# Precise QCD+QED resummed predictions 

## For the Drell-Yan process



Vniversitat (B) València

## Outline

## Precise resummed QCD+QED predictions

- Motivation
- Brief TH intro
- QCD resummation at N4LLa [DYTurbo]
[2303.12781, 2202.10343, 2111.14509, 2103.04974, 1910.07049]
- QED+QCD resummation at NLL [DYqT]
[2302.05403, 1805.11948]
- Outlook


## Motivation

## Drell-Yan process

- Standard candle for precision measurements and theory at the LHC
- Detector calibration
- Extraction of PDFs
- Precise measurement of the strong coupling
- Precise measurement and determination of MW




## Motivation

## Drell-Yan process

- Standard candle for precision measurements and theory at the LHC
- Detector calibration
- Extraction of PDFs
- Precise measurement of the strong coupling
- Precise measurement and determination of MW

Data at small transverse

## Motivation

## Drell-Yan process

- Standard candle for precision measurements and theory at the LHC
- Detector calibration
- Extraction of PDFs
- Precise measurement of the strong coupling
- Precise measurement and determination of MW

Data at small transverse momentum is very relevant

# QCD qT resummation at N4LLa <br> [DYTurbo] 

## Transverse momentum resummation

 up to N4LL+N4LO accuracyCamarda, LC, Ferrera [2023]

$$
h_{1}+h_{2} \rightarrow V+X \rightarrow l_{3}+l_{4}+X
$$



$$
\frac{d \sigma_{h_{1} h_{2} \rightarrow l_{3} l_{4}}}{d^{2} \mathbf{q}_{\mathbf{T}} d M^{2} d y d \boldsymbol{\Omega}}\left(\mathbf{q}_{\mathbf{T}}, M^{2}, y, s, \boldsymbol{\Omega}\right)=\sum_{a_{1}, a_{2}} \int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} f_{a_{1} / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{a_{2} / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \frac{d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}}{d^{2} \mathbf{q}_{\mathbf{T}} d M^{2} d \hat{y} d \boldsymbol{\Omega}}
$$

- $f_{a / h_{1}}\left(x_{1}, \mu_{F}^{2}\right)$ : Non perturbative universal parton densities (PDFs), $\mu \mathrm{F} \sim \mathrm{M}$.
- $\hat{\sigma}_{\mathrm{ab}}$ : Hard scattering cross section. Process dependent, calculable with a perturbative expansion in the strong coupling $\mathrm{as}_{\mathrm{s}}(\mathrm{M})(\mathrm{M} \gg$ QcD $\sim 1 \mathrm{GeV})$.
- This framework relies in the QCD factorization property of the cross sections

Collins, Soper, Sterman [1988]
Aybat, Sterman [2008]

## Transverse momentum resummation

 up to N4LL+N4LO accuracyCamarda, LC, Ferrera [2023]

$$
h_{1}+h_{2} \rightarrow V+X \rightarrow l_{3}+l_{4}+X
$$



$$
\frac{d \sigma_{h_{1} h_{2} \rightarrow l_{3} l_{4}}}{d^{2} \mathbf{q}_{\mathbf{T}} d M^{2} d y d \boldsymbol{\Omega}}\left(\mathbf{q}_{\mathbf{T}}, M^{2}, y, s, \boldsymbol{\Omega}\right)=\sum_{a_{1}, a_{2}} \int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} f_{a_{1} / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{a_{2} / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \frac{d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}}{d^{2} \mathbf{q}_{\mathbf{T}} d M^{2} d \hat{y} d \boldsymbol{\Omega}}
$$

- $f_{a / h_{1}}\left(x_{1}, \mu_{F}^{2}\right)$ : Non perturbative universal parton densities (PDFs), $\mu \mathrm{F} \sim \mathrm{M}$.
- $\hat{\sigma}_{\mathrm{ab}}$ : Hard scattering cross section. Process dependent, calculable with a perturbative expansion in the strong coupling $\mathrm{as}_{\mathrm{s}}(\mathrm{M})(\mathrm{M} \gg$ QcD $\sim 1 \mathrm{GeV})$.
- This framework relies in the QCD factorization property of the cross sections

Collins, Soper, Sterman [1988]
Aybat, Sterman [2008]
Beware! violation of strict collinear factorization beyond N3LO (two loop amplitudes with 5 external legs and $n \geq 4$ QCD partons)

## Transverse momentum resummation

## up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$
\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}\right]=\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\text {res. }}\right]+\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(fin.) }}\right]
$$

$\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(res. }}\right]=\sum_{b_{1}, b_{2}=q, \bar{q}} \frac{d \hat{\sigma}_{b_{1} b_{2} \rightarrow l_{3} l_{4}}^{(0)}}{d \boldsymbol{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}, b_{1} b_{2} \rightarrow V}\left(b, M, \hat{y}, \hat{s} ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)$


Bozzi, Catani, de Florian, Grazzini [2005] Bozzi, Catani, de Florian, Ferrera, Grazzini [2011] Catani, de Florian, Ferrera, Grazzini [2015] $\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}$

$$
\begin{aligned}
\mathcal{H}_{V}\left(\alpha_{S}\right) & =H_{V}\left(\alpha_{S}\right) C\left(\alpha_{S}\right) C\left(\alpha_{S}\right) \\
\mathcal{H}_{V}\left(\alpha_{S}\right) & =1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} \mathcal{H}_{V}^{(n)} \\
H_{V}\left(\alpha_{S}\right) & =1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} H_{V}^{(n)} \\
C\left(\alpha_{S}\right) & =1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} C^{(n)}
\end{aligned}
$$

## Transverse momentum resummation

## up to N4LL+N4LO accuracy

Camarda, LC, Ferrera [2023]

The cross section can be decomposed as

$\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}$
Hard-virtual factor

$$
\begin{aligned}
\mathcal{H}_{V}\left(\alpha_{S}\right) & =H_{V}\left(\alpha_{S}\right) C\left(\alpha_{S}\right)_{0} C\left(\alpha_{S}\right) \quad \text { Sudakov } \\
\mathcal{H}_{V}\left(\alpha_{S}\right) & =1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} \mathcal{H}_{V}^{(n)} \\
H_{V}\left(\alpha_{S}\right) & =1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} H_{V}^{(n)} \\
C\left(\alpha_{S}\right) & =1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} C^{(n)}
\end{aligned}
$$

## Transverse momentum resummation

## up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$
\begin{gathered}
{\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}\right]=\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{res})}\right]+\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(fin. }}\right]} \\
{\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{res} .)}\right]=\sum_{b_{1}, b_{2}=q, \bar{q}} \frac{d \hat{\sigma}_{b_{1} b_{2} \rightarrow l_{3} l_{4}}^{(0)}}{d \Omega} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}, b_{1} b_{2} \rightarrow V}\left(b, M, \hat{y}, \hat{s} ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)} \\
\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\} \\
\mathcal{H}_{V}\left(\alpha_{S}\right)=H_{V}\left(\alpha_{S}\right) C\left(\alpha_{S}\right) C\left(\alpha_{S}\right) \\
\mathcal{H}_{V}\left(\alpha_{S}\right)=1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} \mathcal{H}_{V}^{(n)} \\
H_{V}\left(\alpha_{S}\right)=1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} H_{V}^{(n)} \\
C\left(\alpha_{S}\right)=1+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} C^{(n)}
\end{gathered}
$$



Camarda, LC, Ferrera [2023]

We are interested in the impact of the resummation

$$
L \equiv \ln \left(Q^{2} b^{2} / b_{0}^{2}\right)
$$

## Transverse momentum resummation

## up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$
\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}\right]=\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\text {res. }}\right]+\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(fin.) }}\right]
$$

$\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\text {res. }}\right]=\sum_{b_{1}, b_{2}=q, \bar{q}} \frac{d \hat{\sigma}_{\sigma_{1} b_{1} \rightarrow l_{3} l_{4}}^{(0)}}{d \Omega} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}, b_{1} b_{2} \rightarrow V}\left(b, M, \hat{y}, \hat{s} ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)$
$\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}$

$$
\begin{aligned}
& \mathcal{H}_{V}\left(\alpha_{S}\right)=H_{V}\left(\alpha_{S}\right) C\left(\alpha_{S}\right) C\left(\alpha_{S}\right) \\
\mathcal{H}_{V}^{(1)}= & H_{V}^{(1)}+C^{(1)}+C^{(1)}, \\
\mathcal{H}_{V}^{(2)}= & H_{V}^{(2)}+C^{(2)}+C^{(2)}+H_{V}^{(1)}\left(C^{(1)}+C^{(1)}\right)+C^{(1)} C^{(1)}, \\
\mathcal{H}_{V}^{(3)}= & H_{V}^{(3)}+C^{(3)}+C^{(3)}+H_{V}^{(2)}\left(C^{(1)}+C^{(1)}\right)+H_{V}^{(1)}\left(C^{(2)}+C^{(2)}+C^{(1)} C^{(1)}\right) \\
+ & C^{(2)} C^{(1)}+C^{(2)} C^{(1)}, \\
\mathcal{H}_{V}^{(4)}= & H_{V}^{(4)}+C^{(4)}+C^{(4)}+H_{V}^{(3)}\left(C^{(1)}+C^{(1)}\right)+H_{V}^{(2)}\left(C^{(2)}+C^{(2)}+C^{(1)} C^{(1)}\right) \\
+ & H_{V}^{(1)}\left(C^{(3)}+C^{(3)}+C^{(2)} C^{(1)}+C^{(2)} C^{(1)}\right)+C^{(3)} C^{(1)}+C^{(3)} C^{(1)}+C^{(2)} C^{(2)}
\end{aligned}
$$

## Transverse momentum resummation

## up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$
\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}\right]=\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\text {res. })}\right]+\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\text {fin. }}\right]
$$

Camarda, LC, Ferrera [2023]
$\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(res.) }}\right]=\sum_{b_{1}, b_{2}=q, \bar{q}} \frac{d \hat{\sigma}_{b_{1} b_{2} \rightarrow l_{3} l_{4}}^{(0)}}{d \boldsymbol{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}, b_{1} b_{2} \rightarrow V}\left(b, M, \hat{y}, \hat{s} ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)$


$$
\begin{aligned}
& \mathcal{H}_{V}^{(1)}=H_{V}^{(1)}+C^{(1)}+C^{(1)}, \quad \text { Collinear coefficient functions } \\
& \mathcal{H}_{V}^{(2)}=H_{V}^{(2)}+C^{(2)}+C^{(2)}+H_{V}^{(1)}\left(C^{(1)}+C^{(1)}\right)+C^{(1)} C^{(1)} \\
& \mathcal{H}_{V}^{(3)}=H_{V}^{(3)}+C^{(3)}+C^{(3)}+H_{V}^{(2)}\left(C^{(1)}+C^{(1)}\right)+H_{V}^{(1)}\left(C^{(2)}+C^{(2)}+C^{(1)} C^{(1)}\right) \\
& \pm C^{(2)} C^{(1)}+C^{(2)} C^{(1)}, \\
& \mathcal{H}_{V}^{(4)}\left.=H_{V}^{(4)}+C^{(4)}+C^{(4)}\right)+H_{V}^{(3)}\left(C^{(1)}+C^{(1)}\right)+H_{V}^{(2)}\left(C^{(2)}+C^{(2)}+C^{(1)} C^{(1)}\right) \\
& H_{V}^{(1)}\left(C^{(3)}+C^{(3)}+C^{(2)} C^{(1)}+C^{(2)} C^{(1)}\right)+C^{(3)} C^{(1)}+C^{(3)} C^{(1)}+C^{(2)} C^{(2)}
\end{aligned}
$$

## Transverse momentum resummation

## up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$
\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}\right]=\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{res} .)}\right]+\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{fin} .)}\right]
$$

$\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(res.) }}\right]=\sum_{b_{1}, b_{2}=q, \bar{q}} \frac{d \hat{\sigma}_{b_{1} b_{2} \rightarrow l_{3} l_{4}}^{(0)}}{d \boldsymbol{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}, b_{1} b_{2} \rightarrow V}\left(b, M, \hat{y}, \hat{s} ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)$
$\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}$

Resummation scheme

$$
\mathcal{H}_{V}\left(\alpha_{S}\right)=H_{V}\left(\alpha_{S}\right) C\left(\alpha_{S}\right) C\left(\alpha_{S}\right)
$$

$\delta(1-z)$ contribution requires the definition of subtraction operators I at N4LO $\rightarrow$ we postpone this topic to the independent statement!!!!

Camarda, LC, Ferrera [2023]


$$
\begin{aligned}
\mathcal{H}_{V}^{(1)} & =H_{V}^{(1)}+C^{(1)}+C^{(1)} \\
\mathcal{H}_{V}^{(2)} & =H_{V}^{(2)}+C^{(2)}+C^{(2)}+H_{V}^{(1)}\left(C^{(1)}+C^{(1)}\right)+C^{(1)} C^{(1)}, \\
\mathcal{H}_{V}^{(3)} & =H_{V}^{(3)}+C^{(3)}+C^{(3)}+H_{V}^{(2)}\left(C^{(1)}+C^{(1)}\right)+H_{V}^{(1)}\left(C^{(2)}+C^{(2)}+C^{(1)} C^{(1)}\right) \\
& +C^{(2)} C^{(1)}+C^{(2)} C^{(1)}, \\
\mathcal{H}_{V}^{(4)} & =H_{V}^{(4)}+C^{(4)}+C^{(4)}+H_{V}^{(3)}\left(C^{(1)}+C^{(1)}\right)+H_{V}^{(2)}\left(C^{(2)}+C^{(2)}+C^{(1)} C^{(1)}\right)
\end{aligned}
$$

discussion session

Non $\delta(1-z)$ contribution:

## Transverse momentum resummation

## up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$
\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}\right]=\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\text {res. })}\right]+\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{fin} .)}\right]
$$

$\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(res.) }}\right]=\sum_{b_{1}, b_{2}=q, \bar{q}} \frac{d \hat{\sigma}_{b_{1} b_{2} \rightarrow l_{3} l_{4}}^{(0)}}{d \boldsymbol{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}, b_{1} b_{2} \rightarrow V}\left(b, M, \hat{y}, \hat{s} ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)$
$\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}$

$$
\mathcal{H}_{V}\left(\alpha_{S}\right)=H_{V}\left(\alpha_{S}\right) C\left(\alpha_{S}\right) C\left(\alpha_{S}\right)
$$

The $\delta(1-z)$ contribution can be computed from the four-loop quark form factor

$$
\begin{aligned}
\mathcal{H}_{V}^{(1)} & =H_{V}^{(1)}+C^{(1)}+C^{(1)}, \quad \text { Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser [2022] } \\
\mathcal{H}_{V}^{(2)} & =H_{V}^{(2)}+C^{(2)}+C^{(2)}+H_{V}^{(1)}\left(C^{(1)}+C^{(1)}\right)+C^{(1)} C^{(1)}, \\
\mathcal{H}_{V}^{(3)} & =H_{V}^{(3)}+C^{(3)}+C^{(3)}+H_{V}^{(2)}\left(C^{(1)}+C^{(1)}\right)+H_{V}^{(1)}\left(C^{(2)}+C^{(2)}+C^{(1)} C^{(1)}\right) \\
& +C^{(2)} C^{(1)}+C^{(2)} C^{(1)}, \\
\mathcal{H}_{V}^{(4)} & =H_{V}^{(4)}+C^{(4)}+C^{(4)}+H_{V}^{(3)}\left(C^{(1)}+C^{(1)}\right)+H_{V}^{(2)}\left(C^{(2)}+C^{(2)}+C^{(1)} C^{(1)}\right) \\
& +H_{V}^{(1)}\left(C^{(3)}+C^{(3)}+C^{(2)} C^{(1)}+C^{(2)} C^{(1)}\right)+C^{(3)} C^{(1)}+C^{(3)} C^{(1)}+C^{(2)} C^{(2)}
\end{aligned}
$$

## Transverse momentum resummation

## up to N4LL+N4LO accuracy

$\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}$

$$
\begin{aligned}
\mathcal{G}\left(\alpha_{S}, L\right) & =-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}}\left[A\left(\alpha_{S}\left(q^{2}\right)\right) \ln \frac{M^{2}}{q^{2}}+\widetilde{B}\left(\alpha_{S}\left(q^{2}\right)\right)\right] \\
& =L g^{(1)}\left(\alpha_{S} L\right)+g^{(2)}\left(\alpha_{S} L\right)+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} g^{(n+2)}\left(\alpha_{S} L\right)
\end{aligned}
$$

$g(n)$ controls and resums the $\alpha_{S} L^{k}(k \geq 1)$ logarithmic terms

$$
\begin{gathered}
\widetilde{B}\left(\alpha_{S}\right)=B\left(\alpha_{S}\right)+2 \beta\left(\alpha_{S}\right) \frac{d \ln C\left(\alpha_{S}\right)}{d \ln \alpha_{S}}+2 \gamma\left(\alpha_{S}\right) \\
\lambda=\frac{1}{\pi} \beta_{0} \alpha_{S}\left(\mu_{R}^{2}\right) L, \quad \bar{B}^{(n)}=\widetilde{B}^{(n)}+A^{(n)} \ln \frac{M^{2}}{Q^{2}}
\end{gathered}
$$

- At N4LL we need the resummation coefficients
- A5 : 1-3•10-3 relative uncertainty
- B4 : negligible uncertainty
- C4:1-2•10-3 relative uncertainty
- $\quad \gamma 4$ singlet : 1-3•10-3 relative uncertainty (non-singlet negligible)
$g^{(5)}\left(\alpha_{S} L\right)=-\frac{A^{(5)}}{12 \beta_{0}^{2}} \frac{\lambda^{2}\left(6-4 \lambda+\lambda^{2}\right)}{(1-\lambda)^{4}}-\frac{\bar{B}^{(4)}}{3 \beta_{0}} \frac{\lambda\left(3-3 \lambda+\lambda^{2}\right)}{(1-\lambda)^{3}}$
$+\frac{A^{(4)}}{3 \beta_{0}}\left(\frac{\beta_{1}}{\beta_{0}^{2}}\left[\frac{\lambda\left(-12+42 \lambda-28 \lambda^{2}+7 \lambda^{3}\right)}{12(1-\lambda)^{4}}-\frac{1-4 \lambda}{(1-\lambda)^{4}} \ln (1-\lambda)\right]\right.$
$\left.+\frac{\lambda^{2}\left(6-4 \lambda+\lambda^{2}\right)}{(1-\lambda)^{4}} \ln \frac{Q^{2}}{\mu_{R}^{2}}\right)+\bar{B}^{(3)}\left(\frac{\beta_{1}}{\beta_{0}^{2}}\left[\frac{\lambda\left(3-3 \lambda+\lambda^{2}\right)}{3(1-\lambda)^{3}}+\frac{\ln (1-\lambda)}{(1-\lambda)^{3}}\right]\right.$
$\left.+\frac{\lambda\left(3-3 \lambda+\lambda^{2}\right)}{(1-\lambda)^{3}} \ln \frac{Q^{2}}{\mu_{R}^{2}}\right)+A^{(3)}\left(-\frac{\beta_{2}}{4 \beta_{0}^{3}} \frac{\lambda^{3}(4-\lambda)}{(1-\lambda)^{4}}\right.$
$+\frac{\beta_{1}^{2}}{\beta_{0}^{4}}\left[\frac{\lambda\left(12-24 \lambda+52 \lambda^{2}-13 \lambda^{3}\right)}{36(1-\lambda)^{4}}+\frac{\ln (1-\lambda)}{3(1-\lambda)^{3}}+\frac{1-4 \lambda}{2(1-\lambda)^{4}} \ln ^{2}(1-\lambda)\right]$ $+\frac{\beta_{1}}{\beta_{0}^{2}}\left[\frac{\lambda\left(3-3 \lambda+\lambda^{2}\right)}{3(1-\lambda)^{3}}+\frac{1-4 \lambda}{(1-\lambda)^{4}} \ln (1-\lambda)\right] \ln \frac{Q^{2}}{\mu_{R}^{2}}$
$\left.-\frac{\lambda^{2}\left(6-4 \lambda+\lambda^{2}\right)}{2(1-\lambda)^{4}} \ln ^{2} \frac{Q^{2}}{\mu_{R}^{2}}\right)+\bar{B}^{(2)}\left(-\frac{\beta_{2}}{3 \beta_{0}^{2}} \frac{(3-\lambda) \lambda^{2}}{(1-\lambda)^{3}}+\frac{\beta_{1}^{2}}{\beta_{0}^{3}}\left(\frac{(3-\lambda) \lambda^{2}}{3(1-\lambda)^{3}}\right.\right.$
$\left.\left.-\frac{\ln ^{2}(1-\lambda)}{(1-\lambda)^{3}}\right)-\frac{2 \beta_{1}}{\beta_{0}} \frac{\ln (1-\lambda)}{(1-\lambda)^{3}} \ln \frac{Q^{2}}{\mu_{R}^{2}}-\beta_{0} \frac{\lambda\left(3-3 \lambda+\lambda^{2}\right)}{(1-\lambda)^{3}} \ln ^{2} \frac{Q^{2}}{\mu_{R}^{2}}\right)$
$+A^{(2)}\left(-\frac{\beta_{3}}{12 \beta_{0}^{3}} \frac{\lambda^{3}(8-5 \lambda)}{(1-\lambda)^{4}}+\frac{\beta_{1} \beta_{2}}{3 \beta_{0}^{4}}\left(\frac{\lambda\left(6-21 \lambda+44 \lambda^{2}-20 \lambda^{3}\right)}{6(1-\lambda)^{4}}\right.\right.$
$\left.+\frac{1-4 \lambda+9 \lambda^{2}}{(1-\lambda)^{4}} \ln (1-\lambda)\right)+\frac{\beta_{1}^{3}}{\beta_{0}^{5}}\left(\frac{\lambda\left(-12+42 \lambda-64 \lambda^{2}+25 \lambda^{3}\right)}{36(1-\lambda)^{4}}\right.$
$\left.-\frac{\left(1-4 \lambda+9 \lambda^{2}\right)}{3(1-\lambda)^{4}} \ln (1-\lambda)-\frac{\lambda}{(1-\lambda)^{4}} \ln ^{2}(1-\lambda)-\frac{1-4 \lambda}{3(1-\lambda)^{4}} \ln ^{3}(1-\lambda)\right)$
$+\left[\frac{\beta_{2}}{3 \beta_{0}^{2}} \frac{\left(3+4 \lambda-\lambda^{2}\right) \lambda^{2}}{(1-\lambda)^{4}}+\frac{\beta_{1}^{2}}{\beta_{0}^{3}}\left(-\frac{\left(3+4 \lambda-\lambda^{2}\right) \lambda^{2}}{3(1-\lambda)^{4}}-\frac{2 \lambda}{(1-\lambda)^{4}} \ln (1-\lambda)\right.\right.$ $\left.\left.-\frac{1-4 \lambda}{(1-\lambda)^{4}} \ln ^{2}(1-\lambda)\right)\right] \ln \frac{Q^{2}}{\mu_{R}^{2}}+\frac{\beta_{1}}{\beta_{0}}\left[-\frac{\lambda}{(1-\lambda)^{4}}-\frac{1-4 \lambda}{(1-\lambda)^{4}} \ln (1-\lambda)\right] \ln ^{2} \frac{Q^{2}}{\mu_{R}^{2}}$ $\left.+\frac{\beta_{0}}{3} \frac{\lambda^{2}\left(6-4 \lambda+\lambda^{2}\right)}{(1-\lambda)^{4}} \ln ^{3} \frac{Q^{2}}{\mu_{R}^{2}}\right)+\bar{B}^{(1)}\left(-\frac{\beta_{3}}{6 \beta_{0}^{2}} \frac{(3-2 \lambda) \lambda^{2}}{(1-\lambda)^{3}}+\frac{\beta_{1} \beta_{2}}{\beta_{0}^{3}}\left(\frac{(3-2 \lambda) \lambda^{2}}{3(1-\lambda)^{3}}\right.\right.$ $\left.+\frac{\lambda}{(1-\lambda)^{3}} \ln (1-\lambda)\right)+\frac{\beta_{1}^{3}}{\beta_{0}^{4}}\left(-\frac{(3-2 \lambda) \lambda^{2}}{6(1-\lambda)^{3}}-\frac{\lambda}{(1-\lambda)^{3}} \ln (1-\lambda)-\frac{\ln ^{2}(1-\lambda)}{2(1-\lambda)^{3}}\right.$
$\left.+\frac{\ln ^{3}(1-\lambda)}{3(1-\lambda)^{3}}\right)+\left[\frac{\beta_{2}}{\beta_{0}} \frac{\lambda}{(1-\lambda)^{3}}+\frac{\beta_{1}^{2}}{\beta_{0}^{2}}\left(-\frac{\lambda}{(1-\lambda)^{3}}-\frac{\ln (1-\lambda)}{(1-\lambda)^{3}}+\frac{\ln ^{2}(1-\lambda)}{(1-\lambda)^{3}}\right)\right] \ln \frac{Q^{2}}{\mu_{R}^{2}}$
$\left.+\beta_{1}\left[-\frac{\lambda\left(3-3 \lambda+\lambda^{2}\right)}{2(1-\lambda)^{3}}+\frac{\ln (1-\lambda)}{(1-\lambda)^{3}}\right] \ln ^{2} \frac{Q^{2}}{\mu_{R}^{2}}+\beta_{0}^{2} \frac{\lambda\left(3-3 \lambda+\lambda^{2}\right)}{3(1-\lambda)^{3}} \ln ^{3} \frac{Q^{2}}{\mu_{R}^{2}}\right)$
$+A^{(1)}\left(\frac{\beta_{2}^{2}}{3 \beta_{0}^{4}}\left(\frac{\lambda\left(-12+42 \lambda-52 \lambda^{2}+7 \lambda^{3}\right)}{12(1-\lambda)^{4}}-\ln (1-\lambda)\right)\right.$
$\begin{aligned}+ & \frac{\beta_{4}}{3 \beta_{0}^{3}} \\ & \left(\frac{\lambda\left(12-42 \lambda+40 \lambda^{2}-13 \lambda^{3}\right)}{12(1-\lambda)^{4}}+\ln (1-\lambda)\right)+\frac{\beta_{1} \beta_{3}}{6 \beta_{0}^{4}}\left(-\frac{\lambda(2-5 \lambda)}{3} \frac{\left(3-3 \lambda+\lambda^{2}\right)}{(1-\lambda)^{4}}\right.\end{aligned}$ $\left.-\frac{2-8 \lambda+9 \lambda^{2}-10 \lambda^{3}+4 \lambda^{4}}{(1-\lambda)^{4}} \ln (1-\lambda)\right)+\frac{\beta_{1}^{2} \beta_{2}}{\beta_{0}^{5}}\left(\frac{\lambda\left(12-42 \lambda+52 \lambda^{2}+5 \lambda^{3}\right)}{36(1-\lambda)^{4}}\right.$ $\left.-\frac{\left(-1+3 \lambda-3 \lambda^{2}+3 \lambda^{3}\right)}{3(1-\lambda)^{3}} \ln (1-\lambda)-\frac{3 \lambda^{2}}{2(1-\lambda)^{4}} \ln ^{2}(1-\lambda)\right)+\frac{\beta_{1}^{4}}{2 \beta_{0}^{6}}\left(-\frac{\lambda^{3}(2+3 \lambda)}{6(1-\lambda)^{4}}\right.$
$+\frac{\lambda^{2}\left(-3+2 \lambda-2 \lambda^{2}\right)}{3(1-\lambda)^{4}} \ln (1-\lambda)-\frac{(1-3 \lambda) \lambda}{(1-\lambda)^{4}} \ln ^{2}(1-\lambda)-\frac{1-6 \lambda}{3(1-\lambda)^{4}} \ln ^{3}(1-\lambda)$
$\left.+\frac{1-4 \lambda}{6(1-\lambda)^{4}} \ln ^{4}(1-\lambda)\right)+\left[-\frac{\beta_{3}}{6 \beta_{0}^{2}} \frac{\lambda^{2}\left(-3-2 \lambda+2 \lambda^{2}\right)}{(1-\lambda)^{4}}-\frac{\beta_{1} \beta_{2}}{\beta_{0}^{3}}\left(\frac{2 \lambda^{3}}{3(1-\lambda)^{3}}+\frac{3 \lambda^{2}}{(1-\lambda)^{4}} \ln (1-\lambda)\right)\right.$
$+\frac{\beta_{1}^{3}}{\beta_{0}^{4}}\left(-\frac{\lambda^{2}\left(3-2 \lambda+2 \lambda^{2}\right)}{6(1-\lambda)^{4}}-\frac{(1-3 \lambda) \lambda}{(1-\lambda)^{4}} \ln (1-\lambda)-\frac{1-6 \lambda}{2(1-\lambda)^{4}} \ln ^{2}(1-\lambda)\right.$
$\left.\left.+\frac{1-4 \lambda}{3(1-\lambda)^{4}} \ln ^{3}(1-\lambda)\right)\right] \ln \frac{Q^{2}}{\mu_{R}^{2}}+\left[-\frac{3 \beta_{2}}{2 \beta_{0}} \frac{\lambda^{2}}{(1-\lambda)^{4}}+\frac{\beta_{1}^{2}}{2 \beta_{0}^{2}}\left(-\frac{(1-3 \lambda) \lambda}{(1-\lambda)^{4}}-\frac{(1-6 \lambda)}{(1-\lambda)^{4}} \ln (1-\lambda)\right.\right.$
$\left.\left.+\frac{(1-4 \lambda)}{(1-\lambda)^{4}} \ln ^{2}(1-\lambda)\right)\right] \ln ^{2} \frac{Q^{2}}{\mu_{R}^{2}}+\frac{\beta_{1}}{3}\left[\frac{\lambda\left(2+6 \lambda-4 \lambda^{2}+\lambda^{3}\right)}{2(1-\lambda)^{4}}+\frac{1-4 \lambda}{(1-\lambda)^{4}} \ln (1-\lambda)\right] \ln ^{3} \frac{Q^{2}}{\mu_{R}^{2}}$
$\left.-\frac{\beta_{0}^{2}}{12} \frac{\left(6-4 \lambda+\lambda^{2}\right) \lambda^{2}}{(1-\lambda)^{4}} \ln ^{4} \frac{Q^{2}}{\mu_{R}^{2}}\right), \quad g(5)$ still fits in a slide!


## Transverse momentum resummation

## up to N4LL+N4LO accuracy

$$
\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}
$$

$$
\begin{aligned}
\mathcal{G}\left(\alpha_{S}, L\right) & =-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}}\left[A\left(\alpha_{S}\left(q^{2}\right)\right) \ln \frac{M^{2}}{q^{2}}+\widetilde{B}\left(\alpha_{S}\left(q^{2}\right)\right)\right] \\
& =L g^{(1)}\left(\alpha_{S} L\right)+g^{(2)}\left(\alpha_{S} L\right)+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} g^{(n+2)}\left(\alpha_{S} L\right)
\end{aligned}
$$

$g(n)$ controls and resums the $\alpha_{S} L^{k}(k \geq 1)$ logarithmic terms

$$
\begin{gathered}
\widetilde{B}\left(\alpha_{S}\right)=B\left(\alpha_{S}\right)+2 \beta\left(\alpha_{S}\right) \frac{d \ln C\left(\alpha_{S}\right)}{d \ln \alpha_{S}}+2 \gamma\left(\alpha_{S}\right) \\
\lambda=\frac{1}{\pi} \beta_{0} \alpha_{S}\left(\mu_{R}^{2}\right) L, \quad \bar{B}^{(n)}=\widetilde{B}^{(n)}+A^{(n)} \ln \frac{M^{2}}{Q^{2}}
\end{gathered}
$$

- At N4LL we need the resummation coefficients
- A5 1-3•10-3 relative uncertainty
- B4 : negligible uncertainty
- C4:1-2•10-3 relative uncertainty
- $\quad \gamma 4$ singlet : $1-3 \cdot 10^{-3}$ relative uncertainty (non-singlet negligible)



## Transverse momentum resummation

## up to N4LL+N4LO accuracy

$$
\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}
$$

$$
\begin{aligned}
\mathcal{G}\left(\alpha_{S}, L\right) & =-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}}\left[A\left(\alpha_{S}\left(q^{2}\right)\right) \ln \frac{M^{2}}{q^{2}}+\widetilde{B}\left(\alpha_{S}\left(q^{2}\right)\right)\right] \\
& =L g^{(1)}\left(\alpha_{S} L\right)+g^{(2)}\left(\alpha_{S} L\right)+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} g^{(n+2)}\left(\alpha_{S} L\right)
\end{aligned}
$$

$g(n)$ controls and resums the $\alpha_{S} L^{k}(k \geq 1)$ logarithmic terms

$$
\begin{gathered}
\widetilde{B}\left(\alpha_{S}\right)=B\left(\alpha_{S}\right)+2 \beta\left(\alpha_{S}\right) \frac{d \ln C\left(\alpha_{S}\right)}{d \ln \alpha_{S}}+2 \gamma\left(\alpha_{S}\right) \\
\lambda=\frac{1}{\pi} \beta_{0} \alpha_{S}\left(\mu_{R}^{2}\right) L, \quad \bar{B}^{(n)}=\widetilde{B}^{(n)}+A^{(n)} \ln \frac{M^{2}}{Q^{2}}
\end{gathered}
$$

- At N4LL we need the resummation coefficients
- A5 1-3•10-3 relative uncertainty
- B4 negligible uncertainty
- C4: 1-2•10-3 relative uncertainty
- $\quad \gamma 4$ singlet : $1-3 \cdot 10^{-3}$ relative uncertainty (non-singlet negligible)



## Transverse momentum resummation

## up to N4LL+N4LO accuracy

$$
\begin{gathered}
\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\} \\
\begin{aligned}
\mathcal{G}\left(\alpha_{S}, L\right) & =-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}}\left[A\left(\alpha_{S}\left(q^{2}\right)\right) \ln \frac{M^{2}}{q^{2}}+\widetilde{B}\left(\alpha_{S}\left(q^{2}\right)\right)\right] \\
& =L g^{(1)}\left(\alpha_{S} L\right)+g^{(2)}\left(\alpha_{S} L\right)+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} g^{(n+2)}\left(\alpha_{S} L\right)
\end{aligned}
\end{gathered}
$$

$g(n)$ controls and resums the $\alpha_{S} L^{k}(k \geq 1)$ logarithmic terms

$$
\begin{gathered}
\widetilde{B}\left(\alpha_{S}\right)=B\left(\alpha_{S}\right)+2 \beta\left(\alpha_{S}\right) \frac{d \ln C\left(\alpha_{S}\right)}{d \ln \alpha_{S}}+2 \gamma\left(\alpha_{S}\right) \\
\lambda=\frac{1}{\pi} \beta_{0} \alpha_{S}\left(\mu_{R}^{2}\right) L, \quad \bar{B}^{(n)}=\widetilde{B}^{(n)}+A^{(n)} \ln \frac{M^{2}}{Q^{2}}
\end{gathered}
$$

- At N4LL we need the resummation coefficients
- A5. 1-3•10-3 relative uncertainty
- B4. negligible uncertainty
- C4 : 1-2•10-3 relative uncertainty
- $\gamma 4$ singlet : $1-3 \cdot 10^{-3}$ relative uncertainty (non-singlet negligible)


## Transverse momentum resummation

## up to N4LL+N4LO accuracy

$$
\begin{aligned}
& \mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\} \\
& \mathcal{G}\left(\alpha_{S}, L\right)
\end{aligned} \begin{aligned}
& =-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}}\left[A\left(\alpha_{S}\left(q^{2}\right)\right) \ln \frac{M^{2}}{q^{2}}+\widetilde{B}\left(\alpha_{S}\left(q^{2}\right)\right)\right] \\
& \\
& =L g^{(1)}\left(\alpha_{S} L\right)+g^{(2)}\left(\alpha_{S} L\right)+\sum_{n=1}^{\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n} g^{(n+2)}\left(\alpha_{S} L\right)
\end{aligned}
$$

$g(n)$ controls and resums the $\alpha_{S} L^{k}(k \geq 1)$ logarithmic terms

$$
\begin{gathered}
\widetilde{B}\left(\alpha_{S}\right)=B\left(\alpha_{S}\right)+2 \beta\left(\alpha_{S}\right) \frac{d \ln C\left(\alpha_{S}\right)}{d \ln \alpha_{S}}+2 \gamma\left(\alpha_{S}\right) \\
\lambda=\frac{1}{\pi} \beta_{0} \alpha_{S}\left(\mu_{R}^{2}\right) L, \quad \bar{B}^{(n)}=\widetilde{B}^{(n)}+A^{(n)} \ln \frac{M^{2}}{Q^{2}}
\end{gathered}
$$

- At N4LL we need the resummation coefficients
- A5 : $1-3 \cdot 10^{-3}$ relative uncertainty
- B4 : negligible uncertainty
- C4 : 1-2•10-3 relative uncertainty

We rely on the Levin transform assigning 100\% uncertainty $\rightarrow$ We assume that the Levin transform estimates the correct sign and order of magnitude.

- $\quad \gamma 4$ singlet : $1-3 \cdot 10^{-3}$ relative uncertainty (non-singlet negligible)


## Transverse momentum resummation

## up to N4LL+N4LO accuracy

## Anticipating our results



- The uncertainties in the N4LL+N4LO approximation are found to be 5 to 10 times smaller compared to the missing higher order uncertainties estimated through scale variations.
- All "main" channels already present at NNLO : qqbar, qg, gg.
- N4LL is the first order at which all the combination of the channels are opened: $\{q, q b, q p, q b p, g\} \times\{q, q b, q p, q b p, g\}$ (all combinations)


## qт resummation up to N4LLa accuracy <br> Results

The $q T$ spectrum of $Z / Y *$ bosons with lepton selection cuts at the $\mathrm{LHC}(\sqrt{ } \mathrm{s}=13 \mathrm{TeV})$ at various perturbative orders


The order of Altarelli-Parisi evolution in the resummed prediction is equal to the order of the parton densities

- Negligible impact at N3LL and N4LL on the choice $\rightarrow$ we apply this strategy in the next slides
- Scale dependence reduced a factor 2 from N3LL to N4LL $\rightarrow$ N4LL accuracy is at the $1 \%-1.5 \%$


## qт resummation up to N4LLa accuracy <br> Results

The $q T$ spectrum of $Z / Y *$ bosons with lepton selection cuts at the $\mathrm{LHC}(\sqrt{ } \mathrm{s}=13 \mathrm{TeV})$ at various perturbative orders


- Negligible impact at N3LL and N4LL on the choice $\rightarrow$ we apply this strategy in the next slides
- Scale dependence reduced a factor 2 from N3LL to N4LL $\rightarrow$ N4LL accuracy is at the $1 \%-1.5 \%$
- Effect of a finite top-quark mass including the singlet contributions mediated by heavy-quark loops at NNLO and N³LO included
$-0.04 \%$ at NNLO and less than $+0.001 \%$ at N3LO



## qт resummation up to N4LLa accuracy <br> Results

The $\mathrm{q} T$ spectrum of $\mathrm{W}+$ and W - bosons with inclusive leptonic decay at the $\mathrm{LHC}(\sqrt{ } \mathrm{s}=13 \mathrm{TeV})$ at various perturbative orders


The scale variation at N4LLa accuracy is around $\pm 2 \%$ at $\mathrm{qT} \sim 1 \mathrm{GeV}$, then it reduces at $\pm 1 \%$ level at the peak ( $\mathrm{qT} \sim 4 \mathrm{GeV}$ ), it decreases further to $\pm 0.5 \%$ for $\mathrm{qT} \sim 7 \mathrm{GeV}$ and remains below $\pm 1 \%$ level up to $q T \sim 30 \mathrm{GeV}$.

## qт resummation up to N4LLa accuracy <br> Results




OK if the mechanisms in the numerator and denominator are roughly the same
$R\left(q_{T}\right)=\frac{\sigma_{Z}}{\sigma_{W}} \frac{d \sigma_{W}}{d q_{T}} / \frac{d \sigma_{Z}}{d q_{T}}$

- Correlated scale variation
- N4LL very relevant removing uncertainties in the W/Z pT distribution ratio
- However, analysis is not complete : flavour-dependent intrinsic kT, processdependent EW effects


## QED+QCD qT resummation at NLL+NLO

## QED+QCD qT resummation at NLL+NLO <br> Main differences respect to pure QCD case <br> On-shell Z and W production

The cross section can be decomposed as
Catani, Grazzini, Torre [2014]

$$
\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}\right]=\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\text {res. }}\right]+\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(fin.) }}\right]
$$

$\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(res. }}\right]=\sum_{b_{1}, b_{2}=q, \bar{q}} \frac{d \hat{\sigma}_{b_{1} b_{2} \rightarrow l_{3} l_{4}}^{(0)}}{d \boldsymbol{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}, b_{1} b_{2} \rightarrow V}\left(b, M, \hat{y}, \hat{s} ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)$
$\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}$
$L=\log \left(\frac{b^{2} Q^{2}}{b_{0}^{2}}+1\right)$
Here we include the f.o predictions at NLO (QED and QCD) Unitary constraint


- Z on-shell at NLL+NLO: colourless and chargeless final state LC, Ferrera, Sborlini [2018]
(- W on-shell at NLL+NLO: colourless and charged final state $\rightarrow$ New Autieri, LC, Ferrera, Sborlini [2023]

The resummation formalism can be obtained with plain abelianization of the QCD results and it will be not presented in detail here

Naive abelianization of the QCD results does not work. Apart from this fact, the (more involved) abelizanization procedure has to be applied to the QCD resummation for ttbar final state

## QED+QCD qT resummation at NLL+NLO <br> Main differences respect to pure QCD case <br> On-shell Z and W production

The cross section can be decomposed as

$$
\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}\right]=\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{res} .)}\right]+\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{fin} .)}\right]
$$

$\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(res. }}\right]=\sum_{b_{1}, b_{2}=q, \bar{q}} \frac{d \hat{\sigma}_{b_{1} b_{2} \rightarrow l_{3} l_{4}}^{(0)}}{d \boldsymbol{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}, b_{1} b_{2} \rightarrow V}\left(b, M, \hat{y}, \hat{s} ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)$
$\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}$
$L=\log \left(\frac{b^{2} Q^{2}}{b_{0}^{2}}+1\right)$
Here we include the f.o predictions at NLO (QED and QCD) Unitary constraint


- W on-shell at NLL+NLO: colourless and charged final state $\rightarrow$ New Autieri, LC, Ferrera, Sborlini [2023]

$$
\begin{aligned}
\mathcal{G}_{N}^{\prime}(\alpha, L) & =-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}}\left(A^{\prime}\left(\alpha\left(q^{2}\right)\right) \log \left(\frac{M^{2}}{q^{2}}\right)+\widetilde{B}_{N}^{\prime}\left(\alpha\left(q^{2}\right)\right)+D^{\prime}\left(\alpha\left(q^{2}\right)\right)\right) \\
\mathcal{G}_{N}^{\prime}\left(\alpha_{\mathrm{S}}, \alpha, L\right) & =\mathcal{G}_{N}\left(\alpha_{\mathrm{S}}, L\right)+L g^{\prime(1)}(\alpha L)+g_{N}^{\prime(2)}(\alpha L)+\sum_{n=3}^{+\infty}\left(\frac{\alpha}{\pi}\right)^{n-2} g_{N}^{\prime(n)}(\alpha L) \\
& +g^{\prime(1,1)}\left(\alpha_{\mathrm{S}} L, \alpha L\right)+\sum_{\substack{n, m=1 \\
n+m \neq 2}}^{+\infty}\left(\frac{\alpha_{S}}{\pi}\right)^{n-1}\left(\frac{\alpha}{\pi}\right)^{m-1} g_{N}^{\prime(n, m)}\left(\alpha_{\mathrm{S}} L, \alpha L\right)
\end{aligned}
$$

$D^{\prime}(\alpha)=\frac{\alpha}{\pi} D^{\prime(1)}+\sum_{n=2}^{+\infty}\left(\frac{\alpha}{\pi}\right)^{n} D^{\prime(n)}$
New linear logarithmic term
It is specific of charged highmass system production and it is due to QED soft non-collinear (wide angle) radiation from the underlying subprocess

$$
D^{\prime(1)}=-\frac{e_{V}^{2}}{2}
$$

## QED+QCD qT resummation at NLL+NLO <br> Main differences respect to pure QCD case <br> On-shell Z and W production

The cross section can be decomposed as

$$
\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}\right]=\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{res} .)}\right]+\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{fin} .)}\right]
$$

$\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(res. }}\right]=\sum_{b_{1}, b_{2}=q, \bar{q}} \frac{d \hat{\sigma}_{b_{1} b_{2} \rightarrow l_{3} l_{4}}^{(0)}}{d \boldsymbol{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}, b_{1} b_{2} \rightarrow V}\left(b, M, \hat{y}, \hat{s} ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)$
$\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}$
$L=\log \left(\frac{b^{2} Q^{2}}{b_{0}^{2}}+1\right)$
Here we include the f.o predictions at NLO (QED and QCD) Unitary constraint


- W on-shell at NLL+NLO: colourless and charged final state $\rightarrow$ New Autieri, LC, Ferrera, Sborlini [2023]

$$
+\frac{A_{q}^{\prime(1)} \beta_{1}^{\prime}}{\beta_{0}^{\prime 3}}\left(\frac{1}{2} \ln ^{2}\left(1-\lambda^{\prime}\right)+\frac{\ln \left(1-\lambda^{\prime}\right)}{1-\lambda^{\prime}}+\frac{\lambda^{\prime}}{1-\lambda^{\prime}}\right)
$$

$$
\begin{aligned}
& \mathcal{G}_{N}^{\prime}(\alpha, L)=-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}}\left(A^{\prime}\left(\alpha\left(q^{2}\right)\right) \log \left(\frac{M^{2}}{q^{2}}\right)+\widetilde{B}_{N}^{\prime}\left(\alpha\left(q^{2}\right)\right)+D^{\prime}\left(\alpha\left(q^{2}\right)\right)\right) \quad D^{\prime}(\alpha)=\frac{\alpha}{\pi} D^{\prime(1)}+\sum_{n=2}^{+\infty}\left(\frac{\alpha}{\pi}\right)^{n} D^{\prime(n)} \\
& g^{\prime(1)}(\alpha L)=\frac{A_{q}^{(1)}}{\beta_{0}^{\prime}} \frac{\lambda^{\prime}+\ln \left(1-\lambda^{\prime}\right)}{\lambda^{\prime}}, \\
& g^{\prime(1,1)}\left(\alpha_{S} L, \alpha L\right)=\frac{A_{q}^{(1)} \beta_{0,1}}{\beta_{0}^{2} \beta_{0}^{\prime}} h\left(\lambda, \lambda^{\prime}\right)+\frac{A_{q}^{\prime(1)} \beta_{0,1}^{\prime}}{\beta_{0}^{\prime 2} \beta_{0}} h\left(\lambda^{\prime}, \lambda\right) \\
& g_{N}^{\prime(2)}(\alpha L)=\frac{\widetilde{B}_{q, N}^{\prime(1)}}{\beta_{0}^{\prime}} \ln \left(1-\lambda^{\prime}\right)-\frac{A_{q}^{\prime(2)}}{\beta_{0}^{\prime 2}}\left(\frac{\lambda^{\prime}}{1-\lambda^{\prime}}+\ln \left(1-\lambda^{\prime}\right)\right) \\
& h\left(\lambda, \lambda^{\prime}\right)=-\frac{\lambda^{\prime}}{\lambda-\lambda^{\prime}} \ln (1-\lambda)+\ln \left(1-\lambda^{\prime}\right)\left[\frac{\lambda\left(1-\lambda^{\prime}\right)}{(1-\lambda)\left(\lambda-\lambda^{\prime}\right)}+\ln \left(\frac{-\lambda^{\prime}(1-\lambda)}{\lambda-\lambda^{\prime}}\right)\right] \\
& -\operatorname{Li}_{2}\left(\frac{\lambda}{\lambda-\lambda^{\prime}}\right)+\operatorname{Li}_{2}\left(\frac{\lambda\left(1-\lambda^{\prime}\right)}{\lambda-\lambda^{\prime}}\right),
\end{aligned}
$$

## QED+QCD qT resummation at NLL+NLO <br> Main differences respect to pure QCD case <br> On-shell Z and W production

The cross section can be decomposed as

$$
\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}\right]=\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{res} .)}\right]+\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{fin} .)}\right]
$$

$\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(res. }}\right]=\sum_{b_{1}, b_{2}=q, \bar{q}} \frac{d \hat{\sigma}_{b_{1} b_{2} \rightarrow l_{3} l_{4}}^{(0)}}{d \boldsymbol{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}, b_{1} b_{2} \rightarrow V}\left(b, M, \hat{y}, \hat{s} ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)$
$\mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\}$
$L=\log \left(\frac{b^{2} Q^{2}}{b_{0}^{2}}+1\right)$
Here we include the f.o predictions at NLO (QED and QCD) Unitary constraint


- W on-shell at NLL+NLO: colourless and charged final state $\rightarrow$ New Autieri, LC, Ferrera, Sborlini [2023]

$$
\begin{array}{rlrl} 
& \mathcal{G}_{N}^{\prime}(\alpha, L)=-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}}\left(A^{\prime}\left(\alpha\left(q^{2}\right)\right) \log \left(\frac{M^{2}}{q^{2}}\right)+\widetilde{B}_{N}^{\prime}\left(\alpha\left(q^{2}\right)\right)+D^{\prime}\left(\alpha\left(q^{2}\right)\right)\right) \\
A^{\prime(1)}= & \frac{e_{q_{f}}^{2}+e_{\bar{q}_{f^{\prime}}}^{2}}{2}, & N^{(2)} & =3 \sum_{q=1}^{n_{f}} e_{q}^{2}+\sum_{l=1}^{n_{l}} e_{l}^{2}, \\
A^{\prime(2)}=-\frac{5}{9} \frac{e_{q_{f}}^{2}+e_{\bar{q}_{f^{\prime}}}^{2}}{2} N^{(2)}, & B^{\prime(1)} & =-\frac{3}{2} \frac{e_{q_{f}}^{2}+e_{\bar{q}_{f^{\prime}}}^{2}}{2}, \\
\widetilde{B}_{N}^{\prime(1)}=B^{\prime(1)}+\gamma_{q_{f} q_{f}, N}^{\prime(1)}+\gamma_{\bar{q}_{f^{\prime}} \bar{q}_{f^{\prime}}, N}^{\prime(1)}, & \gamma_{q q, N}^{\prime(1)} & =e_{q}^{2}\left(\frac{3}{4}+\frac{1}{2 N(N+1)}-\gamma_{E}-\psi_{0}(N+1)\right) \\
& \gamma_{q \gamma, N}^{\prime(1)} & =\frac{3}{2} e_{q}^{2} \frac{N^{2}+N+2}{N(N+1)(N+2)},
\end{array}
$$

$$
D^{\prime}(\alpha)=\frac{\alpha}{\pi} D^{\prime(1)}+\sum_{n=2}^{+\infty}\left(\frac{\alpha}{\pi}\right)^{n} D^{\prime(n)}
$$

New linear logarithmic term
It is specific of charged highmass system production and it is due to QED soft non-collinear (wide angle) radiation from the underlying subprocess

$$
D^{\prime(1)}=-\frac{e_{V}^{2}}{2}
$$

## QED+QCD qT resummation at Main differences respect to pure QCD case On-shell $\mathbf{Z}$ and $\mathbf{W}$ production

The cross section can be decomposed as

$$
\begin{aligned}
& {\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}\right]=\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\text {res. })}\right]+\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{(\mathrm{fin} .)}\right]} \\
& {\left[d \hat{\sigma}_{a_{1} a_{2} \rightarrow l_{3} l_{4}}^{\text {(res. }}\right]=\sum_{b_{1}, b_{2}=q, \bar{q}} \frac{d \hat{\sigma}_{b_{1} b_{2} \rightarrow l_{3} l_{4}}^{(0)}}{d \boldsymbol{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{d b}{2 \pi} b J_{0}\left(b q_{T}\right) \mathcal{W}_{a_{1} a_{2}, b_{1} b_{2} \rightarrow V}\left(b, M, \hat{y}, \hat{s} ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)} \\
& \mathcal{W}_{V}\left(b, M ; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\mathcal{H}_{V}\left(\alpha_{S} ; M / \mu_{R}, M / \mu_{F}, M / Q\right) \times \exp \left\{\mathcal{G}\left(\alpha_{S}, L ; M / \mu_{R}, M / Q\right)\right\} \\
& \left.h_{1}\left(p_{1}\right) \Longrightarrow \mu_{F}^{2}\right) \\
& \begin{array}{l}
\mathcal{H}_{q_{f} \bar{q}_{f^{\prime} \leftarrow q_{f}} \bar{q}_{f^{\prime}, N}}^{\prime V(1)}=\frac{e_{q_{f}}^{2}+e_{\bar{q}_{f^{\prime}}}^{2}}{2}\left(\frac{1}{N(N+1)}+H^{\prime V(1)}\right) \\
\mathcal{H}_{q_{f} \bar{q}_{f^{\prime} \leftarrow \gamma \bar{q}_{f^{\prime}, N}}^{\prime V(1)}}=\frac{3 e_{q_{f}}^{2}}{(N+1)(N+2)}, \\
\mathcal{H}_{q_{f} \bar{q}_{f^{\prime} \leftarrow q_{f} \gamma, N}^{\prime V(1)}}=\frac{3 e_{\bar{q}_{f^{\prime}}}^{2}}{(N+1)(N+2)}, \quad \text { Originally not include }
\end{array} \\
& \text { We include the full set of one-loop } \\
& \text { EW virtual scattering amplitudes. } \\
& \text { Not only for the W, but for the Z for } \\
& \text { the sake of completeness. }
\end{aligned}
$$

- The hard virtual factor $\mathrm{H}^{\prime} \mathrm{V}$ requires the definition of subtraction operators I, suitable to treat massive and charged final states $\rightarrow$ we left this topic to the discussion session
- The expansion of the f.o contribution served as a check for the involved abelianization procedure $\rightarrow$ we left this topic to the discussion session (also the linear power corrections)


## QED+QCD qт resummation at NLL+NLO <br> Results




- The scale variation band is reduced by roughly a factor 2 with the inclusion of the NLL+NLO corrections
- At the Tevatron and at the LHC, QED uncertainty is dominated by the renormalization scale at LL accuracy and resummation scale at NLL+NLO LC, Ferrera, Sborlini [2018]
- The effect of EW loop corrections is extremely small (per-mille level effect)
- Overall order $0.5 \%$ at the LHC at NLL


## QED+QCD qт resummation at NLL+NLO <br> Results




- The NLL+NLO prediction without the effect of soft wide-angle QED radiation (black dotted curve)
- NLL+NLO scale variation band reduction factor $1.5-2$ for $\mathrm{qT} \leqslant 20 \mathrm{GeV}$ and up to a factor 3 for $\mathrm{qT} \geqslant 30 \mathrm{GeV}$
- Overall order $0.5 \%$ at the LHC at NLL


## QED+QCD qT resummation at NLL+NLO

Results



- Correlated scale variation $\rightarrow$ use the difference between the prediction at NLL+NLO and the LL?
- The impact of NLL+NLO QED corrections is to make the distribution softer at $\mathrm{O}(0.5-1 \%)$ level
- This is the combined effect of the $W$ distribution slightly softer and the $Z$ distribution harder

Example of what happen with different mechanisms in numerator and denominator

## Outlook

- N4LL QCD plays a relevant role removing uncertainties in the W/Z pT distribution ratio
- NLL+NLO QCD+QED corrections to on shell Z and W boson production introduce non negligible effects for the W/Z pT distribution ratio
- QCD resummation at N4LL is implemented in the public code DYTurbo
- NLL+NLO QCD+QED corrections to on shell Z and W boson production are encoded in DYqT. (very soon in DYTurbo)
- Full NLL+NLO QCD+QED corrections to Z and W boson production with decays $\rightarrow$ very soon in DYTurbo


## Thank you!!!

## Backup slides

## Comparison of $b^{*}$ and minimal prescription



- keep bstar with bmax $=\mathrm{b} 0 / 1 \mathrm{GeV}$ to evaluate PDFs, but integrate up to or beyond the Landau pole in the Sudakov
- In one prescription bmax = bL with bL=b0 $\cdot \exp (1 /(2 a s \beta 0))$
- In the other prescription the path of integration is deformed in the complex plane (minimal prescription)


## Size of the finite part W-




## Non perturbative model used in the N4LLa

For the non-perturbative (NP) effects at very small transverse momenta we introduced, in the conjugated bspace, a NP form factor of the form

Collins, Rogers [2015]

$$
\begin{gathered}
S_{N P}(b)=\exp \left\{-g_{1} b^{2}-g_{K}(b) \ln \left(M^{2} / Q_{0}^{2}\right)\right\} \\
g_{K}(b)=g_{0}\left(1-\exp \left[-\frac{C_{F} \alpha_{S}\left(\left(b_{0} / b_{\star}\right)^{2}\right) b^{2}}{\pi g_{0} b_{\lim }^{2}}\right]\right) \\
g_{1}=0.5 \mathrm{GeV}^{2}, Q_{0}=1 \mathrm{GeV}, g_{0}=0.3, b_{\lim }=1.5 \mathrm{GeV}^{-1} \\
b_{\star}^{2}=b^{2} b_{\lim }^{2} /\left(b^{2}+b_{\lim }^{2}\right)
\end{gathered}
$$

Other choices available in the code

$$
S_{N P}(b)=\exp \left\{-\left(g_{1}+g_{2} \log \left(\frac{m}{Q_{0}}\right)+g_{3} \log \left(\frac{100 m}{\sqrt{s}}\right)\right) b^{2}\right\}
$$

