵erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the

Product cuts: 

pℓ+

T pℓ−

T > 27 GeV

min {pℓ±

T } > 20 GeV

[Salam, Slade ’21]

๏ ;  outside scale bands (fixed order) 

๏ fixed order  vs.  +resummation — virtually identical central values 
  basically no linear fiducial power corrections;  very robust 

๏ N3LO+N3LL  more robust error estimate (matching scale )   

KN3LO ∼ − 2 %

⇝

Q

[Chen, Gehrmann, Glover, AH, Monni, Rottoli, Re, Torrielli '22]
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across  spectrum 

  lowest bin susceptible to 
      non-perturbative effects  

  high- :  missing EW corrections

๏ uncertainties — few percent (   5%)  
  , :  7-point variation 
  matching scale :   variation 
  matching scheme:   
  envelope of 36 variations 

pZ
T

↪

↪ pT

pT ≳ 50 GeV ↗
↪ μR μF
↪ Q +2
↪ +3 × 9 = 27
⇒

[Chen, Gehrmann, Glover, AH, Monni, Rottoli, Re, Torrielli '22]

dσN3LO+N3LL
V ≡ dσN3LL

V + dσNNLO
V+jet − [dσN3LL

V ]𝒪(αs)
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[Chen, Gehrmann, Glover, AH, Monni, Rottoli, Re, Torrielli '22]

dσN3LO+N3LL
V ≡ dσN3LL

V + dσNNLO
V+jet − [dσN3LL

V ]𝒪(αs)

๏ fully differential calculation 
  access to fiducial observables 

        &  decay kinematics

๏ lepton transverse momentum 
  important in  extraction 
  challenging due to Jacobian peak 

        @    (integrable singularity)  
  resummation mandatory

๏ reduced uncertainties  
  &  some impact on shape

↪

↪ MW
↪

pℓ
T ∼ MV /2

↪

how would it translate to 
 shift in  production?MW W±



CONCLUSIONS & OUTLOOK

๏ N3LO predictions for Drell-Yan processes: 
  (non-overlapping),  (improvable),   

      but:  corrections rather flat;  compensate to a large extent in ratios (shape) 

๏ Fiducial cuts    linear power corrections 
  [1]  can jeopardise N3LO slicing calculation 
  [2]  can introduce soft sensitivity to inclusive quantities 
     solutions:      [1]     compute & subtract 
                               [2]     resummation of fiducial power corrections 
                               [1+2]  adjust fiducial cuts  more robust predictions

๏ N3LO+N3LL    distributions at few-percent level   
  next:  fiducial  @ N3LO+N3LL

↪ Δscl < 1 % ΔPDF ∼ ± 2 % ΔPDF−TH ∼ ± 2.5 %

↭

↪

⇝

↭
↪ W±
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Thank you!


