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(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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Figure 2: Transverse-momentum distribution of / bosons predicted with DYTurbo [31] at different values of Us (</ ),
using the MSHT20 PDF set [32].

range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors.
Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements
with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range
(|[ | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters for both the EM and
hadronic energy measurements up to |[ | = 4.9. The muon spectrometer surrounds the calorimeters and is
based on three large superconducting air-core toroidal magnets with eight coils each. The field integral of
the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon spectrometer includes a
system of precision tracking chambers and fast detectors for triggering. A three-level trigger system is
used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector
information to accept events at a rate of at most 75 kHz. This is followed by two software-based trigger
levels that together reduce the accepted event rate to 400 Hz on average depending on the data-taking
conditions during 2012. An extensive software suite [44] is used in data simulation, in the reconstruction
and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition
systems of the experiment. The data were collected by the ATLAS detector in 2012 at a centre-of-mass
energy of

p
B = 8 TeV, and correspond to an integrated luminosity of 20.2 fb�1. The mean number of

additional ?? interactions per bunch crossing (pile-up events) in the data set is approximately 20.

3 Cross-section measurement

The /-boson transverse-momentum distribution is measured in the electron and muon decay channels,
which provide a clear signature with low background rates and a high precision measurement of the
momentum, as presented in Ref. [45]. The double-differential cross sections as functions of transverse
momentum and rapidity (H) of the / boson are measured in the pole region, defined as 80 < <✓✓ < 100 GeV,
where <✓✓ is the invariant mass of the dilepton system. The combination of 6.2 million electron and

4
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QCD qT resummation at N4LLa
[DYTurbo]



up to N4LL+N4LO accuracy
Transverse momentum resummationA Transverse-momentum resummation up to N

4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed

8

QCD factorization

>>>> ..

>>>>

h1 + h2 → F (M) + X

..

σ̂ab

F (M)a(x1p1)

b(x2p2)

fa/h1
(x1,µ

2
F )

fb/h2
(x2,µ

2
F )

X

h1(p1)

h2(p2)

..

The framework: QCD factorization formula

σ
F(s) =

∑

a,b

∫ 1

0

dx1

∫ 1

0

dx2 fa/h1(x1, µ
2
F) fb/h2(x2, µ

2
F) σ̂

F
ab(x1x2s;µ

2
F) + O

(ΛQCD

M

)p

fa/h(x, µ
2
F): Non perturbative universal parton densities (PDFs), µF ∼ M.

σ̂ab: Hard scattering cross section. Process dependent, calculable with a perturbative expansion
in the strong coupling αS(M) (M " ΛQCD ∼ 1 GeV).
(

ΛQCD
M

)p
(with p ≥ 1): Non perturbative power-corrections.

Precise predictions for σ depend on good knowledge of both σ̂ab and fa/h(x, µ
2
F)
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+ŷ
M/

p
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• : Non perturbative universal parton densities (PDFs), μF ∼ M.


• : Hard scattering cross section. Process dependent, calculable with a perturbative 
expansion in the strong coupling αS(M) (M ≫ ΛQCD ∼ 1 GeV). 


• This framework relies in the QCD factorization property of the cross sections

QCD factorization

>>>> ..

>>>>

h1 + h2 → F (M) + X

..
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F (M)a(x1p1)

b(x2p2)

fa/h1
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The framework: QCD factorization formula
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F(s) =

∑
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∫ 1

0

dx1

∫ 1

0

dx2 fa/h1(x1, µ
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F) fb/h2(x2, µ
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F) σ̂

F
ab(x1x2s;µ

2
F) + O

(ΛQCD

M

)p

fa/h(x, µ
2
F): Non perturbative universal parton densities (PDFs), µF ∼ M.

σ̂ab: Hard scattering cross section. Process dependent, calculable with a perturbative expansion
in the strong coupling αS(M) (M " ΛQCD ∼ 1 GeV).
(

ΛQCD
M

)p
(with p ≥ 1): Non perturbative power-corrections.

Precise predictions for σ depend on good knowledge of both σ̂ab and fa/h(x, µ
2
F)
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p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ
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ŝ and z2 = e

�ŷ
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F) σ̂
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fa/h(x, µ
2
F): Non perturbative universal parton densities (PDFs), µF ∼ M.

σ̂ab: Hard scattering cross section. Process dependent, calculable with a perturbative expansion
in the strong coupling αS(M) (M " ΛQCD ∼ 1 GeV).
(

ΛQCD
M

)p
(with p ≥ 1): Non perturbative power-corrections.

Precise predictions for σ depend on good knowledge of both σ̂ab and fa/h(x, µ
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• : Non perturbative universal parton densities (PDFs), μF ∼ M.


• : Hard scattering cross section. Process dependent, calculable with a perturbative 
expansion in the strong coupling αS(M) (M ≫ ΛQCD ∼ 1 GeV). 


• This framework relies in the QCD factorization property of the cross sections

QCD factorization
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The framework: QCD factorization formula

σ
F(s) =

∑
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∫ 1

0

dx1

∫ 1

0

dx2 fa/h1(x1, µ
2
F) fb/h2(x2, µ
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F) σ̂

F
ab(x1x2s;µ

2
F) + O

(ΛQCD

M

)p

fa/h(x, µ
2
F): Non perturbative universal parton densities (PDFs), µF ∼ M.

σ̂ab: Hard scattering cross section. Process dependent, calculable with a perturbative expansion
in the strong coupling αS(M) (M " ΛQCD ∼ 1 GeV).
(

ΛQCD
M

)p
(with p ≥ 1): Non perturbative power-corrections.

Precise predictions for σ depend on good knowledge of both σ̂ab and fa/h(x, µ
2
F)
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ŝ and z2 = e

�ŷ
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2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.
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is the partonic centre–of–mass energy squared, ŷ = y � ln
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ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ
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p
ŝ and z2 = e

�ŷ
M/

p
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F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion
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1X
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⇡
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⇣
↵S

⇡
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H
(n)
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1X
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↵S
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C
(n)

, (14)

therefore up to the fourth order we have the following relations
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(3) + C
(3) +H

(2)
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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Transverse momentum resummation
up to N4LL+N4LO accuracy

A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed

8

The cross section can be decomposed as

Transverse-momentum resummation formula
>>>> ..

>>>> ..

S1/2
q

S1/2
q

Cqa1

Cq̄a2

HF
q F

M ! ΛQCD , b ! 1/M , b " 1/ΛQCD

x1
z1

x2
z2

x1

x2

fa1/h1

fa2/h2

h1(p1)

h2(p2)

C(αS (b
2
0/b

2)) = C(αS (M
2))

× exp

{

−

∫ M2

b20/b
2

dq2

q2
β(αS (q

2))
d lnC(αS (q

2))

d lnαS (q2)

}

dσ
(res)
F

d2qT dM2 dy dΩ
=

M2

s

[
dσ

(0)
qq̄,F

] ∑

a1,a2

∫
d2b

(2π)2
eib·qT Sq(M, b)

×

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

[
HFC1C2

]

qq̄;a1a2
fa1/h1 (x1/z1, b

2
0/b

2) fa2/h2 (x2/z2, b
2
0/b

2)

F̃qf /h(x , b,M) =
∑

a

∫ 1
x

dz
z

√
Sq(M, b)Cqf a(z ;αS(b20/b

2)) fa/h(x/z , b
2
0/b

2)
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WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
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(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed
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WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
V + C

(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
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A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
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Transverse-momentum resummation formula
>>>> ..

>>>> ..

S1/2
q

S1/2
q

Cqa1

Cq̄a2

HF
q F

M ! ΛQCD , b ! 1/M , b " 1/ΛQCD

x1
z1

x2
z2

x1

x2

fa1/h1

fa2/h2

h1(p1)

h2(p2)

C(αS (b
2
0/b

2)) = C(αS (M
2))

× exp

{

−

∫ M2

b20/b
2

dq2

q2
β(αS (q

2))
d lnC(αS (q

2))

d lnαS (q2)

}

dσ
(res)
F

d2qT dM2 dy dΩ
=

M2

s

[
dσ

(0)
qq̄,F

] ∑

a1,a2

∫
d2b

(2π)2
eib·qT Sq(M, b)

×

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

[
HFC1C2

]

qq̄;a1a2
fa1/h1 (x1/z1, b

2
0/b

2) fa2/h2 (x2/z2, b
2
0/b

2)

F̃qf /h(x , b,M) =
∑

a

∫ 1
x

dz
z

√
Sq(M, b)Cqf a(z ;αS(b20/b

2)) fa/h(x/z , b
2
0/b

2)
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F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion
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n=1
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⇡
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C
(n)

, (14)

therefore up to the fourth order we have the following relations
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(1)
, (15)
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V = H
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V + C
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(2)
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(3)
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(3)
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(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)
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For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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Transverse momentum resummation
up to N4LL+N4LO accuracy

A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as
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where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed
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The cross section can be decomposed as

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton densities of the colliding hadrons at the factoriza-
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T are the partonic cross sections, ŝ = x1x2s is the partonic centre-of-mass
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lim
QT→0

∫ Q2
T

0

dq2
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[dσ̂(fin.)
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dq2
T

]

f.o.
= 0 , (4)

where the right-hand side vanishes order-by-order in perturbation theory. In particular, this
implies that any perturbative contributions proportional to δ(q2

T ) have been removed from dσ̂(fin.)
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and included in dσ̂(res.)
F ab .

The ‘resummed’ component dσ̂(res.)
F ab of the partonic cross section cannot, of course, be evaluated

by computing all the logarithmic contributions in the perturbative series. However, as discussed
in Sect. 2.2, these contributions can systematically be organized in classes of LL, NLL, . . . terms
and, then, this logarithmic expansion can be truncated at a given logarithmic accuracy.
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. (5)

The first and second terms on the right-hand side denote the truncation of the resummed and
finite components at a given logarithmic accuracy and at a given fixed order, respectively. The
resummed component gives the dominant contribution in the small-qT region, while the finite

‡The notation
[
X

]
f.o.

means that the quantity X is computed by truncating its perturbative expansion at a
given fixed order in αS.
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A Transverse-momentum resummation up to N
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LL+N

4
LO

accuracy
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where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
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M
§ [6, 63]

WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
V + C

(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
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qT ! 0). The resummed logarithmic expansion of G reads [6]
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We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =
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2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦
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where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as
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a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as
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cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
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M
§ [6, 63]

WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X
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⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)
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V = H
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V (C(1) + C
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V (C(2) + C
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(1)
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(1))
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V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed
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M
§ [6, 63]

WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
V + C

(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
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functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]
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A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4
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2dyd⌦
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where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
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where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed
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ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ
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with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
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with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.
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functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
V + C

(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]
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A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).

9

M
§ [6, 63]

WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
V + C

(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).

9

M
§ [6, 63]

WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
V + C

(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).

9

The cross section can be decomposed as

Transverse momentum resummation
up to N4LL+N4LO accuracy

Resummation scheme 

independent statement!!!!
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Non 𝛅(1-z) contribution: 

unknown 

Transverse-momentum resummation formula
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]
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Camarda, LC, Ferrera [2023]

𝛅(1-z) contribution requires the definition of subtraction operators I at N4LO → we postpone this topic to the 
discussion session

[DYTurbo]



A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed
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2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed
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F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)
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1X
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⇡
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H(n)
V , (12)
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1X
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⇣
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⇡
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H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S
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⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C
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(1)
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(3)
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(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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The cross section can be decomposed as

Transverse momentum resummation
up to N4LL+N4LO accuracy

The 𝛅(1-z) contribution can be computed from the four-loop quark form factor 

Transverse-momentum resummation formula
>>>> ..

>>>> ..

S1/2
q

S1/2
q

Cqa1

Cq̄a2

HF
q F

M ! ΛQCD , b ! 1/M , b " 1/ΛQCD

x1
z1

x2
z2

x1

x2

fa1/h1

fa2/h2

h1(p1)

h2(p2)

C(αS (b
2
0/b

2)) = C(αS (M
2))

× exp

{

−

∫ M2

b20/b
2

dq2

q2
β(αS (q

2))
d lnC(αS (q

2))

d lnαS (q2)

}

dσ
(res)
F

d2qT dM2 dy dΩ
=

M2

s

[
dσ

(0)
qq̄,F

] ∑

a1,a2

∫
d2b

(2π)2
eib·qT Sq(M, b)

×

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

[
HFC1C2

]

qq̄;a1a2
fa1/h1 (x1/z1, b

2
0/b

2) fa2/h2 (x2/z2, b
2
0/b

2)

F̃qf /h(x , b,M) =
∑

a

∫ 1
x

dz
z

√
Sq(M, b)Cqf a(z ;αS(b20/b

2)) fa/h(x/z , b
2
0/b

2)
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
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For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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Transverse momentum resummation
up to N4LL+N4LO accuracy

M
§ [6, 63]

WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)
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2
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2
0) (10)
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where the functions g
(n) control and resum the ↵

k
SL

k (with k � 1) logarithmic terms in the
exponent of Eq. (9) due to soft and collinear radiation. The perturbative functions A(↵S) and
eB(↵S) can be expanded as

A(↵S) =
1X

n=1

⇣
↵S

⇡

⌘n

A
(n)

, (20)

eB(↵S) =
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⇣
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⇡

⌘n eB(n)
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(22)

The function eB(↵S) can be written as follows

eB(↵S) = B(↵S) + 2�(↵S)
d lnC(↵S)

d ln↵S
+ 2�(↵S) , (23)

in terms of the resummation coe�cient B(↵S), the collinear functions C(↵S) (see Eq.(14)), the
functions �(↵S) (the Mellin moments of the Altarelli–Parisi splitting functions �) and the QCD �

function

d ln↵S(µ2)

d lnµ2
= �(↵S) = �

+1X

n=0

�n

⇣
↵S

⇡

⌘n+1

. (24)

By explicit integration of Eq.(19) we obtain the following g
(i) for 1  i  5

g
(1)(↵SL) =

A
(1)
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�+ ln(1� �)

�
, (25)
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In order to match the e↵ect of the charm and bottom-mass threshold included in the evolution of PDFs in

Eq.(6), the resummation (evolution) e↵ects due to the �(↵S) term in Eq.(19) are asymptotically switched o↵

when approaching their corresponding quark-mass thresholds through a b? prescription (see Eq.(3)) with values of

blim = mq.
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where

� =
1

⇡
�0 ↵S(µ

2
R)L , (30)

B
(n)

= eB(n) + A
(n) ln

M
2

Q2
. (31)

The g
(1), g(2) and g

(3) resummation functions can be found in Ref. [6]. The g
(4) function can be

found in Ref. [67] for the related case of direct transverse momentum space resummation. The
explicit expression of the first five coe�cients of the � function, can be found in the following
references: �0, �1 and �2 in Refs. [68, 69], �3 in Ref. [70] and �4 in [71].

At NLL+NLO we include the functions g(1), g(2) and H(1)
V , at NNLL+NNLO we also include

the functions g(3) and H(2)
V [72, 73], at N3LL+N3LO the functions g(4) and H(3)

V [74, 75] and finally

at N4LL+N3LO the function g
(5) and H(4)

V .

We consider uncertainties in the numerical approximations of the N4LL coe�cients, and esti-
mate uncertainties arising from the incomplete knowledge of the N4LO perturbative coe�cients.
The B(4) coe�cient and the non-singlet four-loop splitting functions are known with good numer-
ical approximation [76–78], the corresponding relative uncertainties on the qT distribution are at
the level of 10�6 or smaller, and considered negligible. The numerical approximations of A(5) [79–
85] and of the 4-loop singlet splitting functions [86, 87] are the dominant uncertainties in the
N4LL approximation, and they amount to 1–3 · 10�3 relative uncertainty. In order to estimate the
size of the unknown the C

(4) coe�cients [88] we perform a Levin transform of the corresponding

13
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where

� =
1

⇡
�0 ↵S(µ

2
R)L , (30)

B
(n)

= eB(n) + A
(n) ln

M
2

Q2
. (31)

The g
(1), g(2) and g

(3) resummation functions can be found in Ref. [6]. The g
(4) function can be

found in Ref. [67] for the related case of direct transverse momentum space resummation. The
explicit expression of the first five coe�cients of the � function, can be found in the following
references: �0, �1 and �2 in Refs. [68, 69], �3 in Ref. [70] and �4 in [71].

At NLL+NLO we include the functions g(1), g(2) and H(1)
V , at NNLL+NNLO we also include

the functions g(3) and H(2)
V [72, 73], at N3LL+N3LO the functions g(4) and H(3)

V [74, 75] and finally

at N4LL+N3LO the function g
(5) and H(4)

V .

We consider uncertainties in the numerical approximations of the N4LL coe�cients, and esti-
mate uncertainties arising from the incomplete knowledge of the N4LO perturbative coe�cients.
The B(4) coe�cient and the non-singlet four-loop splitting functions are known with good numer-
ical approximation [76–78], the corresponding relative uncertainties on the qT distribution are at
the level of 10�6 or smaller, and considered negligible. The numerical approximations of A(5) [79–
85] and of the 4-loop singlet splitting functions [86, 87] are the dominant uncertainties in the
N4LL approximation, and they amount to 1–3 · 10�3 relative uncertainty. In order to estimate the
size of the unknown the C

(4) coe�cients [88] we perform a Levin transform of the corresponding
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g(n) controls and resums the 𝛂sLk (k≥1) logarithmic terms 
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F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion
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therefore up to the fourth order we have the following relations
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
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§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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up to N4LL+N4LO accuracy
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where the functions g
(n) control and resum the ↵

k
SL

k (with k � 1) logarithmic terms in the
exponent of Eq. (9) due to soft and collinear radiation. The perturbative functions A(↵S) and
eB(↵S) can be expanded as

A(↵S) =
1X

n=1

⇣
↵S

⇡

⌘n

A
(n)

, (20)

eB(↵S) =
1X

n=1

⇣
↵S

⇡

⌘n eB(n)
. (21)

(22)

The function eB(↵S) can be written as follows

eB(↵S) = B(↵S) + 2�(↵S)
d lnC(↵S)

d ln↵S
+ 2�(↵S) , (23)

in terms of the resummation coe�cient B(↵S), the collinear functions C(↵S) (see Eq.(14)), the
functions �(↵S) (the Mellin moments of the Altarelli–Parisi splitting functions �) and the QCD �

function

d ln↵S(µ2)

d lnµ2
= �(↵S) = �

+1X

n=0

�n

⇣
↵S

⇡

⌘n+1

. (24)

By explicit integration of Eq.(19) we obtain the following g
(i) for 1  i  5

g
(1)(↵SL) =

A
(1)

�0

�+ ln(1� �)

�
, (25)
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�
In order to match the e↵ect of the charm and bottom-mass threshold included in the evolution of PDFs in

Eq.(6), the resummation (evolution) e↵ects due to the �(↵S) term in Eq.(19) are asymptotically switched o↵

when approaching their corresponding quark-mass thresholds through a b? prescription (see Eq.(3)) with values of

blim = mq.
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R)L , (30)

B
(n)

= eB(n) + A
(n) ln

M
2

Q2
. (31)

The g
(1), g(2) and g

(3) resummation functions can be found in Ref. [6]. The g
(4) function can be

found in Ref. [67] for the related case of direct transverse momentum space resummation. The
explicit expression of the first five coe�cients of the � function, can be found in the following
references: �0, �1 and �2 in Refs. [68, 69], �3 in Ref. [70] and �4 in [71].

At NLL+NLO we include the functions g(1), g(2) and H(1)
V , at NNLL+NNLO we also include

the functions g(3) and H(2)
V [72, 73], at N3LL+N3LO the functions g(4) and H(3)

V [74, 75] and finally

at N4LL+N3LO the function g
(5) and H(4)

V .

We consider uncertainties in the numerical approximations of the N4LL coe�cients, and esti-
mate uncertainties arising from the incomplete knowledge of the N4LO perturbative coe�cients.
The B(4) coe�cient and the non-singlet four-loop splitting functions are known with good numer-
ical approximation [76–78], the corresponding relative uncertainties on the qT distribution are at
the level of 10�6 or smaller, and considered negligible. The numerical approximations of A(5) [79–
85] and of the 4-loop singlet splitting functions [86, 87] are the dominant uncertainties in the
N4LL approximation, and they amount to 1–3 · 10�3 relative uncertainty. In order to estimate the
size of the unknown the C

(4) coe�cients [88] we perform a Levin transform of the corresponding
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• At N4LL we need the resummation coefficients


• A5 : 1–3·10−3 relative uncertainty


• B4 : negligible uncertainty


• C4 : 1–2·10−3 relative uncertainty 


• 𝛄4 singlet : 1–3·10−3 relative uncertainty (non-singlet negligible)
g(5) still fits in a slide!
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The g
(1), g(2) and g

(3) resummation functions can be found in Ref. [6]. The g
(4) function can be

found in Ref. [67] for the related case of direct transverse momentum space resummation. The
explicit expression of the first five coe�cients of the � function, can be found in the following
references: �0, �1 and �2 in Refs. [68, 69], �3 in Ref. [70] and �4 in [71].

At NLL+NLO we include the functions g(1), g(2) and H(1)
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V [74, 75] and finally

at N4LL+N3LO the function g
(5) and H(4)
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We consider uncertainties in the numerical approximations of the N4LL coe�cients, and esti-
mate uncertainties arising from the incomplete knowledge of the N4LO perturbative coe�cients.
The B(4) coe�cient and the non-singlet four-loop splitting functions are known with good numer-
ical approximation [76–78], the corresponding relative uncertainties on the qT distribution are at
the level of 10�6 or smaller, and considered negligible. The numerical approximations of A(5) [79–
85] and of the 4-loop singlet splitting functions [86, 87] are the dominant uncertainties in the
N4LL approximation, and they amount to 1–3 · 10�3 relative uncertainty. In order to estimate the
size of the unknown the C
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with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
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For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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where the functions g
(n) control and resum the ↵
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k (with k � 1) logarithmic terms in the
exponent of Eq. (9) due to soft and collinear radiation. The perturbative functions A(↵S) and
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The g
(1), g(2) and g

(3) resummation functions can be found in Ref. [6]. The g
(4) function can be

found in Ref. [67] for the related case of direct transverse momentum space resummation. The
explicit expression of the first five coe�cients of the � function, can be found in the following
references: �0, �1 and �2 in Refs. [68, 69], �3 in Ref. [70] and �4 in [71].

At NLL+NLO we include the functions g(1), g(2) and H(1)
V , at NNLL+NNLO we also include

the functions g(3) and H(2)
V [72, 73], at N3LL+N3LO the functions g(4) and H(3)

V [74, 75] and finally

at N4LL+N3LO the function g
(5) and H(4)

V .

We consider uncertainties in the numerical approximations of the N4LL coe�cients, and esti-
mate uncertainties arising from the incomplete knowledge of the N4LO perturbative coe�cients.
The B(4) coe�cient and the non-singlet four-loop splitting functions are known with good numer-
ical approximation [76–78], the corresponding relative uncertainties on the qT distribution are at
the level of 10�6 or smaller, and considered negligible. The numerical approximations of A(5) [79–
85] and of the 4-loop singlet splitting functions [86, 87] are the dominant uncertainties in the
N4LL approximation, and they amount to 1–3 · 10�3 relative uncertainty. In order to estimate the
size of the unknown the C

(4) coe�cients [88] we perform a Levin transform of the corresponding
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• 𝛄4 singlet : 1–3·10−3 relative uncertainty (non-singlet negligible)
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g(n) controls and resums the 𝛂sLk (k≥1) logarithmic terms 
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with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
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For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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where the functions g
(n) control and resum the ↵

k
SL

k (with k � 1) logarithmic terms in the
exponent of Eq. (9) due to soft and collinear radiation. The perturbative functions A(↵S) and
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In order to match the e↵ect of the charm and bottom-mass threshold included in the evolution of PDFs in

Eq.(6), the resummation (evolution) e↵ects due to the �(↵S) term in Eq.(19) are asymptotically switched o↵

when approaching their corresponding quark-mass thresholds through a b? prescription (see Eq.(3)) with values of

blim = mq.
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• At N4LL we need the resummation coefficients


• A5 : 1–3·10−3 relative uncertainty


• B4 : negligible uncertainty


• C4 : 1–2·10−3 relative uncertainty 


• 𝛄4 singlet : 1–3·10−3 relative uncertainty (non-singlet negligible)
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The g
(1), g(2) and g

(3) resummation functions can be found in Ref. [6]. The g
(4) function can be

found in Ref. [67] for the related case of direct transverse momentum space resummation. The
explicit expression of the first five coe�cients of the � function, can be found in the following
references: �0, �1 and �2 in Refs. [68, 69], �3 in Ref. [70] and �4 in [71].

At NLL+NLO we include the functions g(1), g(2) and H(1)
V , at NNLL+NNLO we also include

the functions g(3) and H(2)
V [72, 73], at N3LL+N3LO the functions g(4) and H(3)

V [74, 75] and finally

at N4LL+N3LO the function g
(5) and H(4)

V .

We consider uncertainties in the numerical approximations of the N4LL coe�cients, and esti-
mate uncertainties arising from the incomplete knowledge of the N4LO perturbative coe�cients.
The B(4) coe�cient and the non-singlet four-loop splitting functions are known with good numer-
ical approximation [76–78], the corresponding relative uncertainties on the qT distribution are at
the level of 10�6 or smaller, and considered negligible. The numerical approximations of A(5) [79–
85] and of the 4-loop singlet splitting functions [86, 87] are the dominant uncertainties in the
N4LL approximation, and they amount to 1–3 · 10�3 relative uncertainty. In order to estimate the
size of the unknown the C

(4) coe�cients [88] we perform a Levin transform of the corresponding
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(3) resummation functions can be found in Ref. [6]. The g
(4) function can be

found in Ref. [67] for the related case of direct transverse momentum space resummation. The
explicit expression of the first five coe�cients of the � function, can be found in the following
references: �0, �1 and �2 in Refs. [68, 69], �3 in Ref. [70] and �4 in [71].

At NLL+NLO we include the functions g(1), g(2) and H(1)
V , at NNLL+NNLO we also include

the functions g(3) and H(2)
V [72, 73], at N3LL+N3LO the functions g(4) and H(3)

V [74, 75] and finally

at N4LL+N3LO the function g
(5) and H(4)

V .

We consider uncertainties in the numerical approximations of the N4LL coe�cients, and esti-
mate uncertainties arising from the incomplete knowledge of the N4LO perturbative coe�cients.
The B(4) coe�cient and the non-singlet four-loop splitting functions are known with good numer-
ical approximation [76–78], the corresponding relative uncertainties on the qT distribution are at
the level of 10�6 or smaller, and considered negligible. The numerical approximations of A(5) [79–
85] and of the 4-loop singlet splitting functions [86, 87] are the dominant uncertainties in the
N4LL approximation, and they amount to 1–3 · 10�3 relative uncertainty. In order to estimate the
size of the unknown the C

(4) coe�cients [88] we perform a Levin transform of the corresponding
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F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion
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therefore up to the fourth order we have the following relations
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]
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§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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Transverse momentum resummation
up to N4LL+N4LO accuracy
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where the functions g
(n) control and resum the ↵

k
SL

k (with k � 1) logarithmic terms in the
exponent of Eq. (9) due to soft and collinear radiation. The perturbative functions A(↵S) and
eB(↵S) can be expanded as
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(22)

The function eB(↵S) can be written as follows

eB(↵S) = B(↵S) + 2�(↵S)
d lnC(↵S)

d ln↵S
+ 2�(↵S) , (23)

in terms of the resummation coe�cient B(↵S), the collinear functions C(↵S) (see Eq.(14)), the
functions �(↵S) (the Mellin moments of the Altarelli–Parisi splitting functions �) and the QCD �

function
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In order to match the e↵ect of the charm and bottom-mass threshold included in the evolution of PDFs in

Eq.(6), the resummation (evolution) e↵ects due to the �(↵S) term in Eq.(19) are asymptotically switched o↵

when approaching their corresponding quark-mass thresholds through a b? prescription (see Eq.(3)) with values of

blim = mq.
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The g
(1), g(2) and g

(3) resummation functions can be found in Ref. [6]. The g
(4) function can be

found in Ref. [67] for the related case of direct transverse momentum space resummation. The
explicit expression of the first five coe�cients of the � function, can be found in the following
references: �0, �1 and �2 in Refs. [68, 69], �3 in Ref. [70] and �4 in [71].

At NLL+NLO we include the functions g(1), g(2) and H(1)
V , at NNLL+NNLO we also include

the functions g(3) and H(2)
V [72, 73], at N3LL+N3LO the functions g(4) and H(3)

V [74, 75] and finally

at N4LL+N3LO the function g
(5) and H(4)

V .

We consider uncertainties in the numerical approximations of the N4LL coe�cients, and esti-
mate uncertainties arising from the incomplete knowledge of the N4LO perturbative coe�cients.
The B(4) coe�cient and the non-singlet four-loop splitting functions are known with good numer-
ical approximation [76–78], the corresponding relative uncertainties on the qT distribution are at
the level of 10�6 or smaller, and considered negligible. The numerical approximations of A(5) [79–
85] and of the 4-loop singlet splitting functions [86, 87] are the dominant uncertainties in the
N4LL approximation, and they amount to 1–3 · 10�3 relative uncertainty. In order to estimate the
size of the unknown the C

(4) coe�cients [88] we perform a Levin transform of the corresponding
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(3) resummation functions can be found in Ref. [6]. The g
(4) function can be

found in Ref. [67] for the related case of direct transverse momentum space resummation. The
explicit expression of the first five coe�cients of the � function, can be found in the following
references: �0, �1 and �2 in Refs. [68, 69], �3 in Ref. [70] and �4 in [71].

At NLL+NLO we include the functions g(1), g(2) and H(1)
V , at NNLL+NNLO we also include

the functions g(3) and H(2)
V [72, 73], at N3LL+N3LO the functions g(4) and H(3)

V [74, 75] and finally

at N4LL+N3LO the function g
(5) and H(4)

V .

We consider uncertainties in the numerical approximations of the N4LL coe�cients, and esti-
mate uncertainties arising from the incomplete knowledge of the N4LO perturbative coe�cients.
The B(4) coe�cient and the non-singlet four-loop splitting functions are known with good numer-
ical approximation [76–78], the corresponding relative uncertainties on the qT distribution are at
the level of 10�6 or smaller, and considered negligible. The numerical approximations of A(5) [79–
85] and of the 4-loop singlet splitting functions [86, 87] are the dominant uncertainties in the
N4LL approximation, and they amount to 1–3 · 10�3 relative uncertainty. In order to estimate the
size of the unknown the C

(4) coe�cients [88] we perform a Levin transform of the corresponding
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g(n) controls and resums the 𝛂sLk (k≥1) logarithmic terms 

• At N4LL we need the resummation coefficients


• A5 : 1–3·10−3 relative uncertainty


• B4 : negligible uncertainty


• C4 : 1–2·10−3 relative uncertainty 


• 𝛄4 singlet : 1–3·10−3 relative uncertainty (non-singlet negligible)
David Levin [1972]

Camarda, LC, Ferrera [2023]
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Transverse momentum resummation
up to N4LL+N4LO accuracy

• The uncertainties in the N4LL+N4LO approximation are found to be 5 to 10 times smaller compared to the missing higher order 
uncertainties estimated through scale variations.


• All “main” channels already present at NNLO : qqbar, qg, gg.

• N4LL is the first order at which all the combination of the channels are opened: {q,qb,qp,qbp,g} x {q,qb,qp,qbp,g} (all 

combinations)

Anticipating our results 
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Figure 4: Uncertainties arising from numerical approximations or incomplete knowledge of the
perturbative coe�cients at N4LL+N4LOa, compared to missing higher order uncertainties esti-
mated with scale variations at this order.

perturbative series [89, 90] to guess the value of the fourth term in these series, and assign to it a
100% uncertainty. This is equivalent to assuming that the Levin transform is able to estimate the
sign and the order of magnitude of these unknown coe�cients. The corresponding uncertainty is
at the level of 1–2 · 10�3, and a↵ects mostly the overall normalization. The uncertainties in the
N4LL+N4LO approximation are shown in Fig. 4, and found to be 5 to 10 times smaller compared
to the missing higher order uncertainties estimated through scale variations.
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qT resummation up to N4LLa accuracy
Results Camarda, LC, Ferrera [2023]

Formal mismatch between the N3LO Altarelli-Parisi 
evolution as encoded in the N3LO parton densities 
functions and the corresponding NkLO evolution 

included in the N(k+1)LL partonic resummed formula.

The order of Altarelli-Parisi evolution in the 
resummed prediction is equal to the order of 

the parton densities

• Negligible impact at N3LL and N4LL on the choice  →  we apply this strategy in the next slides


• Scale dependence reduced a factor 2 from N3LL to N4LL → N4LL accuracy is at the 1%-1.5% 

The qT spectrum of Z/γ∗ bosons with lepton selection cuts at the LHC (√s = 13 TeV) at various perturbative orders
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Figure 1: The qT spectrum of Z/�⇤ bosons with lepton selection cuts at the LHC (
p
s = 13 TeV)

at various perturbative orders. Resummed component (see Eq. (7)) of the hadronic cross-section
with scale variation bands as defined in the text. The order of the parton density evolution is set
consistently with the order of the resummation (left) or with the order of the PDFs (right).

pT > 25GeV, pseudo-rapidity |⌘| < 2.5 while the lepton pair system is required to have an
invariant mass of 80 < Ml+l� < 100GeV with transverse momentum qT < 30 GeV.

In order to estimate the size of yet uncalculated higher-order terms and the ensuing perturba-
tive uncertainties we consider the dependence of the results from the auxiliary scales µF , µR and Q.
We thus perform an independent variation of µF , µR and Q in the rangeM/2  {µF , µR, Q}  2M
with the constraints 0.5  {µF/µR, Q/µR, Q/µF}  2.

In Fig. 1 we consider Z/�⇤ production and decay and we show the resummed component (see
Eq. (7)) of the transverse-momentum distribution in the small-qT region. The label NnLL+NnLO
(n = 1, 2, 3) indicates that we perform the resummation of logarithmic enhanced contribution
at NnLL accuracy including the hard-virtual coe�cient at NnLO while the label N4LL+N4LOa
indicate that we perform the resummation at N4LL accuracy with the hard-virtual coe�cient at
N4LO and an estimate of yet not known N4LO corrections †.

In the left panel of Fig. 1 we show the resummed predictions following the original formalism
of Refs. [6, 8, 17]. The lower panel shows the ratio of the distribution with respect to the N4LLa
prediction at the central value of the scales µF = µR = Q = M . We observe that the NLL+NLO
and NNLL+NNLO scale dependence bands do not overlap thus showing that the NLL+NLO scale
variation underestimates the true perturbative uncertainty. This feature was already observed and
discussed in Refs.[17, 48]. In the present case the lack of overlap can be ascribed to the fact that
we are using the same N3LO parton densities set at NLL, NNLL, N3LL and N4LL accuracy. This
choice introduce a formal mismatch between the N3LO Altarelli-Parisi evolution as encoded in the
N3LO parton densities functions and the corresponding NkLO evolution included in the Nk+1LL
partonic resummed formula.

†
Incidentally we observe that our prediction at N

4
LL+N

4
LOa include the full perturbative information contained

in the so called N
4
LL accuracy and also a reliable approximation of the N

4
LL’ accuracy as sometimes defined in

the literature.
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Figure 1: The qT spectrum of Z/�⇤ bosons with lepton selection cuts at the LHC (
p
s = 13 TeV)

at various perturbative orders. Resummed component (see Eq. (7)) of the hadronic cross-section
with scale variation bands as defined in the text. The order of the parton density evolution is set
consistently with the order of the resummation (left) or with the order of the PDFs (right).

pT > 25GeV, pseudo-rapidity |⌘| < 2.5 while the lepton pair system is required to have an
invariant mass of 80 < Ml+l� < 100GeV with transverse momentum qT < 30 GeV.

In order to estimate the size of yet uncalculated higher-order terms and the ensuing perturba-
tive uncertainties we consider the dependence of the results from the auxiliary scales µF , µR and Q.
We thus perform an independent variation of µF , µR and Q in the rangeM/2  {µF , µR, Q}  2M
with the constraints 0.5  {µF/µR, Q/µR, Q/µF}  2.

In Fig. 1 we consider Z/�⇤ production and decay and we show the resummed component (see
Eq. (7)) of the transverse-momentum distribution in the small-qT region. The label NnLL+NnLO
(n = 1, 2, 3) indicates that we perform the resummation of logarithmic enhanced contribution
at NnLL accuracy including the hard-virtual coe�cient at NnLO while the label N4LL+N4LOa
indicate that we perform the resummation at N4LL accuracy with the hard-virtual coe�cient at
N4LO and an estimate of yet not known N4LO corrections †.

In the left panel of Fig. 1 we show the resummed predictions following the original formalism
of Refs. [6, 8, 17]. The lower panel shows the ratio of the distribution with respect to the N4LLa
prediction at the central value of the scales µF = µR = Q = M . We observe that the NLL+NLO
and NNLL+NNLO scale dependence bands do not overlap thus showing that the NLL+NLO scale
variation underestimates the true perturbative uncertainty. This feature was already observed and
discussed in Refs.[17, 48]. In the present case the lack of overlap can be ascribed to the fact that
we are using the same N3LO parton densities set at NLL, NNLL, N3LL and N4LL accuracy. This
choice introduce a formal mismatch between the N3LO Altarelli-Parisi evolution as encoded in the
N3LO parton densities functions and the corresponding NkLO evolution included in the Nk+1LL
partonic resummed formula.

†
Incidentally we observe that our prediction at N

4
LL+N

4
LOa include the full perturbative information contained

in the so called N
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Figure 1: The qT spectrum of Z/�⇤ bosons with lepton selection cuts at the LHC (
p
s = 13 TeV)

at various perturbative orders. Resummed component (see Eq. (7)) of the hadronic cross-section
with scale variation bands as defined in the text. The order of the parton density evolution is set
consistently with the order of the resummation (left) or with the order of the PDFs (right).

pT > 25GeV, pseudo-rapidity |⌘| < 2.5 while the lepton pair system is required to have an
invariant mass of 80 < Ml+l� < 100GeV with transverse momentum qT < 30 GeV.

In order to estimate the size of yet uncalculated higher-order terms and the ensuing perturba-
tive uncertainties we consider the dependence of the results from the auxiliary scales µF , µR and Q.
We thus perform an independent variation of µF , µR and Q in the rangeM/2  {µF , µR, Q}  2M
with the constraints 0.5  {µF/µR, Q/µR, Q/µF}  2.

In Fig. 1 we consider Z/�⇤ production and decay and we show the resummed component (see
Eq. (7)) of the transverse-momentum distribution in the small-qT region. The label NnLL+NnLO
(n = 1, 2, 3) indicates that we perform the resummation of logarithmic enhanced contribution
at NnLL accuracy including the hard-virtual coe�cient at NnLO while the label N4LL+N4LOa
indicate that we perform the resummation at N4LL accuracy with the hard-virtual coe�cient at
N4LO and an estimate of yet not known N4LO corrections †.

In the left panel of Fig. 1 we show the resummed predictions following the original formalism
of Refs. [6, 8, 17]. The lower panel shows the ratio of the distribution with respect to the N4LLa
prediction at the central value of the scales µF = µR = Q = M . We observe that the NLL+NLO
and NNLL+NNLO scale dependence bands do not overlap thus showing that the NLL+NLO scale
variation underestimates the true perturbative uncertainty. This feature was already observed and
discussed in Refs.[17, 48]. In the present case the lack of overlap can be ascribed to the fact that
we are using the same N3LO parton densities set at NLL, NNLL, N3LL and N4LL accuracy. This
choice introduce a formal mismatch between the N3LO Altarelli-Parisi evolution as encoded in the
N3LO parton densities functions and the corresponding NkLO evolution included in the Nk+1LL
partonic resummed formula.

†
Incidentally we observe that our prediction at N

4
LL+N

4
LOa include the full perturbative information contained

in the so called N
4
LL accuracy and also a reliable approximation of the N

4
LL’ accuracy as sometimes defined in

the literature.
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predictions which can be implemented starting from the results of Refs. [31, 38–45] and subtracting
the asymptotic expansion of the resummed calculation at the same perturbative order as encoded
in DYTurbo. Resummed results at N3LL +N3LO matched with the NNLO calculation at large
qT have been presented in Refs. [48]. Here we extend the results of Ref. [48] by extending the
resummation accuracy at approximated N4LL+N4LO and by presenting results for W

± boson
production and decay. A brief review of the resummation formalism of Refs. [6, 8, 17] is given
in AppendixA together with a collection of the numerical coe�cients needed at N4LL+N4LO
accuracy.

In the following we consider Z/�⇤
,W

± production and leptonic decay at the Large Hadron Col-
lider (LHC). We present resummed predictions up to N4LL accuracy including the hard-virtual co-
e�cient up to N3LO together with an approximation of the N4LO ones. The hadronic cross section
is obtained by convoluting the partonic cross section in Eq. (7) with the parton densities functions
(PDFs) from MSHT20aN3LO set [49] at the approximate N3LO with ↵S(m2

Z) = 0.118 where we
have evaluated ↵S(µ2

R) at (n+1)-loop order at NnLL accuracy. We use the so called Gµ scheme
for EW couplings with input parameters GF = 1.1663787 ⇥ 10�5 GeV�2, mZ = 91.1876 GeV,
�Z = 2.4952 GeV, mW = 80.379 GeV, �W = 2.091 GeV. In the case of W production, we use
the following CKM matrix elements: Vud = 0.97427, Vus = 0.2253, Vub = 0.00351, Vcd = 0.2252,
Vcs = 0.97344, Vcb = 0.0412. We work with Nf = 5 massless quarks and we use mtop = 173 GeV
for the top-loop mediated singlet contributions. Our calculation implements the leptonic decays
Z/�

⇤ ! l
+
l
�, W± ! l⌫ and we include the e↵ects of the Z/�

⇤ interference and of the finite
widths of the W and Z boson with the corresponding spin correlations and the full dependence
on the kinematical variables of final state leptons. This allows us to take into account the typi-
cal kinematical cuts on final state leptons that are considered in the experimental analysis. The
resummed calculation at fixed lepton momenta requires a qT -recoil procedure. We implement the
general procedure described in Ref. [17] which is equivalent to compute the Born level distribution
d�

(0) of Eq. (8) in the Collins–Soper rest frame [50].

As for the non-perturbative (NP) e↵ects at very small transverse momenta we introduced, in
the conjugated b-space, a NP form factor of the form [16]

SNP (b) = exp{�g1b
2 � gK(b) ln(M

2
/Q

2
0)} (1)

where

gK(b) = g0

✓
1� exp


�CF↵S((b0/b?)2)b2

⇡g0b
2
lim

�◆
, (2)

with g1 = 0.5 GeV2, Q0 = 1 GeV, g0 = 0.3, blim = 1.5 GeV�1 and

b
2
? = b

2
b
2
lim/(b

2 + b
2
lim) . (3)

The variable b? is also used to regularize the perturbative form factor at very large value of b
(b⇠> 1/⇤QCD, where ⇤QCD is the scale of the Landau pole of the perturbative running coupling
↵S(q2)) which correspond to very small values of qT (qT ⇠<⇤QCD) through the so-called ‘b? pre-
scription’ [5, 51] which consist in the freezing of the integration over b below the upper limit blim
through the replacement b ! b?. An alternative regularization procedure of the Landau singular-
ity, which have also been implemented in the DYTurbo numerical program, is the so-called Minimal
Prescription [52–54].

We have thus considered the production of l+l� pairs from Z/�
⇤ decay at the LHC (

p
s =

13TeV) with the following fiducial cuts: the leptons are required to have transverse momentum
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Results
The qT spectrum of Z/γ∗ bosons with lepton selection cuts at the LHC (√s = 13 TeV) at various perturbative orders

Camarda, LC, Ferrera [2023]
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Figure 1: The qT spectrum of Z/�⇤ bosons with lepton selection cuts at the LHC (
p
s = 13 TeV)

at various perturbative orders. Resummed component (see Eq. (7)) of the hadronic cross-section
with scale variation bands as defined in the text. The order of the parton density evolution is set
consistently with the order of the resummation (left) or with the order of the PDFs (right).

pT > 25GeV, pseudo-rapidity |⌘| < 2.5 while the lepton pair system is required to have an
invariant mass of 80 < Ml+l� < 100GeV with transverse momentum qT < 30 GeV.

In order to estimate the size of yet uncalculated higher-order terms and the ensuing perturba-
tive uncertainties we consider the dependence of the results from the auxiliary scales µF , µR and Q.
We thus perform an independent variation of µF , µR and Q in the rangeM/2  {µF , µR, Q}  2M
with the constraints 0.5  {µF/µR, Q/µR, Q/µF}  2.

In Fig. 1 we consider Z/�⇤ production and decay and we show the resummed component (see
Eq. (7)) of the transverse-momentum distribution in the small-qT region. The label NnLL+NnLO
(n = 1, 2, 3) indicates that we perform the resummation of logarithmic enhanced contribution
at NnLL accuracy including the hard-virtual coe�cient at NnLO while the label N4LL+N4LOa
indicate that we perform the resummation at N4LL accuracy with the hard-virtual coe�cient at
N4LO and an estimate of yet not known N4LO corrections †.

In the left panel of Fig. 1 we show the resummed predictions following the original formalism
of Refs. [6, 8, 17]. The lower panel shows the ratio of the distribution with respect to the N4LLa
prediction at the central value of the scales µF = µR = Q = M . We observe that the NLL+NLO
and NNLL+NNLO scale dependence bands do not overlap thus showing that the NLL+NLO scale
variation underestimates the true perturbative uncertainty. This feature was already observed and
discussed in Refs.[17, 48]. In the present case the lack of overlap can be ascribed to the fact that
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choice introduce a formal mismatch between the N3LO Altarelli-Parisi evolution as encoded in the
N3LO parton densities functions and the corresponding NkLO evolution included in the Nk+1LL
partonic resummed formula.
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Figure 1: The qT spectrum of Z/�⇤ bosons with lepton selection cuts at the LHC (
p
s = 13 TeV)

at various perturbative orders. Resummed component (see Eq. (7)) of the hadronic cross-section
with scale variation bands as defined in the text. The order of the parton density evolution is set
consistently with the order of the resummation (left) or with the order of the PDFs (right).

pT > 25GeV, pseudo-rapidity |⌘| < 2.5 while the lepton pair system is required to have an
invariant mass of 80 < Ml+l� < 100GeV with transverse momentum qT < 30 GeV.

In order to estimate the size of yet uncalculated higher-order terms and the ensuing perturba-
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We thus perform an independent variation of µF , µR and Q in the rangeM/2  {µF , µR, Q}  2M
with the constraints 0.5  {µF/µR, Q/µR, Q/µF}  2.
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indicate that we perform the resummation at N4LL accuracy with the hard-virtual coe�cient at
N4LO and an estimate of yet not known N4LO corrections †.
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Figure 1: The qT spectrum of Z/�⇤ bosons with lepton selection cuts at the LHC (
p
s = 13 TeV)

at various perturbative orders. Resummed component (see Eq. (7)) of the hadronic cross-section
with scale variation bands as defined in the text. The order of the parton density evolution is set
consistently with the order of the resummation (left) or with the order of the PDFs (right).

pT > 25GeV, pseudo-rapidity |⌘| < 2.5 while the lepton pair system is required to have an
invariant mass of 80 < Ml+l� < 100GeV with transverse momentum qT < 30 GeV.

In order to estimate the size of yet uncalculated higher-order terms and the ensuing perturba-
tive uncertainties we consider the dependence of the results from the auxiliary scales µF , µR and Q.
We thus perform an independent variation of µF , µR and Q in the rangeM/2  {µF , µR, Q}  2M
with the constraints 0.5  {µF/µR, Q/µR, Q/µF}  2.

In Fig. 1 we consider Z/�⇤ production and decay and we show the resummed component (see
Eq. (7)) of the transverse-momentum distribution in the small-qT region. The label NnLL+NnLO
(n = 1, 2, 3) indicates that we perform the resummation of logarithmic enhanced contribution
at NnLL accuracy including the hard-virtual coe�cient at NnLO while the label N4LL+N4LOa
indicate that we perform the resummation at N4LL accuracy with the hard-virtual coe�cient at
N4LO and an estimate of yet not known N4LO corrections †.

In the left panel of Fig. 1 we show the resummed predictions following the original formalism
of Refs. [6, 8, 17]. The lower panel shows the ratio of the distribution with respect to the N4LLa
prediction at the central value of the scales µF = µR = Q = M . We observe that the NLL+NLO
and NNLL+NNLO scale dependence bands do not overlap thus showing that the NLL+NLO scale
variation underestimates the true perturbative uncertainty. This feature was already observed and
discussed in Refs.[17, 48]. In the present case the lack of overlap can be ascribed to the fact that
we are using the same N3LO parton densities set at NLL, NNLL, N3LL and N4LL accuracy. This
choice introduce a formal mismatch between the N3LO Altarelli-Parisi evolution as encoded in the
N3LO parton densities functions and the corresponding NkLO evolution included in the Nk+1LL
partonic resummed formula.
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predictions which can be implemented starting from the results of Refs. [31, 38–45] and subtracting
the asymptotic expansion of the resummed calculation at the same perturbative order as encoded
in DYTurbo. Resummed results at N3LL +N3LO matched with the NNLO calculation at large
qT have been presented in Refs. [48]. Here we extend the results of Ref. [48] by extending the
resummation accuracy at approximated N4LL+N4LO and by presenting results for W

± boson
production and decay. A brief review of the resummation formalism of Refs. [6, 8, 17] is given
in AppendixA together with a collection of the numerical coe�cients needed at N4LL+N4LO
accuracy.

In the following we consider Z/�⇤
,W

± production and leptonic decay at the Large Hadron Col-
lider (LHC). We present resummed predictions up to N4LL accuracy including the hard-virtual co-
e�cient up to N3LO together with an approximation of the N4LO ones. The hadronic cross section
is obtained by convoluting the partonic cross section in Eq. (7) with the parton densities functions
(PDFs) from MSHT20aN3LO set [49] at the approximate N3LO with ↵S(m2

Z) = 0.118 where we
have evaluated ↵S(µ2

R) at (n+1)-loop order at NnLL accuracy. We use the so called Gµ scheme
for EW couplings with input parameters GF = 1.1663787 ⇥ 10�5 GeV�2, mZ = 91.1876 GeV,
�Z = 2.4952 GeV, mW = 80.379 GeV, �W = 2.091 GeV. In the case of W production, we use
the following CKM matrix elements: Vud = 0.97427, Vus = 0.2253, Vub = 0.00351, Vcd = 0.2252,
Vcs = 0.97344, Vcb = 0.0412. We work with Nf = 5 massless quarks and we use mtop = 173 GeV
for the top-loop mediated singlet contributions. Our calculation implements the leptonic decays
Z/�

⇤ ! l
+
l
�, W± ! l⌫ and we include the e↵ects of the Z/�

⇤ interference and of the finite
widths of the W and Z boson with the corresponding spin correlations and the full dependence
on the kinematical variables of final state leptons. This allows us to take into account the typi-
cal kinematical cuts on final state leptons that are considered in the experimental analysis. The
resummed calculation at fixed lepton momenta requires a qT -recoil procedure. We implement the
general procedure described in Ref. [17] which is equivalent to compute the Born level distribution
d�

(0) of Eq. (8) in the Collins–Soper rest frame [50].

As for the non-perturbative (NP) e↵ects at very small transverse momenta we introduced, in
the conjugated b-space, a NP form factor of the form [16]

SNP (b) = exp{�g1b
2 � gK(b) ln(M

2
/Q

2
0)} (1)
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✓
1� exp


�CF↵S((b0/b?)2)b2

⇡g0b
2
lim

�◆
, (2)

with g1 = 0.5 GeV2, Q0 = 1 GeV, g0 = 0.3, blim = 1.5 GeV�1 and

b
2
? = b

2
b
2
lim/(b

2 + b
2
lim) . (3)

The variable b? is also used to regularize the perturbative form factor at very large value of b
(b⇠> 1/⇤QCD, where ⇤QCD is the scale of the Landau pole of the perturbative running coupling
↵S(q2)) which correspond to very small values of qT (qT ⇠<⇤QCD) through the so-called ‘b? pre-
scription’ [5, 51] which consist in the freezing of the integration over b below the upper limit blim
through the replacement b ! b?. An alternative regularization procedure of the Landau singular-
ity, which have also been implemented in the DYTurbo numerical program, is the so-called Minimal
Prescription [52–54].

We have thus considered the production of l+l� pairs from Z/�
⇤ decay at the LHC (

p
s =

13TeV) with the following fiducial cuts: the leptons are required to have transverse momentum
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• Negligible impact at N3LL and N4LL on the choice  →  we apply this strategy in the next slides


• Scale dependence reduced a factor 2 from N3LL to N4LL →  N4LL accuracy is at the 1%-1.5% 


• Effect of a finite top-quark mass including the singlet contributions mediated by heavy-quark loops at NNLO and N3LO  included
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Figure 1. Samples of singlet diagrams at 2-loop order.

depending on whether the external Z boson couples directly to the external quarks or not.
For the sake of later convenience, we have pulled out the Z boson couplings from the re-
spective singlet contribution. In the remainder of this article, we adopt the convention
regarding the terminology for the singlet and non-singlet type QCD corrections to FV (A)

where the classification is solely based on the topology of the contributing Feynman dia-
grams. The non-singlet QCD corrections have the Z boson coupled directly to the open
fermion line of the external quark q, which starts from the tree level. It thus depends only
on the electroweak coupling of the external quark q. With q massless and an anticommut-
ing γ5 (which is straightforward to apply here), one has FA

ns = FV
ns to all orders in QCD

owing to chirality conservation.
On the other hand, the singlet contribution FV (A)

s features a closed fermion loop which
contains the quark coupling to the Z boson and starts in general from the 2-loop order as
illustrated in figure 1. Consequently, FV (A)

s is associated with the electroweak couplings
of the internal quarks running in the loops, which are normalized w.r.t. that of external
quark q as defined in eq. (2.1). In the Standard Model, quarks in a weak doublet couple
with opposite sign to the Z boson in the axial part of the neutral current, and hence
axial contributions from doublets add up to zero in the massless limit for singlet diagrams.
Therefore in the usual approximation taken here, the only non-zero axial contribution comes
from the top-bottom doublet due to the large mass difference. Specifically, we denote

FA
s = λq

(
FA
s,b − FA

s,t

)
, (2.4)

with λq ≡ ab
aq

equal to ±1 depending on whether the external q is an upper or lower quark
(i.e., having the same weak isospin as the bottom quark). The full QCD corrections to
FA
s were determined to 2-loop order in refs. [35] for both massless and massive external

quarks. Very recently the 3-loop bottom contribution FA
s,b was derived in effective QCD

with nl massless quarks in ref. [42]. In this work, we provide the result for the top-loop
contribution FA

s,t to 3-loop order with exact top mass dependence, and also the part FA
s,b

that contains top quark loops inserted through gluon self-energy corrections.
Concerning the vector part of the singlet contribution, FV

s vanishes at the 2-loop order
due to the same reason that underlies the Furry theorem, and starts to contribute only
from the 3-loop order with sample diagrams shown in figure 2. The leading 3-loop result
is completely UV and IR finite, as computed in refs. [3, 26, 28] but with only massless
quarks included. The previously-missing top-loop induced contribution, i.e., the diagram
with thick lines in figure 2, is computed in this work for completeness. It is known to be
power suppressed in the low energy limit.
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Figure 2. Examples of singlet diagrams contributing to the vector part of quark form factors.

3 Calculation of the bare singlet form factors

The bare quark FFs can be expanded formally in the bare QCD coupling constant âs ≡ α̂s
4π :

FA
s,b =

∞∑

n=2
âns FA,n

s,b , FA
s,t =

∞∑

n=2
âns FA,n

s,t , (3.1)

where the perturbative expansion starts from the 2-loop order. For the calculation of these
QCD loop corrections, we use dimensional regularization [10, 58] with a non-anticommuting
γ5 [10, 12] in a variant as prescribed in refs. [21, 22]. The techniques employed closely
follow those used in the computation of Higgs-gluon FF in ref. [52]. Here we merely
sketch the main points specific to the amplitude in question. Symbolic expressions of the
contributing Feynman diagrams to the 3-loop order are generated by the C++ diagram
generator DiaGen [59]. There are 2 at the 2-loop order, and 57 at the 3-loop order, for
both FA

s,b and FA
s,t. There are 4 diagrams contributing to FA,3

s,b with top-quark loops (see
figure 7 for an example), while the remaining ones are completely massless and have been
determined in ref. [42], which we include here only for completeness.

The loop integrals in all contributing diagrams are then reduced to a much smaller
set of master integrals via Integration-By-Parts (IBP) identities [60, 61] with the help
of a C++ implementation of the Laporta algorithm [62]. All massless master integrals
involved in FA

s,b are known analytically [3, 26–28]. The master integrals in FA
s,t can all be

mapped to those solved numerically in ref. [52]. There are, however, 15 top mass dependent
masters Mi(ε, s

m2
t
) (with i = 1, 2, · · · , 15) appearing in FA,3

s,b , which we have to solve in
addition in the present work. They are, fortunately, simple enough to be solved analytically
using the differential equation approach [63, 64]. We first derive the system of first-order
homogeneous linear differential equations in the variable x ≡ s

m2
t
for these 15 masters:

dMi(ε, x)
dx =

∑

j

Aij(ε, x)Mj(ε, x) , (3.2)

by IBP reducing their derivatives back to themselves. The coefficients Aij(ε, x) are rational
functions in x and ε by the virtue of IBP identities. After performing a change of variable2
x = 2−y− 1

y , the differential equation system (3.2) is then fed to the package CANONICA [65,
66], which finds an ε-form [67] together with the rational transformation of the basis of mas-
ter integrals.3 The letters involved in this ε-form differential equation are {y, y+1, y− 1},

2We note that the variable y should have a positive imaginary part for 0 < x < 4.
3We note that the basis found by CANONICA for this system is not of uniform weight, and thus does not

really qualify as a usual canonical basis [67].
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Figure 2: The qT spectrum of W+ and W
� bosons with inclusive leptonic decay at the LHC

(
p
s = 13 TeV) at various perturbative orders. Resummed component (see Eq. (7)) of the hadronic

cross-section with scale variation bands as defined in the text.

consider the quantity

R(qT ) =
�Z

�W

d�W

dqT

.
d�Z

dqT
, (4)

where 1
�V

d�V
dqT

with V = W,Z is the normalized qT distribution for W and Z/�
⇤ production and

decay inclusive over the leptonic final state kinematics, apart for a selection cut on the invariant
mass of the lepton pair: 80 < Ml+l� < 100GeV and Ml⌫ > 50GeV.

In Fig. 3 we show the resummed component of the transverse-momentum distribution of Eq. 4
for the ratioW+

/Z (left panel) and W
�
/Z (right panel) in the small-qT region. From the results of

Fig. 3 (left and right panels) we observe that the scale dependence is greatly reduced (roughly by
one order of magnitude) with respect to the distributions shown in Figs. 1,2. The scale variation
at N4LL+N4LOa accuracy is around ±0.3% � 0.4% at qT ⇠ 1GeV, then it reduces at ±0.1%
level at the peak (qT ⇠ 4GeV), it further decrease below 0.05% level for qT ⇠ 7GeV and then
it slightly increase up to ±0.2% for qT ⇠ 30GeV. This reduction of scale uncertainty is not
unexpected because in the ratio correlated uncertainties on W and Z distributions cancel. In
particular higher order QCD predictions for the resummed component of the cross section has
a high degree of universalities and the process dependence is mainly due to the di↵erent flavour
content of the partonic subprocesses for W and Z production.

One may wonder if correlated scale variation for the ratio of W and Z distribution can un-
derestimate the true perturbative uncertainty. However the overlap of the scale uncertainty band
indicates that correlated scale variation at NLL+NLO, NNLL+NNLO and N3LL+N3LO correctly
estimate the size of higher-order corrections. An alternative, and more robust, perturbative un-
certainty can be obtained considering the size of the di↵erence between the prediction at a given
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predictions which can be implemented starting from the results of Refs. [31, 38–45] and subtracting
the asymptotic expansion of the resummed calculation at the same perturbative order as encoded
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for EW couplings with input parameters GF = 1.1663787 ⇥ 10�5 GeV�2, mZ = 91.1876 GeV,
�Z = 2.4952 GeV, mW = 80.379 GeV, �W = 2.091 GeV. In the case of W production, we use
the following CKM matrix elements: Vud = 0.97427, Vus = 0.2253, Vub = 0.00351, Vcd = 0.2252,
Vcs = 0.97344, Vcb = 0.0412. We work with Nf = 5 massless quarks and we use mtop = 173 GeV
for the top-loop mediated singlet contributions. Our calculation implements the leptonic decays
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⇤ ! l
+
l
�, W± ! l⌫ and we include the e↵ects of the Z/�

⇤ interference and of the finite
widths of the W and Z boson with the corresponding spin correlations and the full dependence
on the kinematical variables of final state leptons. This allows us to take into account the typi-
cal kinematical cuts on final state leptons that are considered in the experimental analysis. The
resummed calculation at fixed lepton momenta requires a qT -recoil procedure. We implement the
general procedure described in Ref. [17] which is equivalent to compute the Born level distribution
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(0) of Eq. (8) in the Collins–Soper rest frame [50].

As for the non-perturbative (NP) e↵ects at very small transverse momenta we introduced, in
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The variable b? is also used to regularize the perturbative form factor at very large value of b
(b⇠> 1/⇤QCD, where ⇤QCD is the scale of the Landau pole of the perturbative running coupling
↵S(q2)) which correspond to very small values of qT (qT ⇠<⇤QCD) through the so-called ‘b? pre-
scription’ [5, 51] which consist in the freezing of the integration over b below the upper limit blim
through the replacement b ! b?. An alternative regularization procedure of the Landau singular-
ity, which have also been implemented in the DYTurbo numerical program, is the so-called Minimal
Prescription [52–54].

We have thus considered the production of l+l� pairs from Z/�
⇤ decay at the LHC (

p
s =

13TeV) with the following fiducial cuts: the leptons are required to have transverse momentum

2

The scale variation at N4LLa accuracy is around ±2% at qT ∼ 1GeV, then it reduces at ±1% 
level at the peak (qT ∼ 4GeV), it decreases further to ±0.5% for qT ∼ 7 GeV and remains 

below ±1% level up to qT ∼ 30 GeV.
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qT resummation up to N4LLa accuracy
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Figure 3: The normalized ratio of qT spectra of W and Z/�
⇤ bosons at the LHC (

p
s = 13 TeV)

at various perturbative orders for W
+
/Z (left) and W

�
/Z (right). Resummed component (see

Eq. (7)) of the hadronic cross-section with scale variation bands as defined in the text.

order with respect to the prediction at the previous order. In this way we obtain an uncertainty
which is even smaller than the one obtained through the perturbative scale variation method.

However we stress that the predictions presented in Fig. 3 are far from being complete since at
such level of theoretical precision several e↵ects cannot be neglected. In particular also very small
e↵ects which however are di↵erent in the W and Z case can give not negligible e↵ects on the W/Z

ratio. For instance the impact of the process dependent finite component of the cross section, the
(flavour dependent) non-perturbative intrinsic kT e↵ects[55], the QED and electroweak e↵ects [56–
60], the heavy-quark mass e↵ects [61, 62].

In conclusion, in this paper we have presented the implementation of the qT resummation
formalism of Refs. [6, 8, 17] for Drell–Yan processes up to N4LL+N4LO approximated accuracy
in the DYTurbo numerical program [46, 47]. We have illustrated explicit numerical results for
the resummed component of the transverse-momentum distribution for the case of Z/�

⇤
,W

±

production and leptonic decay at LHC energies. We also considered theoretical predictions for the
ratio of W± and Z/�

⇤
qT distributions. Perturbative uncertainties have been estimated through

a study of the scale variation band.

The DYTurbo numerical code allows the user to apply arbitrary kinematical cuts on the vector
boson and the final-state leptons, and to compute the corresponding relevant distributions in the
form of bin histograms. These features make the DYTurbo a useful tool for Drell–Yan studies at
hadron colliders such as the Tevatron and the LHC.
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Figure 3: The normalized ratio of qT spectra of W and Z/�
⇤ bosons at the LHC (

p
s = 13 TeV)

at various perturbative orders for W
+
/Z (left) and W

�
/Z (right). Resummed component (see

Eq. (7)) of the hadronic cross-section with scale variation bands as defined in the text.

order with respect to the prediction at the previous order. In this way we obtain an uncertainty
which is even smaller than the one obtained through the perturbative scale variation method.

However we stress that the predictions presented in Fig. 3 are far from being complete since at
such level of theoretical precision several e↵ects cannot be neglected. In particular also very small
e↵ects which however are di↵erent in the W and Z case can give not negligible e↵ects on the W/Z

ratio. For instance the impact of the process dependent finite component of the cross section, the
(flavour dependent) non-perturbative intrinsic kT e↵ects[55], the QED and electroweak e↵ects [56–
60], the heavy-quark mass e↵ects [61, 62].

In conclusion, in this paper we have presented the implementation of the qT resummation
formalism of Refs. [6, 8, 17] for Drell–Yan processes up to N4LL+N4LO approximated accuracy
in the DYTurbo numerical program [46, 47]. We have illustrated explicit numerical results for
the resummed component of the transverse-momentum distribution for the case of Z/�

⇤
,W

±

production and leptonic decay at LHC energies. We also considered theoretical predictions for the
ratio of W± and Z/�

⇤
qT distributions. Perturbative uncertainties have been estimated through

a study of the scale variation band.

The DYTurbo numerical code allows the user to apply arbitrary kinematical cuts on the vector
boson and the final-state leptons, and to compute the corresponding relevant distributions in the
form of bin histograms. These features make the DYTurbo a useful tool for Drell–Yan studies at
hadron colliders such as the Tevatron and the LHC.
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Figure 2: The qT spectrum of W+ and W
� bosons with inclusive leptonic decay at the LHC

(
p
s = 13 TeV) at various perturbative orders. Resummed component (see Eq. (7)) of the hadronic

cross-section with scale variation bands as defined in the text.

consider the quantity

R(qT ) =
�Z

�W

d�W

dqT

.
d�Z

dqT
, (4)

where 1
�V

d�V
dqT

with V = W,Z is the normalized qT distribution for W and Z/�
⇤ production and

decay inclusive over the leptonic final state kinematics, apart for a selection cut on the invariant
mass of the lepton pair: 80 < Ml+l� < 100GeV and Ml⌫ > 50GeV.

In Fig. 3 we show the resummed component of the transverse-momentum distribution of Eq. 4
for the ratioW+

/Z (left panel) and W
�
/Z (right panel) in the small-qT region. From the results of

Fig. 3 (left and right panels) we observe that the scale dependence is greatly reduced (roughly by
one order of magnitude) with respect to the distributions shown in Figs. 1,2. The scale variation
at N4LL+N4LOa accuracy is around ±0.3% � 0.4% at qT ⇠ 1GeV, then it reduces at ±0.1%
level at the peak (qT ⇠ 4GeV), it further decrease below 0.05% level for qT ⇠ 7GeV and then
it slightly increase up to ±0.2% for qT ⇠ 30GeV. This reduction of scale uncertainty is not
unexpected because in the ratio correlated uncertainties on W and Z distributions cancel. In
particular higher order QCD predictions for the resummed component of the cross section has
a high degree of universalities and the process dependence is mainly due to the di↵erent flavour
content of the partonic subprocesses for W and Z production.

One may wonder if correlated scale variation for the ratio of W and Z distribution can un-
derestimate the true perturbative uncertainty. However the overlap of the scale uncertainty band
indicates that correlated scale variation at NLL+NLO, NNLL+NNLO and N3LL+N3LO correctly
estimate the size of higher-order corrections. An alternative, and more robust, perturbative un-
certainty can be obtained considering the size of the di↵erence between the prediction at a given
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• Correlated scale variation


• N4LL very relevant removing uncertainties in the W/Z pT distribution ratio 


• However, analysis is not complete : flavour-dependent intrinsic kT, process-
dependent EW effects

Camarda, LC, Ferrera [2023]

predictions which can be implemented starting from the results of Refs. [31, 38–45] and subtracting
the asymptotic expansion of the resummed calculation at the same perturbative order as encoded
in DYTurbo. Resummed results at N3LL +N3LO matched with the NNLO calculation at large
qT have been presented in Refs. [48]. Here we extend the results of Ref. [48] by extending the
resummation accuracy at approximated N4LL+N4LO and by presenting results for W

± boson
production and decay. A brief review of the resummation formalism of Refs. [6, 8, 17] is given
in AppendixA together with a collection of the numerical coe�cients needed at N4LL+N4LO
accuracy.

In the following we consider Z/�⇤
,W

± production and leptonic decay at the Large Hadron Col-
lider (LHC). We present resummed predictions up to N4LL accuracy including the hard-virtual co-
e�cient up to N3LO together with an approximation of the N4LO ones. The hadronic cross section
is obtained by convoluting the partonic cross section in Eq. (7) with the parton densities functions
(PDFs) from MSHT20aN3LO set [49] at the approximate N3LO with ↵S(m2

Z) = 0.118 where we
have evaluated ↵S(µ2

R) at (n+1)-loop order at NnLL accuracy. We use the so called Gµ scheme
for EW couplings with input parameters GF = 1.1663787 ⇥ 10�5 GeV�2, mZ = 91.1876 GeV,
�Z = 2.4952 GeV, mW = 80.379 GeV, �W = 2.091 GeV. In the case of W production, we use
the following CKM matrix elements: Vud = 0.97427, Vus = 0.2253, Vub = 0.00351, Vcd = 0.2252,
Vcs = 0.97344, Vcb = 0.0412. We work with Nf = 5 massless quarks and we use mtop = 173 GeV
for the top-loop mediated singlet contributions. Our calculation implements the leptonic decays
Z/�

⇤ ! l
+
l
�, W± ! l⌫ and we include the e↵ects of the Z/�

⇤ interference and of the finite
widths of the W and Z boson with the corresponding spin correlations and the full dependence
on the kinematical variables of final state leptons. This allows us to take into account the typi-
cal kinematical cuts on final state leptons that are considered in the experimental analysis. The
resummed calculation at fixed lepton momenta requires a qT -recoil procedure. We implement the
general procedure described in Ref. [17] which is equivalent to compute the Born level distribution
d�

(0) of Eq. (8) in the Collins–Soper rest frame [50].

As for the non-perturbative (NP) e↵ects at very small transverse momenta we introduced, in
the conjugated b-space, a NP form factor of the form [16]

SNP (b) = exp{�g1b
2 � gK(b) ln(M
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The variable b? is also used to regularize the perturbative form factor at very large value of b
(b⇠> 1/⇤QCD, where ⇤QCD is the scale of the Landau pole of the perturbative running coupling
↵S(q2)) which correspond to very small values of qT (qT ⇠<⇤QCD) through the so-called ‘b? pre-
scription’ [5, 51] which consist in the freezing of the integration over b below the upper limit blim
through the replacement b ! b?. An alternative regularization procedure of the Landau singular-
ity, which have also been implemented in the DYTurbo numerical program, is the so-called Minimal
Prescription [52–54].

We have thus considered the production of l+l� pairs from Z/�
⇤ decay at the LHC (

p
s =

13TeV) with the following fiducial cuts: the leptons are required to have transverse momentum
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production and decay. A brief review of the resummation formalism of Refs. [6, 8, 17] is given
in AppendixA together with a collection of the numerical coe�cients needed at N4LL+N4LO
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lider (LHC). We present resummed predictions up to N4LL accuracy including the hard-virtual co-
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is obtained by convoluting the partonic cross section in Eq. (7) with the parton densities functions
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R) at (n+1)-loop order at NnLL accuracy. We use the so called Gµ scheme
for EW couplings with input parameters GF = 1.1663787 ⇥ 10�5 GeV�2, mZ = 91.1876 GeV,
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the following CKM matrix elements: Vud = 0.97427, Vus = 0.2253, Vub = 0.00351, Vcd = 0.2252,
Vcs = 0.97344, Vcb = 0.0412. We work with Nf = 5 massless quarks and we use mtop = 173 GeV
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�, W± ! l⌫ and we include the e↵ects of the Z/�

⇤ interference and of the finite
widths of the W and Z boson with the corresponding spin correlations and the full dependence
on the kinematical variables of final state leptons. This allows us to take into account the typi-
cal kinematical cuts on final state leptons that are considered in the experimental analysis. The
resummed calculation at fixed lepton momenta requires a qT -recoil procedure. We implement the
general procedure described in Ref. [17] which is equivalent to compute the Born level distribution
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(0) of Eq. (8) in the Collins–Soper rest frame [50].
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The variable b? is also used to regularize the perturbative form factor at very large value of b
(b⇠> 1/⇤QCD, where ⇤QCD is the scale of the Landau pole of the perturbative running coupling
↵S(q2)) which correspond to very small values of qT (qT ⇠<⇤QCD) through the so-called ‘b? pre-
scription’ [5, 51] which consist in the freezing of the integration over b below the upper limit blim
through the replacement b ! b?. An alternative regularization procedure of the Landau singular-
ity, which have also been implemented in the DYTurbo numerical program, is the so-called Minimal
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Figure 3: The normalized ratio of qT spectra of W and Z/�
⇤ bosons at the LHC (

p
s = 13 TeV)

at various perturbative orders for W
+
/Z (left) and W

�
/Z (right). Resummed component (see

Eq. (7)) of the hadronic cross-section with scale variation bands as defined in the text.

order with respect to the prediction at the previous order. In this way we obtain an uncertainty
which is even smaller than the one obtained through the perturbative scale variation method.

However we stress that the predictions presented in Fig. 3 are far from being complete since at
such level of theoretical precision several e↵ects cannot be neglected. In particular also very small
e↵ects which however are di↵erent in the W and Z case can give not negligible e↵ects on the W/Z

ratio. For instance the impact of the process dependent finite component of the cross section, the
(flavour dependent) non-perturbative intrinsic kT e↵ects[55], the QED and electroweak e↵ects [56–
60], the heavy-quark mass e↵ects [61, 62].

In conclusion, in this paper we have presented the implementation of the qT resummation
formalism of Refs. [6, 8, 17] for Drell–Yan processes up to N4LL+N4LO approximated accuracy
in the DYTurbo numerical program [46, 47]. We have illustrated explicit numerical results for
the resummed component of the transverse-momentum distribution for the case of Z/�

⇤
,W

±

production and leptonic decay at LHC energies. We also considered theoretical predictions for the
ratio of W± and Z/�

⇤
qT distributions. Perturbative uncertainties have been estimated through

a study of the scale variation band.

The DYTurbo numerical code allows the user to apply arbitrary kinematical cuts on the vector
boson and the final-state leptons, and to compute the corresponding relevant distributions in the
form of bin histograms. These features make the DYTurbo a useful tool for Drell–Yan studies at
hadron colliders such as the Tevatron and the LHC.
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Figure 2: The qT spectrum of W+ and W
� bosons with inclusive leptonic decay at the LHC

(
p
s = 13 TeV) at various perturbative orders. Resummed component (see Eq. (7)) of the hadronic

cross-section with scale variation bands as defined in the text.

consider the quantity

R(qT ) =
�Z

�W

d�W

dqT

.
d�Z

dqT
, (4)

where 1
�V

d�V
dqT

with V = W,Z is the normalized qT distribution for W and Z/�
⇤ production and

decay inclusive over the leptonic final state kinematics, apart for a selection cut on the invariant
mass of the lepton pair: 80 < Ml+l� < 100GeV and Ml⌫ > 50GeV.

In Fig. 3 we show the resummed component of the transverse-momentum distribution of Eq. 4
for the ratioW+

/Z (left panel) and W
�
/Z (right panel) in the small-qT region. From the results of

Fig. 3 (left and right panels) we observe that the scale dependence is greatly reduced (roughly by
one order of magnitude) with respect to the distributions shown in Figs. 1,2. The scale variation
at N4LL+N4LOa accuracy is around ±0.3% � 0.4% at qT ⇠ 1GeV, then it reduces at ±0.1%
level at the peak (qT ⇠ 4GeV), it further decrease below 0.05% level for qT ⇠ 7GeV and then
it slightly increase up to ±0.2% for qT ⇠ 30GeV. This reduction of scale uncertainty is not
unexpected because in the ratio correlated uncertainties on W and Z distributions cancel. In
particular higher order QCD predictions for the resummed component of the cross section has
a high degree of universalities and the process dependence is mainly due to the di↵erent flavour
content of the partonic subprocesses for W and Z production.

One may wonder if correlated scale variation for the ratio of W and Z distribution can un-
derestimate the true perturbative uncertainty. However the overlap of the scale uncertainty band
indicates that correlated scale variation at NLL+NLO, NNLL+NNLO and N3LL+N3LO correctly
estimate the size of higher-order corrections. An alternative, and more robust, perturbative un-
certainty can be obtained considering the size of the di↵erence between the prediction at a given
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Figure 2: The qT spectrum of W+ and W
� bosons with inclusive leptonic decay at the LHC

(
p
s = 13 TeV) at various perturbative orders. Resummed component (see Eq. (7)) of the hadronic

cross-section with scale variation bands as defined in the text.

consider the quantity

R(qT ) =
�Z

�W

d�W

dqT

.
d�Z

dqT
, (4)

where 1
�V

d�V
dqT

with V = W,Z is the normalized qT distribution for W and Z/�
⇤ production and

decay inclusive over the leptonic final state kinematics, apart for a selection cut on the invariant
mass of the lepton pair: 80 < Ml+l� < 100GeV and Ml⌫ > 50GeV.

In Fig. 3 we show the resummed component of the transverse-momentum distribution of Eq. 4
for the ratioW+

/Z (left panel) and W
�
/Z (right panel) in the small-qT region. From the results of

Fig. 3 (left and right panels) we observe that the scale dependence is greatly reduced (roughly by
one order of magnitude) with respect to the distributions shown in Figs. 1,2. The scale variation
at N4LL+N4LOa accuracy is around ±0.3% � 0.4% at qT ⇠ 1GeV, then it reduces at ±0.1%
level at the peak (qT ⇠ 4GeV), it further decrease below 0.05% level for qT ⇠ 7GeV and then
it slightly increase up to ±0.2% for qT ⇠ 30GeV. This reduction of scale uncertainty is not
unexpected because in the ratio correlated uncertainties on W and Z distributions cancel. In
particular higher order QCD predictions for the resummed component of the cross section has
a high degree of universalities and the process dependence is mainly due to the di↵erent flavour
content of the partonic subprocesses for W and Z production.

One may wonder if correlated scale variation for the ratio of W and Z distribution can un-
derestimate the true perturbative uncertainty. However the overlap of the scale uncertainty band
indicates that correlated scale variation at NLL+NLO, NNLL+NNLO and N3LL+N3LO correctly
estimate the size of higher-order corrections. An alternative, and more robust, perturbative un-
certainty can be obtained considering the size of the di↵erence between the prediction at a given

5
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qT resummation up to N4LLa accuracy
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F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion
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therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
V + C

(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q
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g
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§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]
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for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
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A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X
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2
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2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed
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with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.
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it can be written in term of a process dependent hard factor HV (↵S) and two process independent
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]
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§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
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The cross section can be decomposed as

Autieri, LC, Ferrera, Sborlini  [2023]

hard-virtual corrections and can be expanded in powers of αS = αS(µ2
R) as

HV
N (αS) = 1 +

+∞∑

n=1

(αS

π

)n
HV (n)

N . (2.6)

The exponent GN resums in an universal (i.e. process-independent) way all the logarith-
mically enhanced terms and can systematically expanded as:

GN (αS, L) = −
∫ Q2

b20/b
2

dq2

q2

(
A(αS(q

2)) log

(
M2

q2

)
+ B̃N (αS(q

2))

)

= Lg(1)(αSL) + g(2)N (αSL) +
+∞∑

n=3

(αS

π

)n−2
g(n)N (αSL) , (2.7)

where the functions A(αS) and B̃N (αS) are perturbative functions with a customary fixed-
order expansion in powers of αS [38]. The logarithmic variable L reads, in terms of the
resummation scale Q and b0 = 2e−γE (γE = 0.5772 · · · is the Euler number),

L = log

(
b2Q2

b20
+ 1

)
, (2.8)

which corresponds, in the b-space at large b, to the logarithmically-enhanced contribu-
tions associated to the low-qT region. The scale Q [38] is introduced with the purpose of
parametrizing the arbitrariness in the factorized structure of Eq. (2.5).

Truncating Eq. (2.7) up to the first term defines the leading-logarithm (LL) approxi-
mation, up to the second term defines the NLL approximation, then NNLL and so on.

In the case of transverse-momentum resummation for processes with colourful final
states the explicit structure of the functions HN and GN differs with respect to the case
of production of colourless final states. The qT resummation formalism for colourful final
states requires a colour space diagonalization of the relevant soft-anomalous dimension
which has been worked out, in the case of heavy-quark pair production up to NLL, in
Ref. [59]. In particular for heavy-quark pair production at NLL accuracy the function GN

contains an additional component due to soft wide-angle radiation from the heavy quarks
in the final state and from initial/final-state colour interference [59]. Analogously due to
colour correlations produced by soft-parton radiation, the hard-collinear function HN is a
colour space matrix.

3 Combined QED and QCD transverse-momentum resummation for
charged final states

In Ref. [56] some of us extended the QCD resummation formalism for colourless final states
in order to deal with the combined resummation of QED and QCD radiation in the case
of colourless and electrically neutral final states. This combined resummation method
has been obtained in two steps: (i) by the corresponding abelianization [63, 64] of the
QCD resummation formalism [38]; (ii) by a consistent combination of the QED and QCD

– 4 –

Here we include the f.o predictions at NLO (QED and QCD)
Unitary constraint 

Main differences respect to pure QCD case
On-shell Z and W production

• Z on-shell at NLL+NLO: colourless and chargeless final state


• W on-shell at NLL+NLO: colourless and charged final state → New 

LC, Ferrera, Sborlini  [2018]

Autieri, LC, Ferrera, Sborlini  [2023]

The resummation formalism can be obtained with plain abelianization of the QCD results and 
it will be not presented in detail here

Naive abelianization of the QCD results does not work. Apart from this fact, the (more involved) 
abelizanization procedure has to be applied to the QCD resummation for ttbar final state

[DYqT]

Catani, Grazzini, Torre [2014]
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where we have introduced the logarithmic expansion parameter
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0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]
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For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).

9

M
§ [6, 63]

WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
V + C

(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).

9

A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4
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2
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2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as
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where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed
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with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]
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QED+QCD qT resummation at NLL+NLO

A Transverse-momentum resummation up to N
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4
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The cross section can be decomposed as

Autieri, LC, Ferrera, Sborlini  [2023]

hard-virtual corrections and can be expanded in powers of αS = αS(µ2
R) as

HV
N (αS) = 1 +

+∞∑

n=1

(αS

π

)n
HV (n)

N . (2.6)

The exponent GN resums in an universal (i.e. process-independent) way all the logarith-
mically enhanced terms and can systematically expanded as:

GN (αS, L) = −
∫ Q2

b20/b
2

dq2

q2

(
A(αS(q

2)) log

(
M2

q2

)
+ B̃N (αS(q

2))

)

= Lg(1)(αSL) + g(2)N (αSL) +
+∞∑

n=3

(αS

π

)n−2
g(n)N (αSL) , (2.7)

where the functions A(αS) and B̃N (αS) are perturbative functions with a customary fixed-
order expansion in powers of αS [38]. The logarithmic variable L reads, in terms of the
resummation scale Q and b0 = 2e−γE (γE = 0.5772 · · · is the Euler number),

L = log

(
b2Q2

b20
+ 1

)
, (2.8)

which corresponds, in the b-space at large b, to the logarithmically-enhanced contribu-
tions associated to the low-qT region. The scale Q [38] is introduced with the purpose of
parametrizing the arbitrariness in the factorized structure of Eq. (2.5).

Truncating Eq. (2.7) up to the first term defines the leading-logarithm (LL) approxi-
mation, up to the second term defines the NLL approximation, then NNLL and so on.

In the case of transverse-momentum resummation for processes with colourful final
states the explicit structure of the functions HN and GN differs with respect to the case
of production of colourless final states. The qT resummation formalism for colourful final
states requires a colour space diagonalization of the relevant soft-anomalous dimension
which has been worked out, in the case of heavy-quark pair production up to NLL, in
Ref. [59]. In particular for heavy-quark pair production at NLL accuracy the function GN

contains an additional component due to soft wide-angle radiation from the heavy quarks
in the final state and from initial/final-state colour interference [59]. Analogously due to
colour correlations produced by soft-parton radiation, the hard-collinear function HN is a
colour space matrix.

3 Combined QED and QCD transverse-momentum resummation for
charged final states

In Ref. [56] some of us extended the QCD resummation formalism for colourless final states
in order to deal with the combined resummation of QED and QCD radiation in the case
of colourless and electrically neutral final states. This combined resummation method
has been obtained in two steps: (i) by the corresponding abelianization [63, 64] of the
QCD resummation formalism [38]; (ii) by a consistent combination of the QED and QCD

– 4 –

Here we include the f.o predictions at NLO (QED and QCD)
Unitary constraint 

Main differences respect to pure QCD case
On-shell Z and W production

• W on-shell at NLL+NLO: colourless and charged final state → New Autieri, LC, Ferrera, Sborlini  [2023]

resummation effects. In particular in Ref. [56] it has been considered the explicit case of
Z boson production at hadron colliders up to NNLL in QCD and NLL in QED. In this
paper, we extend the formalism of Ref. [56] in order to deal with the more general case of
colourless but electrically charged final states.

In order to generalise the combined QED and QCD qT resummation for the case of a
charged final state, we need to take into account the effect of additional QED soft wide-
angle radiation. We thus start from the QCD resummation formalism of Ref. [59] developed
for heavy-quark pair production and we adapt it to the case of QED resummation for high-
mass charged systems, considering the particular case of W boson hadroproduction. To
this end we need to consider the following modifications: (i) the replacement of the two
particle final state kinematics (the quark-antiquark pair) by a single particle production
kinematics; (ii) the abelianization of the QCD result, taking into account the absence of
non-abelian color correlations produced by initial/final-state interference in the QED case.

Applying the abelianization procedure [56, 63, 64] to Eqs. (15-18) of Ref. [59] we
obtain that the exponentiation of large logarithmic corrections receive contributions from
a QED soft radiation factor which can be written as:

∆(α;Q, b) = exp

{
−
∫ Q2

b20/b
2

dq2

q2
D′(α(q2))

}
, (3.1)

which is specific of charged high-mass system production and it is due to QED soft
non-collinear (wide angle) radiation from the underlying subprocess (in our specific case,
qf q̄f ′ → W±). In particular, soft non-collinear radiation originates from final state emis-
sions from the final state charged system and from initial/final-state interference. The
soft factor in Eq. (3.1) involves an integration over the transverse-momentum range
1/b ! qT ! Q giving rise to additional enhanced logarithmic corrections of the type
αnlog (Qb)k which are resummed to all orders in an exponential form. The function D′(α)

has the following standard perturbative expansion in power of α

D′(α) =
α

π
D′(1) +

+∞∑

n=2

(α
π

)n
D′(n) . (3.2)

Therefore the abelianization of QCD factor GN (previously introduced in Eq. (2.7))
which takes into account corrections from QED emissions for the production of a charged
high mass final state, is given by

G′N (α, L) = −
∫ Q2

b20/b
2

dq2

q2

(
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q2
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+ B̃′N (α(q2)) +D′(α(q2))
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= L g′(1)(αL) + g′(2)N (αL) +
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(α
π
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g′(n)N (αL) , (3.3)
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α

π
A′(1) +

(α
π

)2
A′(2) +

+∞∑

n=3

(α
π

)n
A′(n) , (3.4)
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resummation effects. In particular in Ref. [56] it has been considered the explicit case of
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mass charged systems, considering the particular case of W boson hadroproduction. To
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particle final state kinematics (the quark-antiquark pair) by a single particle production
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}
, (3.1)

which is specific of charged high-mass system production and it is due to QED soft
non-collinear (wide angle) radiation from the underlying subprocess (in our specific case,
qf q̄f ′ → W±). In particular, soft non-collinear radiation originates from final state emis-
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It is specific of charged high-
mass system production and it is 

due to QED soft non-collinear 
(wide angle) radiation from the 

underlying subprocess

New linear logarithmic term 

B̃′N (α) =
α

π
B̃′(1)N +

+∞∑

n=2

(α
π

)n
B̃′(n)N . (3.5)

As can be seen from Eq. (3.3), the function D′(α) resums single-logarithmic corrections and
it thus starts to contribute at NLL accuracy, similarly to the flavour-conserving collinear
radiation function B′N (α). Therefore the structure of the exponential factor in Eq. (3.3)
which resums the large logarithmic corrections from QED radiation in the case of high-
mass charged systems can be obtained from the case of neutral systems (see Eq. (2.7) in
Ref. [56]) with the replacement:

B̃′N (α) → B̃′N (α) +D′(α) . (3.6)

The presence of logarithmic effects from soft wide-angle emissions (through the function
D′(α) in Eq. (3.3)) has also consequences in the determination of the finite component (see
Eq. (2.2)), which is typically calculated from the fixed-order expansion of the resummed
component. The substitution in Eq. (3.6) also holds in the case of the finite component.

The coefficient D′(1), which is not present in the case of the production of chargeless
final states, can be obtained by a suitable abelianization of the soft anomalous dimension
matrix (see Eqs. (15)-(17) in Ref. [59]). This resummation coefficient depends on the
squared charge of the final state system e2V

∗ (e2W = 1 in the case of W production) and it
reads

D′(1) = −e2V
2

. (3.7)

The resummation coefficients related to initial-state emissions, A′(1), A′(2) and B̃′(1)N ,
have been obtained in Ref. [56] (see Eqs. (2.19)-(2.20) of Ref. [56]) from the corresponding
coefficients in QCD [65–68] for the case of the production of chargeless systems (e.g. for Z

boson production). In such case they are proportional to the square of the electric charge
e2q of the initial state partons of the subprocess qq̄ → Z. In the case of W boson production
the same coefficients can be obtained by replacing the squared charge by the average of
the squared charges of the initial state partons of the sub-process qf q̄f ′ → W :

e2q →
e2qf + e2q̄f ′

2
=

5

18
. (3.8)

The explicit values of the coefficients are:

A′(1) =
e2qf + e2q̄f ′

2
, (3.9)

A′(2) = −5

9

e2qf + e2q̄f ′

2
N (2), (3.10)

B̃′(1)N = B′(1) + γ′(1)qf qf ,N
+ γ′(1)q̄f ′ q̄f ′ ,N

, (3.11)

∗The electric charges are defined in units of e, where −e < 0 is the electron charge.
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We combine the QED and QCD resummation formalism by replacing the functions
WV

N and GN in Eq. (2.5) by their generalised expressions which include combined QCD
and QED effects through a double perturbative expansion in powers of αS and of the
electromagnetic coupling evaluated at the renormalization scale α = α(µ′R):

G′N (αS,α, L) = GN (αS, L) + L g′(1)(αL) + g′(2)N (αL) +
+∞∑

n=3

(α
π

)n−2
g′(n)N (αL)

+ g′(1,1)(αSL,αL) +
+∞∑

n,m=1
n+m !=2

(αS

π

)n−1 (α
π

)m−1
g′(n,m)
N (αSL,αL) , (3.25)

and

H′VN (αS,α) = HV
N (αS) +

α

π
H′V (1)

N +
+∞∑

n=2

(α
π

)n
H′V (n)

N

+
+∞∑

n,m=1

(αS

π

)n (α
π

)m
H′V (n,m)

N . (3.26)

The functional form of the functions Lg′(1), g′(2)N and g′(1,1)(αSL,αL) can be found in
Ref. [56]. We recall that the function Lg′(1) resums to all order the LL contributions in
QED, the function g′(2)N the NLL ones and so on, while the terms g′(1,1)(αSL,αL) and
g′(n,m)
N (αSL,αL) include respectively the leading and subleading mixed QCD-QED correc-

tions. In the case of the production of a charged high-mass system, the function g′(2)N receive
a contribution from soft wide-angle QED radiation which has been included through the
replacement in Eq. (3.6). The coefficients H′V (n)

N control the pure QED corrections while
the coefficients H′V (n,m)

N contains the mixed QCD-QED ones.
Finally we have considered, in the factorization formula Eq. (2.1), the inclusion of the

photon parton density fγ/h(x, µ
2
F ) and the QED effects in the evolution of parton densities.

4 Numerical results for W and Z boson production at hadron colliders

In this section, we present selected phenomenological predictions for W and Z boson qT
distributions at the Tevatron and at the LHC. Special emphasis is given to the similarities
and differences between charged and neutral weak boson production.

The resummation formalism, together with a consistent matching-procedure to de-
scribe a wide qT region with numerical stability and uniform accuracy, is encoded in the
Fortran numerical program DYqT [56, 71, 72]. In particular, we fully include QED radi-
ation at NLL accuracy, matched with fixed order results at NLO in EW theory combined
with the QCD corrections at NNLL+NNLO accuracy.

We use the following values for the electroweak input parameters [73]:

α(m2
Z) = 1/127.95 , mW = 80.377GeV , mZ = 91.1876GeV , (4.1)
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WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
V + C

(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed
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2
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with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
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q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1
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↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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QED+QCD qT resummation at NLL+NLO

A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed

8

The cross section can be decomposed as
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hard-virtual corrections and can be expanded in powers of αS = αS(µ2
R) as

HV
N (αS) = 1 +

+∞∑

n=1

(αS

π

)n
HV (n)

N . (2.6)

The exponent GN resums in an universal (i.e. process-independent) way all the logarith-
mically enhanced terms and can systematically expanded as:

GN (αS, L) = −
∫ Q2

b20/b
2

dq2

q2

(
A(αS(q

2)) log

(
M2

q2

)
+ B̃N (αS(q

2))

)

= Lg(1)(αSL) + g(2)N (αSL) +
+∞∑

n=3

(αS

π

)n−2
g(n)N (αSL) , (2.7)

where the functions A(αS) and B̃N (αS) are perturbative functions with a customary fixed-
order expansion in powers of αS [38]. The logarithmic variable L reads, in terms of the
resummation scale Q and b0 = 2e−γE (γE = 0.5772 · · · is the Euler number),

L = log

(
b2Q2

b20
+ 1

)
, (2.8)

which corresponds, in the b-space at large b, to the logarithmically-enhanced contribu-
tions associated to the low-qT region. The scale Q [38] is introduced with the purpose of
parametrizing the arbitrariness in the factorized structure of Eq. (2.5).

Truncating Eq. (2.7) up to the first term defines the leading-logarithm (LL) approxi-
mation, up to the second term defines the NLL approximation, then NNLL and so on.

In the case of transverse-momentum resummation for processes with colourful final
states the explicit structure of the functions HN and GN differs with respect to the case
of production of colourless final states. The qT resummation formalism for colourful final
states requires a colour space diagonalization of the relevant soft-anomalous dimension
which has been worked out, in the case of heavy-quark pair production up to NLL, in
Ref. [59]. In particular for heavy-quark pair production at NLL accuracy the function GN

contains an additional component due to soft wide-angle radiation from the heavy quarks
in the final state and from initial/final-state colour interference [59]. Analogously due to
colour correlations produced by soft-parton radiation, the hard-collinear function HN is a
colour space matrix.

3 Combined QED and QCD transverse-momentum resummation for
charged final states

In Ref. [56] some of us extended the QCD resummation formalism for colourless final states
in order to deal with the combined resummation of QED and QCD radiation in the case
of colourless and electrically neutral final states. This combined resummation method
has been obtained in two steps: (i) by the corresponding abelianization [63, 64] of the
QCD resummation formalism [38]; (ii) by a consistent combination of the QED and QCD
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resummation effects. In particular in Ref. [56] it has been considered the explicit case of
Z boson production at hadron colliders up to NNLL in QCD and NLL in QED. In this
paper, we extend the formalism of Ref. [56] in order to deal with the more general case of
colourless but electrically charged final states.

In order to generalise the combined QED and QCD qT resummation for the case of a
charged final state, we need to take into account the effect of additional QED soft wide-
angle radiation. We thus start from the QCD resummation formalism of Ref. [59] developed
for heavy-quark pair production and we adapt it to the case of QED resummation for high-
mass charged systems, considering the particular case of W boson hadroproduction. To
this end we need to consider the following modifications: (i) the replacement of the two
particle final state kinematics (the quark-antiquark pair) by a single particle production
kinematics; (ii) the abelianization of the QCD result, taking into account the absence of
non-abelian color correlations produced by initial/final-state interference in the QED case.

Applying the abelianization procedure [56, 63, 64] to Eqs. (15-18) of Ref. [59] we
obtain that the exponentiation of large logarithmic corrections receive contributions from
a QED soft radiation factor which can be written as:

∆(α;Q, b) = exp

{
−
∫ Q2

b20/b
2

dq2

q2
D′(α(q2))

}
, (3.1)

which is specific of charged high-mass system production and it is due to QED soft
non-collinear (wide angle) radiation from the underlying subprocess (in our specific case,
qf q̄f ′ → W±). In particular, soft non-collinear radiation originates from final state emis-
sions from the final state charged system and from initial/final-state interference. The
soft factor in Eq. (3.1) involves an integration over the transverse-momentum range
1/b ! qT ! Q giving rise to additional enhanced logarithmic corrections of the type
αnlog (Qb)k which are resummed to all orders in an exponential form. The function D′(α)

has the following standard perturbative expansion in power of α

D′(α) =
α

π
D′(1) +

+∞∑

n=2

(α
π

)n
D′(n) . (3.2)

Therefore the abelianization of QCD factor GN (previously introduced in Eq. (2.7))
which takes into account corrections from QED emissions for the production of a charged
high mass final state, is given by

G′N (α, L) = −
∫ Q2

b20/b
2

dq2

q2

(
A′(α(q2)) log

(
M2

q2

)
+ B̃′N (α(q2)) +D′(α(q2))

)

= L g′(1)(αL) + g′(2)N (αL) +
+∞∑

n=3

(α
π

)n−2
g′(n)N (αL) , (3.3)

where we note the presence of the previously introduced function D′(α), while the functions
A′(α) and B̃′N (α) are related to QED radiation from initial state [56] and can be expanded
as:

A′(α) =
α

π
A′(1) +

(α
π

)2
A′(2) +

+∞∑

n=3

(α
π

)n
A′(n) , (3.4)
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where the pure QED corrections are controlled by the coefficients H′F (n)
N while the mixed

QCD-QED ones are contained in the coefficients H′F (n,m)
N .

The LL and NLL functions g′(1) and g′(2)N in eq. (2.7) have the same functional form of

the corresponding QCD ones

g′(1)(αL) =
A′(1)q

β′0

λ′ + ln(1− λ′)

λ′
, (2.9)

g′(2)N (αL) =
B̃′(1)q,N

β′0
ln(1− λ′)−

A′(2)q

β′20

(
λ′

1− λ′
+ ln(1− λ′)

)

+
A′(1)q β′1
β′30

(
1

2
ln2(1− λ′) +

ln(1− λ′)

1− λ′
+

λ′

1− λ′

)
, (2.10)

while the novel function g′(1,1)(αSL,αL), which controls the mixed QCD-QED correction

at leading logarithmic accuracy, reads

g′(1,1)(αSL,αL) =
A(1)

q β0,1
β20β

′
0

h(λ,λ′) +
A′(1)q β′0,1
β′20 β0

h(λ′,λ) , (2.11)

with

h(λ,λ′) = −
λ′

λ− λ′
ln(1− λ) + ln(1− λ′)

[
λ(1− λ′)

(1− λ)(λ− λ′)
+ ln

(
−λ′(1− λ)

λ− λ′

)]

− Li2

(
λ

λ− λ′

)
+ Li2

(
λ(1− λ′)

λ− λ′

)
, (2.12)

where λ = 1
πβ0 αS L, λ′ = 1

πβ
′
0 αL, and β0, β′0, β

′
1, β0,1, β

′
0,1 are the coefficients of the QCD

and QED β functions:

d lnαS(µ2)

d lnµ2
= β(αS(µ

2),α(µ2)) = −
∞∑

n=0

βn
(αS

π

)n+1
−

∞∑

n,m+1=0

βn,m
(αS

π

)n+1 (α
π

)m
,

(2.13)

d lnα(µ2)

d lnµ2
= β′(α(µ2),αS(µ

2)) = −
∞∑

n=0

β′n

(α
π

)n+1
−

∞∑

n,m+1=0

β′n,m

(α
π

)n+1 (αS

π

)m
.

(2.14)

The function g′(1,1) in eqs. (2.11), (2.12) has been obtained by plain integration, start-

ing from the integral representation (see e.g. eq. (19) of ref. [47])) of the form factor in

eq. (2.7). The mixed QCD-QED terms included in eqs. (2.11), (2.12) originate from the

QED evolution of the QCD coupling and from the QCD evolution of the QED coupling,

respectively in the pure QCD and QED form factors. Indeed in eqs. (2.13), (2.14) we

have consistently included the mixed QCD-QED contributions to the running of the QCD

and QED couplings through the coefficient βn,m and β′n,m. The explicit expressions of the
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Transverse-momentum resummation formula
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>>>> ..

S1/2
q

S1/2
q

Cqa1

Cq̄a2

HF
q F

M ! ΛQCD , b ! 1/M , b " 1/ΛQCD

x1
z1

x2
z2

x1

x2

fa1/h1

fa2/h2

h1(p1)

h2(p2)

C(αS (b
2
0/b

2)) = C(αS (M
2))

× exp

{

−

∫ M2

b20/b
2

dq2

q2
β(αS (q

2))
d lnC(αS (q

2))

d lnαS (q2)

}

dσ
(res)
F

d2qT dM2 dy dΩ
=

M2

s

[
dσ

(0)
qq̄,F

] ∑

a1,a2

∫
d2b

(2π)2
eib·qT Sq(M, b)

×

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

[
HFC1C2

]

qq̄;a1a2
fa1/h1 (x1/z1, b

2
0/b

2) fa2/h2 (x2/z2, b
2
0/b

2)

F̃qf /h(x , b,M) =
∑

a

∫ 1
x

dz
z

√
Sq(M, b)Cqf a(z ;αS(b20/b

2)) fa/h(x/z , b
2
0/b

2)
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M
§ [6, 63]

WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion
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⇡
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H(n)
V , (12)
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⇣
↵S

⇡
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C(↵S) = 1 +
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⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations
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(1)
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V (C(2) + C
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]
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⇣
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⇡
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For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant
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where we have introduced the logarithmic expansion parameter
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with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶
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The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]
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A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed

8

M
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WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion
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H(n)
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H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
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(3)
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, (17)
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V (C(1) + C

(1)) +H
(2)
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(2)
C

(1)) + C
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(1) + C
(3)
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(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1
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↵S

⇡
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g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
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QED+QCD qT resummation at NLL+NLO

A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write
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2
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2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as
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=
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(0)
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b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
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F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
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p
ŝ at fixed
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The cross section can be decomposed as

Autieri, LC, Ferrera, Sborlini  [2023]

hard-virtual corrections and can be expanded in powers of αS = αS(µ2
R) as

HV
N (αS) = 1 +

+∞∑

n=1

(αS

π

)n
HV (n)

N . (2.6)

The exponent GN resums in an universal (i.e. process-independent) way all the logarith-
mically enhanced terms and can systematically expanded as:

GN (αS, L) = −
∫ Q2

b20/b
2

dq2

q2

(
A(αS(q

2)) log

(
M2

q2

)
+ B̃N (αS(q

2))

)

= Lg(1)(αSL) + g(2)N (αSL) +
+∞∑

n=3

(αS

π

)n−2
g(n)N (αSL) , (2.7)

where the functions A(αS) and B̃N (αS) are perturbative functions with a customary fixed-
order expansion in powers of αS [38]. The logarithmic variable L reads, in terms of the
resummation scale Q and b0 = 2e−γE (γE = 0.5772 · · · is the Euler number),

L = log

(
b2Q2

b20
+ 1

)
, (2.8)

which corresponds, in the b-space at large b, to the logarithmically-enhanced contribu-
tions associated to the low-qT region. The scale Q [38] is introduced with the purpose of
parametrizing the arbitrariness in the factorized structure of Eq. (2.5).

Truncating Eq. (2.7) up to the first term defines the leading-logarithm (LL) approxi-
mation, up to the second term defines the NLL approximation, then NNLL and so on.

In the case of transverse-momentum resummation for processes with colourful final
states the explicit structure of the functions HN and GN differs with respect to the case
of production of colourless final states. The qT resummation formalism for colourful final
states requires a colour space diagonalization of the relevant soft-anomalous dimension
which has been worked out, in the case of heavy-quark pair production up to NLL, in
Ref. [59]. In particular for heavy-quark pair production at NLL accuracy the function GN

contains an additional component due to soft wide-angle radiation from the heavy quarks
in the final state and from initial/final-state colour interference [59]. Analogously due to
colour correlations produced by soft-parton radiation, the hard-collinear function HN is a
colour space matrix.

3 Combined QED and QCD transverse-momentum resummation for
charged final states

In Ref. [56] some of us extended the QCD resummation formalism for colourless final states
in order to deal with the combined resummation of QED and QCD radiation in the case
of colourless and electrically neutral final states. This combined resummation method
has been obtained in two steps: (i) by the corresponding abelianization [63, 64] of the
QCD resummation formalism [38]; (ii) by a consistent combination of the QED and QCD

– 4 –

Here we include the f.o predictions at NLO (QED and QCD)
Unitary constraint 

Main differences respect to pure QCD case
On-shell Z and W production

• W on-shell at NLL+NLO: colourless and charged final state → New Autieri, LC, Ferrera, Sborlini  [2023]

resummation effects. In particular in Ref. [56] it has been considered the explicit case of
Z boson production at hadron colliders up to NNLL in QCD and NLL in QED. In this
paper, we extend the formalism of Ref. [56] in order to deal with the more general case of
colourless but electrically charged final states.

In order to generalise the combined QED and QCD qT resummation for the case of a
charged final state, we need to take into account the effect of additional QED soft wide-
angle radiation. We thus start from the QCD resummation formalism of Ref. [59] developed
for heavy-quark pair production and we adapt it to the case of QED resummation for high-
mass charged systems, considering the particular case of W boson hadroproduction. To
this end we need to consider the following modifications: (i) the replacement of the two
particle final state kinematics (the quark-antiquark pair) by a single particle production
kinematics; (ii) the abelianization of the QCD result, taking into account the absence of
non-abelian color correlations produced by initial/final-state interference in the QED case.

Applying the abelianization procedure [56, 63, 64] to Eqs. (15-18) of Ref. [59] we
obtain that the exponentiation of large logarithmic corrections receive contributions from
a QED soft radiation factor which can be written as:

∆(α;Q, b) = exp

{
−
∫ Q2

b20/b
2

dq2

q2
D′(α(q2))

}
, (3.1)

which is specific of charged high-mass system production and it is due to QED soft
non-collinear (wide angle) radiation from the underlying subprocess (in our specific case,
qf q̄f ′ → W±). In particular, soft non-collinear radiation originates from final state emis-
sions from the final state charged system and from initial/final-state interference. The
soft factor in Eq. (3.1) involves an integration over the transverse-momentum range
1/b ! qT ! Q giving rise to additional enhanced logarithmic corrections of the type
αnlog (Qb)k which are resummed to all orders in an exponential form. The function D′(α)

has the following standard perturbative expansion in power of α

D′(α) =
α

π
D′(1) +

+∞∑

n=2

(α
π

)n
D′(n) . (3.2)

Therefore the abelianization of QCD factor GN (previously introduced in Eq. (2.7))
which takes into account corrections from QED emissions for the production of a charged
high mass final state, is given by

G′N (α, L) = −
∫ Q2

b20/b
2

dq2

q2

(
A′(α(q2)) log

(
M2

q2

)
+ B̃′N (α(q2)) +D′(α(q2))

)

= L g′(1)(αL) + g′(2)N (αL) +
+∞∑

n=3

(α
π

)n−2
g′(n)N (αL) , (3.3)

where we note the presence of the previously introduced function D′(α), while the functions
A′(α) and B̃′N (α) are related to QED radiation from initial state [56] and can be expanded
as:

A′(α) =
α

π
A′(1) +

(α
π

)2
A′(2) +

+∞∑

n=3

(α
π

)n
A′(n) , (3.4)
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has the following standard perturbative expansion in power of α

D′(α) =
α

π
D′(1) +

+∞∑

n=2

(α
π

)n
D′(n) . (3.2)

Therefore the abelianization of QCD factor GN (previously introduced in Eq. (2.7))
which takes into account corrections from QED emissions for the production of a charged
high mass final state, is given by

G′N (α, L) = −
∫ Q2

b20/b
2

dq2

q2

(
A′(α(q2)) log

(
M2

q2

)
+ B̃′N (α(q2)) +D′(α(q2))

)

= L g′(1)(αL) + g′(2)N (αL) +
+∞∑

n=3

(α
π

)n−2
g′(n)N (αL) , (3.3)

where we note the presence of the previously introduced function D′(α), while the functions
A′(α) and B̃′N (α) are related to QED radiation from initial state [56] and can be expanded
as:

A′(α) =
α

π
A′(1) +

(α
π

)2
A′(2) +

+∞∑

n=3

(α
π

)n
A′(n) , (3.4)
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It is specific of charged high-
mass system production and it is 

due to QED soft non-collinear 
(wide angle) radiation from the 

underlying subprocess

New linear logarithmic term 

B̃′N (α) =
α

π
B̃′(1)N +

+∞∑

n=2

(α
π

)n
B̃′(n)N . (3.5)

As can be seen from Eq. (3.3), the function D′(α) resums single-logarithmic corrections and
it thus starts to contribute at NLL accuracy, similarly to the flavour-conserving collinear
radiation function B′N (α). Therefore the structure of the exponential factor in Eq. (3.3)
which resums the large logarithmic corrections from QED radiation in the case of high-
mass charged systems can be obtained from the case of neutral systems (see Eq. (2.7) in
Ref. [56]) with the replacement:

B̃′N (α) → B̃′N (α) +D′(α) . (3.6)

The presence of logarithmic effects from soft wide-angle emissions (through the function
D′(α) in Eq. (3.3)) has also consequences in the determination of the finite component (see
Eq. (2.2)), which is typically calculated from the fixed-order expansion of the resummed
component. The substitution in Eq. (3.6) also holds in the case of the finite component.

The coefficient D′(1), which is not present in the case of the production of chargeless
final states, can be obtained by a suitable abelianization of the soft anomalous dimension
matrix (see Eqs. (15)-(17) in Ref. [59]). This resummation coefficient depends on the
squared charge of the final state system e2V

∗ (e2W = 1 in the case of W production) and it
reads

D′(1) = −e2V
2

. (3.7)

The resummation coefficients related to initial-state emissions, A′(1), A′(2) and B̃′(1)N ,
have been obtained in Ref. [56] (see Eqs. (2.19)-(2.20) of Ref. [56]) from the corresponding
coefficients in QCD [65–68] for the case of the production of chargeless systems (e.g. for Z

boson production). In such case they are proportional to the square of the electric charge
e2q of the initial state partons of the subprocess qq̄ → Z. In the case of W boson production
the same coefficients can be obtained by replacing the squared charge by the average of
the squared charges of the initial state partons of the sub-process qf q̄f ′ → W :

e2q →
e2qf + e2q̄f ′

2
=

5

18
. (3.8)

The explicit values of the coefficients are:

A′(1) =
e2qf + e2q̄f ′

2
, (3.9)

A′(2) = −5

9

e2qf + e2q̄f ′

2
N (2), (3.10)

B̃′(1)N = B′(1) + γ′(1)qf qf ,N
+ γ′(1)q̄f ′ q̄f ′ ,N

, (3.11)

∗The electric charges are defined in units of e, where −e < 0 is the electron charge.
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with

N (2) = 3

nf∑

q=1

e2q +
nl∑

l=1

e2l , (3.12)

B′(1) = −3

2

e2qf + e2q̄f ′

2
, (3.13)

γ′(1)qq,N = e2q

(
3

4
+

1

2N(N + 1)
− γE − ψ0(N + 1)

)
, (3.14)

γ′(1)qγ,N =
3

2
e2q

N2 +N + 2

N(N + 1)(N + 2)
, (3.15)

where ψ0(N) is the digamma function and γ′(1)ab,N are the leading-order (LO) anomalous
dimensions in QED †, nf (nl) the number of quark (lepton) flavours and eq (el) the quark
(lepton) electric charges (eq = 2/3 for up-type quarks, eq = −1/3 for down-type quarks,
el = −1 for leptons).

The knowledge of the resummation coefficient D′(1) in Eq. (3.7), together with the
coefficients A′(1), A′(2) and B̃′(1) in Eqs. (3.9-3.11), is sufficient to reach the full NLL
accuracy for the resummed component in QED.

The results obtained for the resummation coefficients have been crosschecked in App. A
where we performed the expansion at small qT of the fixed-order qT distribution and we
extracted the resummation coefficients confirming the results shown in this Section.

We now consider the QED fixed-order contributions included in the hard-collinear
function in Eq. (2.6). We start considering the abelianization of the QCD infrared (IR)
subtraction operator of Ref. [59] and we obtain the following QED IR subtraction operator:

Ĩ ′V (ε,M
2) =

α(µR)

2π
Ĩ ′(1)V (ε,M2/µ2

R) +
+∞∑

n=2

(
α(µR)

2π

)n

Ĩ ′(n)V (ε,M2/µ2
R) (3.16)

with

Ĩ ′(1)V (ε,M2/µ2
R) = −

(
M2

µ2
R

)−ε{(
1

ε2
+

iπ

ε
− π2

12

) e2qf + e2q̄f ′

2
+
γ′qf + γ′q̄f ′

2ε

+
e2V
2ε

(1− iπ)

}
, (3.17)

where the coefficient γ′q = 3e2q/2 originates from hard-collinear initial-state radiation while
the last term proportional to e2V originates from soft wide-angle radiation from the final
state charged system. Following the QCD case [39, 59], the subtraction operator in Eq.
(3.17) allows us to define, starting from the renormalized IR divergent all-loop amplitude
MV , an IR finite hard-virtual amplitude

M̃V = (1− Ĩ ′V (ε,M
2))MV . (3.18)

†The anomalous dimension γ′(1)
qγ,N enters at the NLL in the general multiflavour case (see Appendix A of

Ref. [38]).
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M
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WV (b,M ;↵S, µ
2
R, µ

2
F ) = HV (↵S;M/µR,M/µF ,M/Q)⇥ exp{G(↵S, L;M/µR,M/Q)} , (9)

where we have introduced the logarithmic expansion parameter

L ⌘ ln(Q2
b
2
/b

2
0) (10)

with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
V + C

(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
contains all the terms that order-by-order in ↵S are logarithmically divergent as b ! 1 (i.e.
qT ! 0). The resummed logarithmic expansion of G reads [6]

G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed
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with b0 = 2e��E (�E = 0.5772... is the Euler number). The scale Q ⇠ M is the resummation scale
[64], which parameterizes the arbitrariness in the resummation procedure.

The process dependent function HV (↵S) [65, 66] includes the hard-collinear contributions and
it can be written in term of a process dependent hard factor HV (↵S) and two process independent
functions C(↵S) associated to collinear emissions from the initial state colliding partons ¶

HV (↵S) = HV (↵S)C(↵S)C(↵S) . (11)

The functions in Eq.(11) have a standard perturbative expansion

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H(n)
V , (12)

HV (↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

H
(n)
V , (13)

C(↵S) = 1 +
1X

n=1

⇣
↵S

⇡

⌘n

C
(n)

, (14)

therefore up to the fourth order we have the following relations

H(1)
V = H

(1)
V + C

(1) + C
(1)
, (15)

H(2)
V = H

(2)
V + C

(2) + C
(2) +H

(1)
V (C(1) + C

(1)) + C
(1)
C

(1)
, (16)

H(3)
V = H

(3)
V + C

(3) + C
(3) +H

(2)
V (C(1) + C

(1)) +H
(1)
V (C(2) + C

(2) + C
(1)
C

(1))

+ C
(2)
C

(1) + C
(2)
C

(1)
, (17)

H(4)
V = H

(4)
V + C

(4) + C
(4) +H

(3)
V (C(1) + C

(1)) +H
(2)
V (C(2) + C

(2) + C
(1)
C

(1))

+ H
(1)
V (C(3) + C

(3) + C
(2)
C

(1) + C
(2)
C

(1)) + C
(3)
C

(1) + C
(3)
C

(1) + C
(2)
C

(2)
. (18)

The universal (process independent) form factor exp{G} in the right-hand side of Eq. (9)
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G(↵S, L) = �
Z Q2

b20/b
2

dq
2

q2


A(↵S(q

2)) ln
M

2

q2
+ eB(↵S(q

2))

�

= Lg
(1)(↵SL) + g

(2)(↵SL) +
1X

n=1

⇣
↵S

⇡

⌘n

g
(n+2)(↵SL) , (19)

§
For the sake of simplicity in our symbolic notation the explicit dependence on parton indices (which are relevant

for the exponentiation in the multiflavour space) and the double Mellin indices are understood. The interested

reader can find the details in Ref. [6] (in particular Appendix A) and Ref.[63].
¶
A simple specification of a resummation scheme customarily used in the literature on qT resummation for

vector boson is: HV (↵S) ⌘ 1 (i.e. H
(n)
V = 0 for n > 0).
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QED+QCD qT resummation at NLL+NLO

A Transverse-momentum resummation up to N
4
LL+N

4
LO

accuracy

We consider the process

h1 + h2 ! V +X ! l3 + l4 +X, (5)

where V denotes the vector boson produced by the colliding hadrons h1 and h2 with a centre–of–
mass energy s, while l3 and l4 are the final state leptons produced by the V decay. The lepton
kinematics is completely specified in terms of the transverse-momentum qT (with qT =

p
qT

2),
the rapidity y and the invariant mass M of the lepton pair, and by two additional variables ⌦

that specify the angular distribution of the leptons with respect to the vector boson momentum.

We consider the Drell–Yan cross section fully di↵erential in the leptonic final state. According
to the factorization theorem we can write

d�h1h2!l3l4

d2qTdM
2dyd⌦

(qT,M
2
, y, s,⌦) =

X

a1,a2

Z 1

0

dx1

Z 1

0

dx2 fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

⇥ d�̂a1a2!l3l4

d2qT dM2 dŷ d⌦
(qT,M, ŷ, ŝ,⌦;↵S, µ

2
R, µ

2
F ) , (6)

where fa/h(x, µ2
F ) (a = qf , q̄f , g) are the parton distribution functions of the hadron h, ŝ = x1x2s

is the partonic centre–of–mass energy squared, ŷ = y � ln
p
x1/x2 is the vector boson rapidity

with respect to the colliding partons while µR and µF are the renormalization and factorization
scales. The last factor in the right-hand side of Eq. (6) is multi-di↵erential partonic cross sections,
computable in perturbative QCD as a series expansion in the strong coupling ↵S = ↵S(µR), which
will be denoted in the following by the shorthand notation [d�̂a1a2!l3l4 ].

The partonic cross section can be decomposed as

[d�̂a1a2!l3l4 ] = [d�̂(res.)
a1a2!l3l4

] + [d�̂(fin.)
a1a2!l3l4

] (7)

where the first term on the right-hand side of Eq. (7) is the resummed component which dominates
in the small qT region while the second term is the finite component which is needed at large qT .

We briefly review the impact-parameter space b [4] resummation formalism of Refs. [6, 8, 17].
The resummed component in the r.h.s. of Eq. 7 can then be written as

h
d�̂

(res.)
a1a2!l3l4

i
=

X

b1,b2=q,q̄

d�̂
(0)
b1b2!l3l4

d⌦

1

ŝ

Z 1

0

db

2⇡
b J0(bqT ) Wa1a2,b1b2!V (b,M, ŷ, ŝ;↵S, µ

2
R, µ

2
F ) , (8)

where J0(x) is the 0th-order Bessel function and the factor d�̂(0)
b1b2!l3l4

is the Born level di↵erential
cross section for the partonic subprocess qq̄ ! V ! l3l4.

The functionWV (b,M, ŷ, ŝ) can be expressed in an exponential form by considering the ‘double’
(N1, N2) Mellin moments with respect to the variables z1 = e

+ŷ
M/

p
ŝ and z2 = e

�ŷ
M/

p
ŝ at fixed

8

The cross section can be decomposed as

Autieri, LC, Ferrera, Sborlini  [2023]Main differences respect to pure QCD case
On-shell Z and W production

At one-loop Eq. (3.18) reads

M̃(1)
V = M(1)

V − Ĩ ′(1)V (ε,M2/µ2
R)M

(0)
V , (3.19)

where M(0)
V and M(1)

V are respectively the lowest-order and the one-loop parton-level scat-
tering amplitude for the scattering process h1h2 → V . In turn the knowledge of the
hard-virtual amplitude M̃V is sufficient to determine the process-dependent hard-virtual
coefficient [39]:

H ′V (α) = 1 +
+∞∑

n=1

(α
π

)n
H ′V (n) =

|M̃V |2

|M(0)
V |2

, (3.20)

which encodes the process-dependent part of the hard-collinear coefficient H′VN Eq. (2.6)
in QED.

As already mentioned, in the case of W production, the one-loop corrections in QED
cannot be included in a trivial way without breaking the gauge invariance of the results [60].
This issue is relevant only for the fixed-order corrections and it does not affect the all-order
resummation of enhanced QED logarithmic effects. We solved this issue by including in
our results the full EW corrections at one loop in the scattering amplitude M(1)

V . To be
consistent, we included the one-loop EW corrections also in the case of Z boson production,
even if in this case the pure QED corrections can be defined in a straightforward way.

The explicit results for the (not vanishing) NLO hard-collinear functions H′V (1)
a1a2,N

we
have included in our calculation are:

H′V (1)
qf q̄f ′←qf q̄f ′ ,N

=
e2qf + e2q̄f ′

2

(
1

N(N + 1)
+H ′V (1)

)
, (3.21)

H′V (1)
qf q̄f ′←γq̄f ′ ,N

=
3 e2qf

(N + 1)(N + 2)
, (3.22)

H′V (1)
qf q̄f ′←qfγ,N

=
3 e2q̄f ′

(N + 1)(N + 2)
, (3.23)

where the coefficient H ′V (1) for V = γ∗/Z,W has been obtained through Eqs. (3.18-
3.20) from the knowledge of the EW one-loop amplitudes for the processes qq̄ → Z and
qf q̄f ′ → W [69, 70].

Finally we performed the matching at large qT by evaluating the finite part of the par-
tonic cross section in Eq. (2.2) starting from the computation of the partonic cross section
for V + γ at leading-order in QED and subtracting from it the perturbative truncation of
the resummed component at the same order:

dσ̂(fin.)

dq2T
=

[
dσ̂

dq2T

]

(f.o.)

−
[
dσ̂(res.)

dq2T

]

(f.o.)

. (3.24)

Having obtained the qT resummation formalism in QED for final state charged high-
mass system we are able to consider the combined QED and QCD resummation using the
formalism developed in Ref. [56] that we summarize below.

– 8 –

We include the full set of one-loop 
EW virtual scattering amplitudes. 

Not only for the W, but for the Z for 
the sake of completeness.

Wackeroth, Hollik [1997]
Behring, Buccioni, Caola, Delto, Jaquier, Melnikov et al. [2020]

Bonciani, Buccioni, Rana, Vicini [2021]

• The hard virtual factor H’v requires the definition of subtraction operators I, suitable to treat massive and 
charged final states  → we left this topic to the discussion session


• The expansion of the f.o contribution served as a check for the involved abelianization procedure → we left 
this topic to the discussion session (also the linear power corrections)

LC, Ferrera, Sborlini  [2018]Originally not included in →

[DYqT]



QED+QCD qT resummation at NLL+NLO
Autieri, LC, Ferrera, Sborlini  [2023]Results

[DYqT]

• The scale variation band is reduced by roughly a factor 2 with the inclusion of the NLL+NLO corrections


• At the Tevatron and at the LHC, QED uncertainty is dominated by the renormalization scale at LL accuracy and 
resummation scale at NLL+NLO


• The effect of EW loop corrections is extremely small (per-mille level effect)


• Overall order 0.5% at the LHC at NLL

LC, Ferrera, Sborlini  [2018]



QED+QCD qT resummation at NLL+NLO
Autieri, LC, Ferrera, Sborlini  [2023]Results

[DYqT]

• The NLL+NLO prediction without the effect of soft wide-angle QED radiation (black dotted curve)


• NLL+NLO  scale variation band reduction factor 1.5-2  for qT ≲ 20GeV and up to a factor 3 for qT ≳ 30GeV


• Overall order 0.5% at the LHC at NLL



QED+QCD qT resummation at NLL+NLO
Autieri, LC, Ferrera, Sborlini  [2023]Results

• Correlated scale variation → use the difference between the prediction at NLL+NLO and the LL?


• The impact of NLL+NLO QED corrections is to make the distribution softer at O(0.5 − 1%) level


• This is the combined effect of the W distribution slightly softer and the Z distribution harder

[DYqT]

Example of what 
happen with different 

mechanisms in 
numerator and 
denominator



• N4LL QCD plays a relevant role removing uncertainties in the W/Z 
pT distribution ratio


• NLL+NLO QCD+QED corrections to on shell Z and W boson 
production introduce non negligible effects for the W/Z pT 
distribution ratio


• QCD resummation at N4LL is implemented in the public code 
DYTurbo 

• NLL+NLO QCD+QED corrections to on shell Z and W boson 
production are encoded in DYqT. (very soon in DYTurbo)


• Full NLL+NLO QCD+QED corrections to Z and W boson production 
with decays → very soon in DYTurbo

Outlook



Thank you!!!
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Comparison of b* and minimal prescription

• keep bstar with bmax = b0/1GeV to evaluate PDFs, but integrate up to or beyond the Landau pole in the Sudakov


• In one prescription bmax = bL with bL = b0 · exp(1/(2αs β0))


• In the other prescription the path of integration is deformed in the complex plane (minimal prescription)



Size of the finite part W-
DYTurbo+NNLOJET

DYTurbo+NNLOJET



Non perturbative model used in the N4LLa

predictions which can be implemented starting from the results of Refs. [31, 38–45] and subtracting
the asymptotic expansion of the resummed calculation at the same perturbative order as encoded
in DYTurbo. Resummed results at N3LL +N3LO matched with the NNLO calculation at large
qT have been presented in Refs. [48]. Here we extend the results of Ref. [48] by extending the
resummation accuracy at approximated N4LL+N4LO and by presenting results for W

± boson
production and decay. A brief review of the resummation formalism of Refs. [6, 8, 17] is given
in AppendixA together with a collection of the numerical coe�cients needed at N4LL+N4LO
accuracy.

In the following we consider Z/�⇤
,W

± production and leptonic decay at the Large Hadron Col-
lider (LHC). We present resummed predictions up to N4LL accuracy including the hard-virtual co-
e�cient up to N3LO together with an approximation of the N4LO ones. The hadronic cross section
is obtained by convoluting the partonic cross section in Eq. (7) with the parton densities functions
(PDFs) from MSHT20aN3LO set [49] at the approximate N3LO with ↵S(m2

Z) = 0.118 where we
have evaluated ↵S(µ2

R) at (n+1)-loop order at NnLL accuracy. We use the so called Gµ scheme
for EW couplings with input parameters GF = 1.1663787 ⇥ 10�5 GeV�2, mZ = 91.1876 GeV,
�Z = 2.4952 GeV, mW = 80.379 GeV, �W = 2.091 GeV. In the case of W production, we use
the following CKM matrix elements: Vud = 0.97427, Vus = 0.2253, Vub = 0.00351, Vcd = 0.2252,
Vcs = 0.97344, Vcb = 0.0412. We work with Nf = 5 massless quarks and we use mtop = 173 GeV
for the top-loop mediated singlet contributions. Our calculation implements the leptonic decays
Z/�

⇤ ! l
+
l
�, W± ! l⌫ and we include the e↵ects of the Z/�

⇤ interference and of the finite
widths of the W and Z boson with the corresponding spin correlations and the full dependence
on the kinematical variables of final state leptons. This allows us to take into account the typi-
cal kinematical cuts on final state leptons that are considered in the experimental analysis. The
resummed calculation at fixed lepton momenta requires a qT -recoil procedure. We implement the
general procedure described in Ref. [17] which is equivalent to compute the Born level distribution
d�

(0) of Eq. (8) in the Collins–Soper rest frame [50].

As for the non-perturbative (NP) e↵ects at very small transverse momenta we introduced, in
the conjugated b-space, a NP form factor of the form [16]

SNP (b) = exp{�g1b
2 � gK(b) ln(M

2
/Q

2
0)} (1)

where

gK(b) = g0

✓
1� exp


�CF↵S((b0/b?)2)b2

⇡g0b
2
lim

�◆
, (2)

with g1 = 0.5 GeV2, Q0 = 1 GeV, g0 = 0.3, blim = 1.5 GeV�1 and

b
2
? = b

2
b
2
lim/(b

2 + b
2
lim) . (3)

The variable b? is also used to regularize the perturbative form factor at very large value of b
(b⇠> 1/⇤QCD, where ⇤QCD is the scale of the Landau pole of the perturbative running coupling
↵S(q2)) which correspond to very small values of qT (qT ⇠<⇤QCD) through the so-called ‘b? pre-
scription’ [5, 51] which consist in the freezing of the integration over b below the upper limit blim
through the replacement b ! b?. An alternative regularization procedure of the Landau singular-
ity, which have also been implemented in the DYTurbo numerical program, is the so-called Minimal
Prescription [52–54].

We have thus considered the production of l+l� pairs from Z/�
⇤ decay at the LHC (

p
s =

13TeV) with the following fiducial cuts: the leptons are required to have transverse momentum
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predictions which can be implemented starting from the results of Refs. [31, 38–45] and subtracting
the asymptotic expansion of the resummed calculation at the same perturbative order as encoded
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qT have been presented in Refs. [48]. Here we extend the results of Ref. [48] by extending the
resummation accuracy at approximated N4LL+N4LO and by presenting results for W
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in AppendixA together with a collection of the numerical coe�cients needed at N4LL+N4LO
accuracy.
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is obtained by convoluting the partonic cross section in Eq. (7) with the parton densities functions
(PDFs) from MSHT20aN3LO set [49] at the approximate N3LO with ↵S(m2

Z) = 0.118 where we
have evaluated ↵S(µ2

R) at (n+1)-loop order at NnLL accuracy. We use the so called Gµ scheme
for EW couplings with input parameters GF = 1.1663787 ⇥ 10�5 GeV�2, mZ = 91.1876 GeV,
�Z = 2.4952 GeV, mW = 80.379 GeV, �W = 2.091 GeV. In the case of W production, we use
the following CKM matrix elements: Vud = 0.97427, Vus = 0.2253, Vub = 0.00351, Vcd = 0.2252,
Vcs = 0.97344, Vcb = 0.0412. We work with Nf = 5 massless quarks and we use mtop = 173 GeV
for the top-loop mediated singlet contributions. Our calculation implements the leptonic decays
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+
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�, W± ! l⌫ and we include the e↵ects of the Z/�

⇤ interference and of the finite
widths of the W and Z boson with the corresponding spin correlations and the full dependence
on the kinematical variables of final state leptons. This allows us to take into account the typi-
cal kinematical cuts on final state leptons that are considered in the experimental analysis. The
resummed calculation at fixed lepton momenta requires a qT -recoil procedure. We implement the
general procedure described in Ref. [17] which is equivalent to compute the Born level distribution
d�

(0) of Eq. (8) in the Collins–Soper rest frame [50].

As for the non-perturbative (NP) e↵ects at very small transverse momenta we introduced, in
the conjugated b-space, a NP form factor of the form [16]
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The variable b? is also used to regularize the perturbative form factor at very large value of b
(b⇠> 1/⇤QCD, where ⇤QCD is the scale of the Landau pole of the perturbative running coupling
↵S(q2)) which correspond to very small values of qT (qT ⇠<⇤QCD) through the so-called ‘b? pre-
scription’ [5, 51] which consist in the freezing of the integration over b below the upper limit blim
through the replacement b ! b?. An alternative regularization procedure of the Landau singular-
ity, which have also been implemented in the DYTurbo numerical program, is the so-called Minimal
Prescription [52–54].

We have thus considered the production of l+l� pairs from Z/�
⇤ decay at the LHC (
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predictions which can be implemented starting from the results of Refs. [31, 38–45] and subtracting
the asymptotic expansion of the resummed calculation at the same perturbative order as encoded
in DYTurbo. Resummed results at N3LL +N3LO matched with the NNLO calculation at large
qT have been presented in Refs. [48]. Here we extend the results of Ref. [48] by extending the
resummation accuracy at approximated N4LL+N4LO and by presenting results for W

± boson
production and decay. A brief review of the resummation formalism of Refs. [6, 8, 17] is given
in AppendixA together with a collection of the numerical coe�cients needed at N4LL+N4LO
accuracy.
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± production and leptonic decay at the Large Hadron Col-
lider (LHC). We present resummed predictions up to N4LL accuracy including the hard-virtual co-
e�cient up to N3LO together with an approximation of the N4LO ones. The hadronic cross section
is obtained by convoluting the partonic cross section in Eq. (7) with the parton densities functions
(PDFs) from MSHT20aN3LO set [49] at the approximate N3LO with ↵S(m2

Z) = 0.118 where we
have evaluated ↵S(µ2

R) at (n+1)-loop order at NnLL accuracy. We use the so called Gµ scheme
for EW couplings with input parameters GF = 1.1663787 ⇥ 10�5 GeV�2, mZ = 91.1876 GeV,
�Z = 2.4952 GeV, mW = 80.379 GeV, �W = 2.091 GeV. In the case of W production, we use
the following CKM matrix elements: Vud = 0.97427, Vus = 0.2253, Vub = 0.00351, Vcd = 0.2252,
Vcs = 0.97344, Vcb = 0.0412. We work with Nf = 5 massless quarks and we use mtop = 173 GeV
for the top-loop mediated singlet contributions. Our calculation implements the leptonic decays
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⇤ ! l
+
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�, W± ! l⌫ and we include the e↵ects of the Z/�

⇤ interference and of the finite
widths of the W and Z boson with the corresponding spin correlations and the full dependence
on the kinematical variables of final state leptons. This allows us to take into account the typi-
cal kinematical cuts on final state leptons that are considered in the experimental analysis. The
resummed calculation at fixed lepton momenta requires a qT -recoil procedure. We implement the
general procedure described in Ref. [17] which is equivalent to compute the Born level distribution
d�

(0) of Eq. (8) in the Collins–Soper rest frame [50].

As for the non-perturbative (NP) e↵ects at very small transverse momenta we introduced, in
the conjugated b-space, a NP form factor of the form [16]
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The variable b? is also used to regularize the perturbative form factor at very large value of b
(b⇠> 1/⇤QCD, where ⇤QCD is the scale of the Landau pole of the perturbative running coupling
↵S(q2)) which correspond to very small values of qT (qT ⇠<⇤QCD) through the so-called ‘b? pre-
scription’ [5, 51] which consist in the freezing of the integration over b below the upper limit blim
through the replacement b ! b?. An alternative regularization procedure of the Landau singular-
ity, which have also been implemented in the DYTurbo numerical program, is the so-called Minimal
Prescription [52–54].

We have thus considered the production of l+l� pairs from Z/�
⇤ decay at the LHC (
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s =

13TeV) with the following fiducial cuts: the leptons are required to have transverse momentum

2

predictions which can be implemented starting from the results of Refs. [31, 38–45] and subtracting
the asymptotic expansion of the resummed calculation at the same perturbative order as encoded
in DYTurbo. Resummed results at N3LL +N3LO matched with the NNLO calculation at large
qT have been presented in Refs. [48]. Here we extend the results of Ref. [48] by extending the
resummation accuracy at approximated N4LL+N4LO and by presenting results for W

± boson
production and decay. A brief review of the resummation formalism of Refs. [6, 8, 17] is given
in AppendixA together with a collection of the numerical coe�cients needed at N4LL+N4LO
accuracy.
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e�cient up to N3LO together with an approximation of the N4LO ones. The hadronic cross section
is obtained by convoluting the partonic cross section in Eq. (7) with the parton densities functions
(PDFs) from MSHT20aN3LO set [49] at the approximate N3LO with ↵S(m2

Z) = 0.118 where we
have evaluated ↵S(µ2

R) at (n+1)-loop order at NnLL accuracy. We use the so called Gµ scheme
for EW couplings with input parameters GF = 1.1663787 ⇥ 10�5 GeV�2, mZ = 91.1876 GeV,
�Z = 2.4952 GeV, mW = 80.379 GeV, �W = 2.091 GeV. In the case of W production, we use
the following CKM matrix elements: Vud = 0.97427, Vus = 0.2253, Vub = 0.00351, Vcd = 0.2252,
Vcs = 0.97344, Vcb = 0.0412. We work with Nf = 5 massless quarks and we use mtop = 173 GeV
for the top-loop mediated singlet contributions. Our calculation implements the leptonic decays
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+
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�, W± ! l⌫ and we include the e↵ects of the Z/�

⇤ interference and of the finite
widths of the W and Z boson with the corresponding spin correlations and the full dependence
on the kinematical variables of final state leptons. This allows us to take into account the typi-
cal kinematical cuts on final state leptons that are considered in the experimental analysis. The
resummed calculation at fixed lepton momenta requires a qT -recoil procedure. We implement the
general procedure described in Ref. [17] which is equivalent to compute the Born level distribution
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(0) of Eq. (8) in the Collins–Soper rest frame [50].

As for the non-perturbative (NP) e↵ects at very small transverse momenta we introduced, in
the conjugated b-space, a NP form factor of the form [16]
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The variable b? is also used to regularize the perturbative form factor at very large value of b
(b⇠> 1/⇤QCD, where ⇤QCD is the scale of the Landau pole of the perturbative running coupling
↵S(q2)) which correspond to very small values of qT (qT ⇠<⇤QCD) through the so-called ‘b? pre-
scription’ [5, 51] which consist in the freezing of the integration over b below the upper limit blim
through the replacement b ! b?. An alternative regularization procedure of the Landau singular-
ity, which have also been implemented in the DYTurbo numerical program, is the so-called Minimal
Prescription [52–54].

We have thus considered the production of l+l� pairs from Z/�
⇤ decay at the LHC (
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s =

13TeV) with the following fiducial cuts: the leptons are required to have transverse momentum

2

For the non-perturbative (NP) effects at very small transverse momenta we introduced, in the conjugated b-
space, a NP form factor of the form

Collins, Rogers [2015]

Other choices available in the code
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