Precise QCD+QED resummed predictions

For the Drell-Yan process

Leandro Cieri

18/04/2023

MWDays23 Workshop

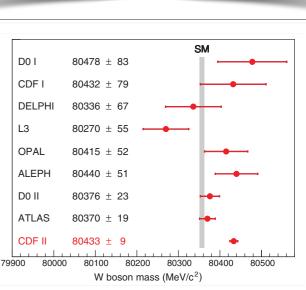
Precise resummed QCD+QED predictions

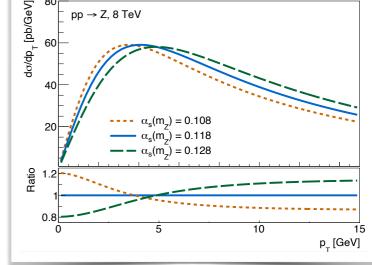
- Motivation
- Brief TH intro
- QCD resummation at N4LLa [DYTurbo]

[2303.12781, 2202.10343, 2111.14509, 2103.04974, 1910.07049]

• QED+QCD resummation at NLL [DYqT]

[2302.05403, 1805.11948]


Outlook


Motivation

Drell-Yan process

- Standard candle for precision measurements and theory at the LHC
- Detector calibration
- Extraction of PDFs
- Precise measurement of the strong coupling

Motivation

Drell-Yan process

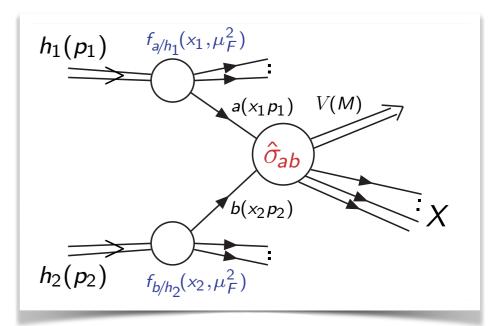
- Standard candle for precision measurements and theory at the LHC
- Detector calibration
- Extraction of PDFs
- Precise measurement of the strong coupling
- Precise measurement and determination of MW

Data at small transverse momentum is very relevant

Motivation

Drell-Yan process

- Standard candle for precision measurements and theory at the LHC
- Detector calibration
- Extraction of PDFs
- Precise measurement of the strong coupling
- Precise measurement and determination of MW


Transverse momentum resummation

Data at small transverse momentum is very relevant

QCD qT resummation at N4LLa [DYTurbo]

Transverse momentum resummation

Camarda, LC, Ferrera [2023]

$$h_1 + h_2 \to V + X \to l_3 + l_4 + X$$

up to N4LL+N4LO accuracy

 $\frac{d\sigma_{h_1h_2\to l_3l_4}}{d^2\mathbf{q_T}dM^2dyd\Omega}(\mathbf{q_T}, M^2, y, s, \Omega) = \sum_{a_1, a_2} \int_0^1 dx_1 \int_0^1 dx_2 f_{a_1/h_1}(x_1, \mu_F^2) f_{a_2/h_2}(x_2, \mu_F^2) \frac{d\hat{\sigma}_{a_1a_2\to l_3l_4}}{d^2\mathbf{q_T}\,dM^2\,d\hat{y}\,d\Omega}$

• $f_{a/h_1}(x_1, \mu_F^2)$: Non perturbative universal parton densities (PDFs), $\mu_F \sim M$.

 σ_{ab} : Hard scattering cross section. Process dependent, calculable with a perturbative expansion in the strong coupling $\alpha_s(M)$ (M $\gg \Lambda_{QCD} \sim 1$ GeV).

This framework relies in the QCD factorization property of the cross sections
 Collins, Soper, Sterman [1988]
 Aybat, Sterman [2008]

Transverse momentum resummation

Camarda, LC, Ferrera [2023]

$h_{1}(p_{1}) \xrightarrow{f_{a/h_{1}}(x_{1},\mu_{F}^{2})} \xrightarrow{a(x_{1}p_{1}) V(M)} \xrightarrow{a(x_{1}p_{1}) V(M)} \xrightarrow{f_{a/h_{1}}(x_{2},\mu_{F}^{2})} \xrightarrow{f_{b/h_{2}}(x_{2},\mu_{F}^{2})} \xrightarrow{f$

$$h_1 + h_2 \to V + X \to l_3 + l_4 + X$$

up to N4LL+N4LO accuracy

$$\frac{d\sigma_{h_1h_2\to l_3l_4}}{d^2\mathbf{q_T}dM^2dyd\Omega}(\mathbf{q_T}, M^2, y, s, \Omega) = \sum_{a_1, a_2} \int_0^1 dx_1 \int_0^1 dx_2 f_{a_1/h_1}(x_1, \mu_F^2) f_{a_2/h_2}(x_2, \mu_F^2) \frac{d\hat{\sigma}_{a_1a_2\to l_3l_4}}{d^2\mathbf{q_T}\,dM^2\,d\hat{y}\,d\Omega}$$

• $f_{a/h_1}(x_1, \mu_F^2)$: Non perturbative universal parton densities (PDFs), $\mu_F \sim M$.

 $\hat{\sigma}_{ab}$: Hard scattering cross section. Process dependent, calculable with a perturbative expansion in the strong coupling $\alpha_s(M)$ (M $\gg \Lambda_{QCD} \sim 1$ GeV).

This framework relies in the QCD factorization property of the cross sections
 Collins, Soper, Sterman [1988]
 Aybat, Sterman [2008]

Beware! violation of strict collinear factorization beyond N3LO (two loop amplitudes with 5 external legs and $n \ge 4$ QCD partons) Catani, de Florian, Rodrigo [2011] Forshaw, Seymour, Siodmok [2012]

Transverse momentum resummation

up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$[d\hat{\sigma}_{a_1a_2 \to l_3l_4}] = [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{res.})}] + [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{fin.})}]$$

$$\left[d\hat{\sigma}_{a_{1}a_{2}\to l_{3}l_{4}}^{(\text{res.})}\right] = \sum_{b_{1},b_{2}=q,\bar{q}} \frac{d\hat{\sigma}_{b_{1}b_{2}\to l_{3}l_{4}}^{(0)}}{d\mathbf{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{db}{2\pi} b J_{0}(bq_{T}) \mathcal{W}_{a_{1}a_{2},b_{1}b_{2}\to V}(b,M,\hat{y},\hat{s};\alpha_{S},\mu_{R}^{2},\mu_{F}^{2})$$

Bozzi, Catani, de Florian, Grazzini [2005] Bozzi, Catani, de Florian, Ferrera, Grazzini [2011] Catani, de Florian, Ferrera, Grazzini [2015] $\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/Q) \times \exp{\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}}$

$$\mathcal{H}_V(\alpha_S) = H_V(\alpha_S) \, C(\alpha_S) \, C(\alpha_S)$$

$$\mathcal{H}_{V}(\alpha_{S}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} \mathcal{H}_{V}^{(n)}$$
$$H_{V}(\alpha_{S}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} H_{V}^{(n)}$$
$$C(\alpha_{S}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} C^{(n)}$$

Camarda, LC, Ferrera [2023]

 $h_1(p_1) \Longrightarrow$

 $h_2(p_2)$

= 0

Transverse momentum resummation

Camarda, LC, Ferrera [2023]

 $\lim_{Q_T \to 0} \int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}_{Fab}^{(\text{fin.})}}{dq_T^2} \right]$

 $h_1(p_1) =$

 $h_2(p_2) =$

The cross section can be decomposed as

$$[d\hat{\sigma}_{a_1a_2 \to l_3l_4}] = [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{res.})}] + [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{fin.})}]$$

$$\left[d\hat{\sigma}_{a_{1}a_{2}\to l_{3}l_{4}}^{(\text{res.})}\right] = \sum_{b_{1},b_{2}=q,\bar{q}} \frac{d\hat{\sigma}_{b_{1}b_{2}\to l_{3}l_{4}}^{(0)}}{d\mathbf{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{db}{2\pi} b J_{0}(bq_{T}) \mathcal{W}_{a_{1}a_{2},b_{1}b_{2}\to V}(b,M,\hat{y},\hat{s};\alpha_{S},\mu_{R}^{2},\mu_{F}^{2})$$

up to N4LL+N4LO accuracy

$$\mathcal{W}_{V}(b, M; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}) = \mathcal{H}_{V}(\alpha_{S}; M/\mu_{R}, M/\mu_{F}, M/Q) \times \exp\{\mathcal{G}(\alpha_{S}, L; M/\mu_{R}, M/Q)\}$$

Hard-virtual factor

$$\mathcal{H}_{V}(\alpha_{S}) = H_{V}(\alpha_{S}) C(\alpha_{S}) C(\alpha_{S})$$
Sudakov

$$\mathcal{H}_V(\alpha_S) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n \mathcal{H}_V^{(n)}$$

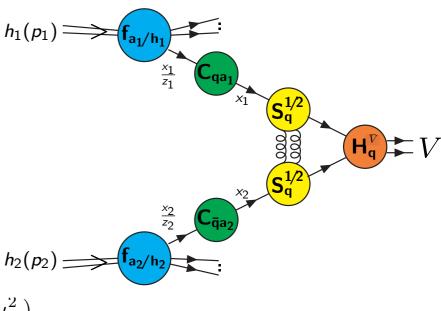
$$H_V(\alpha_S) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_V^{(n)}$$
$$C(\alpha_S) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C^{(n)}$$

Transverse momentum resummation

up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$[d\hat{\sigma}_{a_1a_2 \to l_3l_4}] = [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{res.})}] + [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{fin.})}]$$


$$\left[d\hat{\sigma}_{a_{1}a_{2}\to l_{3}l_{4}}^{(\text{res.})}\right] = \sum_{b_{1},b_{2}=q,\bar{q}} \frac{d\hat{\sigma}_{b_{1}b_{2}\to l_{3}l_{4}}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{db}{2\pi} b J_{0}(bq_{T}) \mathcal{W}_{a_{1}a_{2},b_{1}b_{2}\to V}(b,M,\hat{y},\hat{s};\alpha_{S},\mu_{R}^{2},\mu_{F}^{2})$$

 $\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$

 $\mathcal{H}_V(\alpha_S) = H_V(\alpha_S) \, C(\alpha_S) \, C(\alpha_S)$

$$\mathcal{H}_{V}(\alpha_{S}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} \mathcal{H}_{V}^{(n)}$$
$$H_{V}(\alpha_{S}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} H_{V}^{(n)}$$
$$C(\alpha_{S}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} C^{(n)}$$

Camarda, LC, Ferrera [2023]

We are interested in the impact of the resummation

 $L \equiv \ln(Q^2 b^2 / b_0^2)$

Missing N4LO f.o contribution

Without matching: artificial estimation of Q variation with +1 prescription

For a discussion about the f.o, resummation and the matching please see Alex and Tobias talks

Transverse momentum resummation

up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$[d\hat{\sigma}_{a_1a_2 \to l_3l_4}] = [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{res.})}] + [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{fin.})}]$$

$$\left[d\hat{\sigma}_{a_{1}a_{2}\to l_{3}l_{4}}^{(\text{res.})}\right] = \sum_{b_{1},b_{2}=q,\bar{q}} \frac{d\hat{\sigma}_{b_{1}b_{2}\to l_{3}l_{4}}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{db}{2\pi} b J_{0}(bq_{T}) \mathcal{W}_{a_{1}a_{2},b_{1}b_{2}\to V}(b,M,\hat{y},\hat{s};\alpha_{S},\mu_{R}^{2},\mu_{F}^{2})$$

 $\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$

 $\mathcal{H}_V(\alpha_S) = H_V(\alpha_S) \, C(\alpha_S) \, C(\alpha_S)$

$$\begin{aligned} \mathcal{H}_{V}^{(1)} &= H_{V}^{(1)} + C^{(1)} + C^{(1)}, \\ \mathcal{H}_{V}^{(2)} &= H_{V}^{(2)} + C^{(2)} + C^{(2)} + H_{V}^{(1)}(C^{(1)} + C^{(1)}) + C^{(1)}C^{(1)}, \\ \mathcal{H}_{V}^{(3)} &= H_{V}^{(3)} + C^{(3)} + C^{(3)} + H_{V}^{(2)}(C^{(1)} + C^{(1)}) + H_{V}^{(1)}(C^{(2)} + C^{(2)} + C^{(1)}C^{(1)}) \\ &+ C^{(2)}C^{(1)} + C^{(2)}C^{(1)}, \\ \mathcal{H}_{V}^{(4)} &= H_{V}^{(4)} + C^{(4)} + C^{(4)} + H_{V}^{(3)}(C^{(1)} + C^{(1)}) + H_{V}^{(2)}(C^{(2)} + C^{(2)} + C^{(1)}C^{(1)}) \\ &+ H_{V}^{(1)}(C^{(3)} + C^{(3)} + C^{(2)}C^{(1)} + C^{(2)}C^{(1)}) + C^{(3)}C^{(1)} + C^{(3)}C^{(1)} + C^{(2)}C^{(2)} \end{aligned}$$

Camarda, LC, Ferrera [2023] $h_1(p_1)$ f_{a_1/h_1} r_1 r_2 r_2

 $\left(\mathbf{H}_{\mathbf{q}}^{\overline{V}} \right)$

Transverse momentum resummation Camarda, LC, Ferrera [2023]

 $h_1(p_1) =$

 $h_2(p_2) =$

up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$[d\hat{\sigma}_{a_1a_2 \to l_3l_4}] = [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{res.})}] + [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{fin.})}]$$

$$\left[d\hat{\sigma}_{a_{1}a_{2}\to l_{3}l_{4}}^{(\text{res.})}\right] = \sum_{b_{1},b_{2}=q,\bar{q}} \frac{d\hat{\sigma}_{b_{1}b_{2}\to l_{3}l_{4}}^{(0)}}{d\mathbf{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{db}{2\pi} b J_{0}(bq_{T}) \mathcal{W}_{a_{1}a_{2},b_{1}b_{2}\to V}(b,M,\hat{y},\hat{s};\alpha_{S},\mu_{R}^{2},\mu_{F}^{2})$$

$$\mathcal{W}_{V}(b, M; \alpha_{S}, \mu_{R}^{2}, \mu_{F}^{2}) = \mathcal{H}_{V}(\alpha_{S}; M/\mu_{R}, M/\mu_{F}, M/Q) \times \exp\{\mathcal{G}(\alpha_{S}, L; M/\mu_{R}, M/Q)\}$$
Hard-virtual factor
$$\mathcal{H}_{V}(\alpha_{S}) = H_{V}(\alpha_{S}) C(\alpha_{S}) C(\alpha_{S})$$
Sudakov
Resummation scheme

Resummation scheme dependent statement!!!!

Partially known

$$\begin{aligned}
\mathcal{H}_{V}^{(1)} &= H_{V}^{(1)} + C^{(1)} + C^{(1)}, \\
\mathcal{H}_{V}^{(2)} &= H_{V}^{(2)} + C^{(2)} + C^{(2)} + H_{V}^{(1)}(C^{(1)} + C^{(1)}) + C^{(1)}C^{(1)}, \\
\mathcal{H}_{V}^{(3)} &= H_{V}^{(3)} + C^{(3)} + C^{(3)} + H_{V}^{(2)}(C^{(1)} + C^{(1)}) + H_{V}^{(1)}(C^{(2)} + C^{(2)} + C^{(1)}C^{(1)}) \\
&+ C^{(2)}C^{(1)} + C^{(2)}C^{(1)}, \\
\mathcal{H}_{V}^{(4)} &= H_{V}^{(4)} + C^{(4)} + C^{(4)} + H_{V}^{(3)}(C^{(1)} + C^{(1)}) + H_{V}^{(2)}(C^{(2)} + C^{(2)} + C^{(1)}C^{(1)}) \\
&+ H_{V}^{(4)}(C^{(3)} + C^{(3)} + C^{(2)}C^{(1)} + C^{(2)}C^{(1)}) + C^{(3)}C^{(1)} + C^{(3)}C^{(1)} + C^{(2)}C^{(2)}
\end{aligned}$$
Unknown

Transverse momentum resummation Camarda, LC, Ferrera [2023]

 $h_1(p_1) =$

 $h_2(p_2) =$

up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$[d\hat{\sigma}_{a_1a_2 \to l_3l_4}] = [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{res.})}] + [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{fin.})}]$$

$$\left[d\hat{\sigma}_{a_{1}a_{2}\to l_{3}l_{4}}^{(\text{res.})}\right] = \sum_{b_{1},b_{2}=q,\bar{q}} \frac{d\hat{\sigma}_{b_{1}b_{2}\to l_{3}l_{4}}^{(0)}}{d\mathbf{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{db}{2\pi} b J_{0}(bq_{T}) \mathcal{W}_{a_{1}a_{2},b_{1}b_{2}\to V}(b,M,\hat{y},\hat{s};\alpha_{S},\mu_{R}^{2},\mu_{F}^{2})$$

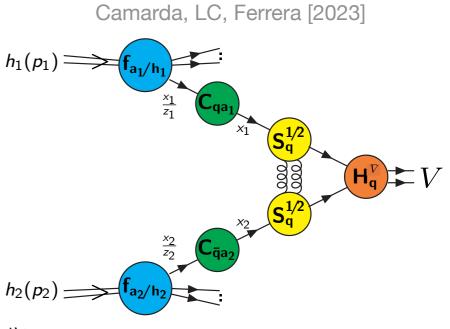
$$\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$$

Transverse momentum resummation

up to N4LL+N4LO accuracy

The cross section can be decomposed as

$$[d\hat{\sigma}_{a_1a_2 \to l_3l_4}] = [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{res.})}] + [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{fin.})}]$$


$$\left[d\hat{\sigma}_{a_{1}a_{2}\to l_{3}l_{4}}^{(\text{res.})}\right] = \sum_{b_{1},b_{2}=q,\bar{q}} \frac{d\hat{\sigma}_{b_{1}b_{2}\to l_{3}l_{4}}^{(0)}}{d\mathbf{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{db}{2\pi} b J_{0}(bq_{T}) \mathcal{W}_{a_{1}a_{2},b_{1}b_{2}\to V}(b,M,\hat{y},\hat{s};\alpha_{S},\mu_{R}^{2},\mu_{F}^{2})$$

$$\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$$

$$\mathcal{H}_V(\alpha_S) = H_V(\alpha_S) \, C(\alpha_S) \, C(\alpha_S)$$

The $\delta(1-z)$ contribution can be computed from the four-loop quark form factor

$$\begin{split} \mathcal{H}_{V}^{(1)} &= H_{V}^{(1)} + C^{(1)} + C^{(1)}, \\ \mathcal{H}_{V}^{(2)} &= H_{V}^{(2)} + C^{(2)} + C^{(2)} + H_{V}^{(1)}(C^{(1)} + C^{(1)}) + C^{(1)}C^{(1)}, \\ \mathcal{H}_{V}^{(3)} &= H_{V}^{(3)} + C^{(3)} + C^{(3)} + H_{V}^{(2)}(C^{(1)} + C^{(1)}) + H_{V}^{(1)}(C^{(2)} + C^{(2)} + C^{(1)}C^{(1)}) \\ &+ C^{(2)}C^{(1)} + C^{(2)}C^{(1)}, \\ \mathcal{H}_{V}^{(4)} &= H_{V}^{(4)} + C^{(4)} + C^{(4)} + H_{V}^{(3)}(C^{(1)} + C^{(1)}) + H_{V}^{(2)}(C^{(2)} + C^{(2)} + C^{(1)}C^{(1)}) \\ &+ H_{V}^{(1)}(C^{(3)} + C^{(3)} + C^{(2)}C^{(1)} + C^{(2)}C^{(1)}) + C^{(3)}C^{(1)} + C^{(3)}C^{(1)} + C^{(2)}C^{(2)} \end{split}$$

Transverse momentum resummation

up to N4LL+N4LO accuracy

 $\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$

$$\mathcal{G}(\alpha_{S}, L) = -\int_{b_{0}^{2}/b^{2}}^{Q^{2}} \frac{dq^{2}}{q^{2}} \left[A(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + \widetilde{B}(\alpha_{S}(q^{2})) \right]$$

$$= L g^{(1)}(\alpha_{S}L) + g^{(2)}(\alpha_{S}L) + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} g^{(n+2)}(\alpha_{S}L)$$

g(n) controls and resums the $\alpha_{S}L^{k}$ (k $\geq 1)$ logarithmic terms

$$\widetilde{B}(\alpha_S) = B(\alpha_S) + 2\beta(\alpha_S) \frac{d\ln C(\alpha_S)}{d\ln \alpha_S} + 2\gamma(\alpha_S)$$

$$\lambda = \frac{1}{\pi} \beta_0 \,\alpha_S(\mu_R^2) \,L \ , \ \overline{B}^{(n)} = \widetilde{B}^{(n)} + A^{(n)} \ln \frac{M^2}{Q^2}$$

- At N4LL we need the resummation coefficients
- A5 : 1–3·10⁻³ relative uncertainty
- B4 : negligible uncertainty
- C4 : 1–2·10⁻³ relative uncertainty
- γ4 singlet : 1–3·10⁻³ relative uncertainty (non-singlet negligible)

$+\frac{A^{(4)}}{3\beta_0} \left(\frac{\beta_1}{\beta_0^2} \left[\frac{\lambda(-12+42\lambda-28\lambda^2+7\lambda^3)}{12(1-\lambda)^4} - \frac{1-4\lambda}{(1-\lambda)^4}\ln(1-\lambda)\right]\right]$
$+\frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4}\ln\frac{Q^2}{\mu_R^2}\right)+\overline{B}^{(3)}\left(\frac{\beta_1}{\beta_0^2}\left[\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3}+\frac{\ln(1-\lambda)}{(1-\lambda)^3}\right]$
$+\frac{\lambda(3-3\lambda+\lambda^2)}{(1-\lambda)^3}\ln\frac{Q^2}{\mu_R^2}\right) + A^{(3)}\left(-\frac{\beta_2}{4\beta_0^3}\frac{\lambda^3(4-\lambda)}{(1-\lambda)^4}\right)$
$+\frac{\beta_1^2}{\beta_0^4} \left[\frac{\lambda(12-24\lambda+52\lambda^2-13\lambda^3)}{36(1-\lambda)^4} + \frac{\ln(1-\lambda)}{3(1-\lambda)^3} + \frac{1-4\lambda}{2(1-\lambda)^4} \ln^2(1-\lambda) \right]$
$+\frac{\beta_1}{\beta_0^2} \left[\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} + \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda) \right] \ln \frac{Q^2}{\mu_R^2}$
$-\frac{\lambda^2(6-4\lambda+\lambda^2)}{2(1-\lambda)^4}\ln^2\frac{Q^2}{\mu_R^2}\right) + \overline{B}^{(2)}\left(-\frac{\beta_2}{3\beta_0^2}\frac{(3-\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^3}\frac{(3-\lambda)\lambda^2}{(3(1-\lambda)^3)^3}\right) + \frac{\beta_1^2}{\beta_0^3}\frac{(3-\lambda)\lambda^2}{(3(1-\lambda)^3)^3}$
$-\frac{\ln^2(1-\lambda)}{(1-\lambda)^3}\right) - \frac{2\beta_1}{\beta_0}\frac{\ln(1-\lambda)}{(1-\lambda)^3}\ln\frac{Q^2}{\mu_R^2} - \beta_0\frac{\lambda(3-3\lambda+\lambda^2)}{(1-\lambda)^3}\ln^2\frac{Q^2}{\mu_R^2}\right)$
$+ A^{(2)} \left(-\frac{\beta_3}{12\beta_0^3} \frac{\lambda^3(8-5\lambda)}{(1-\lambda)^4} + \frac{\beta_1\beta_2}{3\beta_0^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} + \frac{\beta_1\beta_2}{(1-\lambda)^4} \right)^{-1} + \frac{\beta_1\beta_2}{(1-\lambda)^4} + \frac{\beta_1\beta_2}{(1-\lambda$
$+\frac{1-4\lambda+9\lambda^2}{(1-\lambda)^4}\ln(1-\lambda)\right)+\frac{\beta_1^3}{\beta_0^5}\left(\frac{\lambda(-12+42\lambda-64\lambda^2+25\lambda^3)}{36(1-\lambda)^4}\right)$
$-\frac{\left(1-4\lambda+9\lambda^{2}\right)}{3\left(1-\lambda\right)^{4}}\ln(1-\lambda)-\frac{\lambda}{\left(1-\lambda\right)^{4}}\ln^{2}(1-\lambda)-\frac{1-4\lambda}{3\left(1-\lambda\right)^{4}}\ln^{3}(1-\lambda)\right)$
$+\left[\frac{\beta_2}{3\beta_0^2}\frac{(3+4\lambda-\lambda^2)\lambda^2}{(1-\lambda)^4}+\frac{\beta_1^2}{\beta_0^3}\left(-\frac{(3+4\lambda-\lambda^2)\lambda^2}{3(1-\lambda)^4}-\frac{2\lambda}{(1-\lambda)^4}\ln(1-\lambda)\right.\right.$
$-\frac{1-4\lambda}{(1-\lambda)^4}\ln^2(1-\lambda)\bigg)\bigg]\ln\frac{Q^2}{\mu_R^2} + \frac{\beta_1}{\beta_0}\bigg[-\frac{\lambda}{(1-\lambda)^4} - \frac{1-4\lambda}{(1-\lambda)^4}\ln(1-\lambda)\bigg]\ln^2\frac{Q^2}{\mu_R^2}$
$+ \frac{\beta_0}{3} \frac{\lambda^2 (6 - 4\lambda + \lambda^2)}{(1 - \lambda)^4} \ln^3 \frac{Q^2}{\mu_R^2} \right) + \overline{B}^{(1)} \Biggl(- \frac{\beta_3}{6\beta_0^2} \frac{(3 - 2\lambda)\lambda^2}{(1 - \lambda)^3} + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl(\frac{(3 - 2\lambda)\lambda^2}{3(1 - \lambda)^3} + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl) + \frac{\beta_1 \beta_2}{(1 - \lambda)^3} \Bigr) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl(\frac{(3 - 2\lambda)\lambda^2}{3(1 - \lambda)^3} + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl(\frac{(3 - 2\lambda)\lambda^2}{3(1 - \lambda)^3} + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl(\frac{\beta_1 \beta_2}{3(1 - \lambda)^3} + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl(\frac{\beta_1 \beta_2}{\beta_0^3} \Bigl) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl(\frac{\beta_1 \beta_2}{\beta_0^3} + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl(\frac{\beta_1 \beta_2}{\beta_0^3} + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigr) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl(\frac{\beta_1 \beta_2}{\beta_0^3} + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl(\frac{\beta_1 \beta_2}{\beta_0^3} + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigr) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl(\frac{\beta_1 \beta_2}{\beta_0^3} + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigr) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigl) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigg) + \frac{\beta_1 \beta_2}{\beta_0^3} \Bigg$
$+\frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda)\right)+\frac{\beta_1^3}{\beta_0^4}\bigg(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3}-\frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda)-\frac{\ln^2(1-\lambda)}{2(1-\lambda)^3}\bigg)$
$+\frac{\ln^{3}(1-\lambda)}{3(1-\lambda)^{3}}\right) + \left\lfloor \frac{\beta_{2}}{\beta_{0}} \frac{\lambda}{(1-\lambda)^{3}} + \frac{\beta_{1}^{2}}{\beta_{0}^{2}} \left(-\frac{\lambda}{(1-\lambda)^{3}} - \frac{\ln(1-\lambda)}{(1-\lambda)^{3}} + \frac{\ln^{2}(1-\lambda)}{(1-\lambda)^{3}} \right) \right\rfloor \ln \frac{Q^{2}}{\mu_{R}^{2}}$
$+\beta_1 \left[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3} \right] \ln^2 \frac{Q^2}{\mu_R^2} + \beta_0^2 \frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} \ln^3 \frac{Q^2}{\mu_R^2} \right)$
$+ A^{(1)} \left(\frac{\beta_2^2}{3\beta_0^4} \left(\frac{\lambda(-12 + 42\lambda - 52\lambda^2 + 7\lambda^3)}{12(1-\lambda)^4} - \ln(1-\lambda) \right) \right)$
$+\frac{\beta_4}{3\beta_0^3} \left(\frac{\lambda(12-42\lambda+40\lambda^2-13\lambda^3)}{12(1-\lambda)^4} + \ln(1-\lambda)\right) + \frac{\beta_1\beta_3}{6\beta_0^4} \left(-\frac{\lambda(2-5\lambda)}{3}\frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} - \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{(1-\lambda)^4}\ln(1-\lambda)\right) + \frac{\beta_1^2\beta_2}{\beta_0^5} \left(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{36(1-\lambda)^4}\right)$
$-\frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}\right) + $
$+\frac{\lambda^2(-3+2\lambda-2\lambda^2)}{3(1-\lambda)^4}\ln(1-\lambda)-\frac{(1-3\lambda)\lambda}{(1-\lambda)^4}\ln^2(1-\lambda)-\frac{1-6\lambda}{3(1-\lambda)^4}\ln^3(1-\lambda)$
$+\frac{1-4\lambda}{6(1-\lambda)^4}\ln^4(1-\lambda)\right) + \left[-\frac{\beta_3}{6\beta_0^2}\frac{\lambda^2(-3-2\lambda+2\lambda^2)}{(1-\lambda)^4} - \frac{\beta_1\beta_2}{\beta_0^3}\left(\frac{2\lambda^3}{3(1-\lambda)^3} + \frac{3\lambda^2}{(1-\lambda)^4}\ln(1-\lambda)\right)\right]$
$+\frac{\beta_1^3}{\beta_0^4}\bigg(-\frac{\lambda^2(3-2\lambda+2\lambda^2)}{6(1-\lambda)^4}-\frac{(1-3\lambda)\lambda}{(1-\lambda)^4}\ln(1-\lambda)-\frac{1-6\lambda}{2(1-\lambda)^4}\ln^2(1-\lambda)$
$+\frac{1-4\lambda}{3(1-\lambda)^4}\ln^3(1-\lambda)\bigg)\bigg[\ln\frac{Q^2}{\mu_R^2}+\bigg[-\frac{3\beta_2}{2\beta_0}\frac{\lambda^2}{(1-\lambda)^4}+\frac{\beta_1^2}{2\beta_0^2}\bigg(-\frac{(1-3\lambda)\lambda}{(1-\lambda)^4}-\frac{(1-6\lambda)}{(1-\lambda)^4}\ln(1-\lambda)\bigg)\bigg]$
$+ \frac{(1-4\lambda)}{(1-\lambda)^4} \ln^2(1-\lambda) \bigg) \bigg] \ln^2 \frac{Q^2}{\mu_R^2} + \frac{\beta_1}{3} \bigg[\frac{\lambda(2+6\lambda-4\lambda^2+\lambda^3)}{2(1-\lambda)^4} + \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda) \bigg] \ln^3 \frac{Q^2}{\mu_R^2}$
$-\frac{\beta_0^2}{12}\frac{(6-4\lambda+\lambda^2)\lambda^2}{(1-\lambda)^4}\ln^4\frac{Q^2}{\mu_R^2}\right),\qquad\qquad g(5) \ still \ fits \ in \ a \ slide!$

Transverse momentum resummation

up to N4LL+N4LO accuracy

 $\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$

$$\mathcal{G}(\alpha_{S}, L) = -\int_{b_{0}^{2}/b^{2}}^{Q^{2}} \frac{dq^{2}}{q^{2}} \left[A(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + \widetilde{B}(\alpha_{S}(q^{2})) \right]$$

$$= L g^{(1)}(\alpha_{S}L) + g^{(2)}(\alpha_{S}L) + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} g^{(n+2)}(\alpha_{S}L)$$

g(n) controls and resums the $\alpha_{S}L^{k}$ (k $\geq 1)$ logarithmic terms

$$\widetilde{B}(\alpha_S) = B(\alpha_S) + 2\beta(\alpha_S) \frac{d\ln C(\alpha_S)}{d\ln \alpha_S} + 2\gamma(\alpha_S)$$

$$\lambda = \frac{1}{\pi} \beta_0 \, \alpha_S(\mu_R^2) \, L \ , \ \overline{B}^{(n)} = \widetilde{B}^{(n)} + A^{(n)} \ln \frac{M^2}{Q^2}$$

- At N4LL we need the resummation coefficients
- (A5) 1–3.10⁻³ relative uncertainty
- B4 : negligible uncertainty
- C4: 1–2·10⁻³ relative uncertainty
- γ4 singlet : 1–3·10⁻³ relative uncertainty (non-singlet negligible)

$\alpha_S L) = -\frac{A^{(5)}}{12\beta_0^2} \frac{\lambda}{(1-\lambda)^4} - \frac{\overline{B}^{(4)}}{3\beta_0} \frac{\lambda(3-3\lambda+\lambda^2)}{(1-\lambda)^3}$
$+\frac{A^{(4)}}{3\beta_0} \left(\frac{\beta_1}{\beta_0^2} \left[\frac{\lambda(-12+42\lambda-28\lambda^2+7\lambda^3)}{12(1-\lambda)^4} - \frac{1-4\lambda}{(1-\lambda)^4}\ln(1-\lambda)\right]\right)$
$+\frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4}\ln\frac{Q^2}{\mu_R^2}\right)+\overline{B}^{(3)}\left(\frac{\beta_1}{\beta_0^2}\left[\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3}+\frac{\ln(1-\lambda)}{(1-\lambda)^3}\right]\right)$
$+\frac{\lambda(3-3\lambda+\lambda^{2})}{(1-\lambda)^{3}}\ln\frac{Q^{2}}{\mu_{R}^{2}}\right)+A^{(3)}\left(-\frac{\beta_{2}}{4\beta_{0}^{3}}\frac{\lambda^{3}(4-\lambda)}{(1-\lambda)^{4}}\right)$
$+\frac{\beta_1^2}{\beta_0^4} \left[\frac{\lambda(12 - 24\lambda + 52\lambda^2 - 13\lambda^3)}{36(1-\lambda)^4} + \frac{\ln(1-\lambda)}{3(1-\lambda)^3} + \frac{1 - 4\lambda}{2(1-\lambda)^4} \ln^2(1-\lambda) \right]$
$+\frac{\beta_1}{\beta_0^2} \left[\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} + \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda) \right] \ln \frac{Q^2}{\mu_R^2}$
$-\frac{\lambda^2(6-4\lambda+\lambda^2)}{2(1-\lambda)^4}\ln^2\frac{Q^2}{\mu_R^2}\right) + \overline{B}^{(2)}\left(-\frac{\beta_2}{3\beta_0^2}\frac{(3-\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^3}\left(\frac{(3-\lambda)\lambda^2}{3(1-\lambda)^3}\right)\right)$
$-\frac{\ln^2(1-\lambda)}{(1-\lambda)^3}\bigg) - \frac{2\beta_1}{\beta_0}\frac{\ln(1-\lambda)}{(1-\lambda)^3}\ln\frac{Q^2}{\mu_R^2} - \beta_0\frac{\lambda(3-3\lambda+\lambda^2)}{(1-\lambda)^3}\ln^2\frac{Q^2}{\mu_R^2}\bigg)$
$+ A^{(2)} \Bigg(- \frac{\beta_3}{12\beta_0^3} \frac{\lambda^3(8-5\lambda)}{(1-\lambda)^4} + \frac{\beta_1\beta_2}{3\beta_0^4} \bigg(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \bigg) + \frac{\beta_1\beta_2}{6(1-\lambda)^4} \bigg) \bigg) + \frac{\beta_1\beta_2}{6(1-\lambda)^4} \bigg) $
$+\frac{1-4\lambda+9\lambda^{2}}{(1-\lambda)^{4}}\ln(1-\lambda)\right)+\frac{\beta_{1}^{3}}{\beta_{0}^{5}}\left(\frac{\lambda(-12+42\lambda-64\lambda^{2}+25\lambda^{3})}{36(1-\lambda)^{4}}\right)$
$-\frac{(1-4\lambda+9\lambda^2)}{3(1-\lambda)^4}\ln(1-\lambda) - \frac{\lambda}{(1-\lambda)^4}\ln^2(1-\lambda) - \frac{1-4\lambda}{3(1-\lambda)^4}\ln^3(1-\lambda)\bigg) \\ \left[\beta_{2\lambda}\left(3+4\lambda-\lambda^2\right)\lambda^2 - \beta_{2\lambda}^2\left(-(3+4\lambda-\lambda^2)\lambda^2\right) - 2\lambda\right] \\ + \beta_{2\lambda}\left(-(3+4\lambda-\lambda^2)\lambda^2\right) + \beta_$
$+ \left[\frac{\beta_2}{3\beta_0^2} \frac{(3+4\lambda-\lambda^2)\lambda^2}{(1-\lambda)^4} + \frac{\beta_1^2}{\beta_0^3} \left(-\frac{(3+4\lambda-\lambda^2)\lambda^2}{3(1-\lambda)^4} - \frac{2\lambda}{(1-\lambda)^4}\ln(1-\lambda)\right)\right] = 0^2$
$-\frac{1-4\lambda}{(1-\lambda)^4}\ln^2(1-\lambda)\bigg) \left[\ln\frac{Q^2}{\mu_R^2} + \frac{\beta_1}{\beta_0} \left[-\frac{\lambda}{(1-\lambda)^4} - \frac{1-4\lambda}{(1-\lambda)^4}\ln(1-\lambda) \right] \ln^2\frac{Q^2}{\mu_R^2} \right]$
$+\frac{\beta_0}{3}\frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4}\ln^3\frac{Q^2}{\mu_R^2}\right)+\overline{B}^{(1)}\left(-\frac{\beta_3}{6\beta_0^2}\frac{(3-2\lambda)\lambda^2}{(1-\lambda)^3}+\frac{\beta_1\beta_2}{\beta_0^3}\left(\frac{(3-2\lambda)\lambda^2}{3(1-\lambda)^3}\right)\right)$
$+\frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda)\right) + \frac{\beta_1^3}{\beta_0^4} \left(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{2(1-\lambda)^3}\right)$
$+\frac{\ln^{3}(1-\lambda)}{3(1-\lambda)^{3}}\right) + \left\lfloor\frac{\beta_{2}}{\beta_{0}}\frac{\lambda}{(1-\lambda)^{3}} + \frac{\beta_{1}^{2}}{\beta_{0}^{2}}\left(-\frac{\lambda}{(1-\lambda)^{3}} - \frac{\ln(1-\lambda)}{(1-\lambda)^{3}} + \frac{\ln^{2}(1-\lambda)}{(1-\lambda)^{3}}\right)\right\rfloor \ln\frac{Q^{2}}{\mu_{R}^{2}}$
$+\beta_1 \left[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3} \right] \ln^2 \frac{Q^2}{\mu_R^2} + \beta_0^2 \frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} \ln^3 \frac{Q^2}{\mu_R^2} \right)$
$+ A^{(1)} \left(\frac{\beta_2^2}{3\beta_0^4} \left(\frac{\lambda(-12 + 42\lambda - 52\lambda^2 + 7\lambda^3)}{12(1-\lambda)^4} - \ln(1-\lambda) \right) \right)$
$+\frac{\beta_4}{3\beta_0^3} \left(\frac{\lambda(12-42\lambda+40\lambda^2-13\lambda^3)}{12(1-\lambda)^4} + \ln(1-\lambda)\right) + \frac{\beta_1\beta_3}{6\beta_0^4} \left(-\frac{\lambda(2-5\lambda)}{3}\frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4}\right)$
$-\frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{(1-\lambda)^4}\ln(1-\lambda)\right)+\frac{\beta_1^2\beta_2}{\beta_0^5}\left(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{36(1-\lambda)^4}\right)$
$-\frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\right) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}\right)$
$+\frac{\lambda^{2}(-3+2\lambda-2\lambda^{2})}{3(1-\lambda)^{4}}\ln(1-\lambda) - \frac{(1-3\lambda)\lambda}{(1-\lambda)^{4}}\ln^{2}(1-\lambda) - \frac{1-6\lambda}{3(1-\lambda)^{4}}\ln^{3}(1-\lambda)$
$+\frac{1-4\lambda}{6(1-\lambda)^4}\ln^4(1-\lambda)\bigg) + \left[-\frac{\beta_3}{6\beta_0^2}\frac{\lambda^2(-3-2\lambda+2\lambda^2)}{(1-\lambda)^4} - \frac{\beta_1\beta_2}{\beta_0^3}\bigg(\frac{2\lambda^3}{3(1-\lambda)^3} + \frac{3\lambda^2}{(1-\lambda)^4}\ln(1-\lambda)\bigg)\right]$
$+\frac{\beta_1^3}{\beta_0^4} \bigg(-\frac{\lambda^2 (3-2\lambda+2\lambda^2)}{6(1-\lambda)^4} - \frac{(1-3\lambda)\lambda}{(1-\lambda)^4} \ln(1-\lambda) - \frac{1-6\lambda}{2(1-\lambda)^4} \ln^2(1-\lambda)$
$+\frac{1-4\lambda}{3(1-\lambda)^4}\ln^3(1-\lambda)\bigg)\bigg]\ln\frac{Q^2}{\mu_R^2}+\bigg[-\frac{3\beta_2}{2\beta_0}\frac{\lambda^2}{(1-\lambda)^4}+\frac{\beta_1^2}{2\beta_0^2}\bigg(-\frac{(1-3\lambda)\lambda}{(1-\lambda)^4}-\frac{(1-6\lambda)}{(1-\lambda)^4}\ln(1-\lambda)\bigg)\bigg]$
$+ \frac{(1-4\lambda)}{(1-\lambda)^4} \ln^2(1-\lambda) \bigg) \bigg] \ln^2 \frac{Q^2}{\mu_R^2} + \frac{\beta_1}{3} \bigg[\frac{\lambda(2+6\lambda-4\lambda^2+\lambda^3)}{2(1-\lambda)^4} + \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda) \bigg] \ln^3 \frac{Q^2}{\mu_R^2}$
$-\frac{\beta_0^2 \left(6-4\lambda+\lambda^2\right)\lambda^2}{(1-\lambda)^4} \ln^4 \frac{Q^2}{\mu_R^2}\right), \qquad \qquad g(5) \ still \ fits \ in \ a \ slide!$

Transverse momentum resummation

up to N4LL+N4LO accuracy

 $\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$

$$\mathcal{G}(\alpha_{S}, L) = -\int_{b_{0}^{2}/b^{2}}^{Q^{2}} \frac{dq^{2}}{q^{2}} \left[A(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + \widetilde{B}(\alpha_{S}(q^{2})) \right]$$

$$= L g^{(1)}(\alpha_{S}L) + g^{(2)}(\alpha_{S}L) + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} g^{(n+2)}(\alpha_{S}L)$$

g(n) controls and resums the $\alpha_{S}L^{k}$ (k $\geq 1)$ logarithmic terms

$$\widetilde{B}(\alpha_S) = B(\alpha_S) + 2\beta(\alpha_S) \frac{d\ln C(\alpha_S)}{d\ln \alpha_S} + 2\gamma(\alpha_S)$$

$$\lambda = \frac{1}{\pi} \,\beta_0 \,\alpha_S(\mu_R^2) \,L \ , \ \overline{B}^{(n)} = \widetilde{B}^{(n)} + A^{(n)} \ln \frac{M^2}{Q^2}$$

- At N4LL we need the resummation coefficients
- (A5) 1–3.10⁻³ relative uncertainty
- (B4) negligible uncertainty
- C4: 1–2·10⁻³ relative uncertainty
- γ4 singlet : 1–3·10⁻³ relative uncertainty (non-singlet negligible)

$\begin{split} sL_1 &= \left(\frac{4^{(0)}}{12k_3^2} \frac{\lambda}{(1-\lambda)^4} (1-\lambda)^4}{3k_3^2} (1-\lambda)^4 (1-\lambda)^3\right) \\ &+ \frac{4^{(0)}}{3k_5} \left(\frac{\beta_1}{k_5^2} \left[\frac{\lambda(-12+42\lambda-28\lambda^2+7\lambda^3)}{(1-\lambda)^4} - \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda) \right] \right] \\ &+ \frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4} \ln \frac{Q^2}{\mu_R^2} \right) + \overline{B}^{(3)} \left(\frac{\beta_1}{3k_5^2} \left[\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3} \right] \\ &+ \frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4} \ln \frac{Q^2}{\mu_R^2} \right) + A^{(3)} \left(-\frac{\beta_2}{4k_5^2} \frac{\lambda^3(4-\lambda)}{(1-\lambda)^4} \right) \\ &+ \frac{\beta_1^2}{(1-\lambda)^4} \left[\frac{\lambda(12-24\lambda+22\lambda^2-13\lambda^3)}{3(1-\lambda)^4} + \frac{\ln(1-\lambda)}{3(1-\lambda)^3} + \frac{1-4\lambda}{2(1-\lambda)^4} \ln^2(1-\lambda) \right] \\ &+ \frac{\beta_1^2}{\beta_1^2} \left[\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} + \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda) \right] \ln \frac{Q^2}{\mu_R^2} \\ &- \frac{\lambda^2(6-4\lambda+\lambda^2)}{2(1-\lambda)^4} \ln^2 \frac{Q^2}{\mu_R^2} \right) \\ &+ \frac{\beta_1^2}{(1-\lambda)^3} \left[\frac{\lambda(3-3\lambda+\lambda^2)}{\mu_R^2} + \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda) \right] \ln \frac{Q^2}{\mu_R^2} \\ &- \frac{\lambda^2(6-4\lambda+\lambda^2)}{2(1-\lambda)^4} \ln^2 \frac{Q^2}{\mu_R^2} \right) \\ &+ \frac{B^{(2)}}{(1-\lambda)^3} \left(-\frac{\beta_2}{\mu_R^2} \frac{\lambda^3(4-\lambda)}{\mu_R^2} \right) \\ &- \frac{\lambda^2(6-4\lambda+\lambda^2)}{2(1-\lambda)^4} \ln^2 \frac{Q^2}{\mu_R^2} \right) \\ &+ \frac{B^{(2)}}{(1-\lambda)^3} \left(-\frac{\beta_2}{\mu_R^2} \frac{\lambda^3(4-\lambda)}{\mu_R^2} \right) \\ &- \frac{\beta_1^2}{(1-\lambda)^4} \ln^2 \frac{Q^2}{\mu_R^2} \right) \\ &+ \frac{B^{(2)}}{(1-\lambda)^4} \left(-\frac{\beta_2}{\mu_R^2} \frac{\lambda^3(4-\lambda)}{\mu_R^2} \right) \\ &- \frac{B^{(2)}}{(1-\lambda)^4} \ln^2 \ln^2 \frac{Q^2}{\mu_R^2} \right) \\ &+ \frac{A^{(2)}}{(1-\lambda)^4} \left(-\frac{\beta_2}{\mu_R^2} \frac{\lambda^3(4-\lambda)}{\mu_R^2} \right) \\ &+ \frac{A^{(2)}}{(1-\lambda)^4} \left(-\frac{\beta_2}{\mu_R^2} \frac{\lambda^3(4-\lambda)}{\mu_R^2} \right) \\ &+ \frac{A^{(2)}}{(1-\lambda)^4} \ln^2 \ln(1-\lambda) \right) \\ &+ \left[\frac{\beta_2}{k_5^2} \frac{\lambda^3(4-\lambda)}{(1-\lambda)^4} \ln^2 \ln^2 \frac{\lambda^3}{\mu_R^2} \right] \\ &+ \frac{B^{(3)}}{(1-\lambda)^4} \ln^2 \ln^2 \frac{\lambda^3}{\mu_R^2} \right] \\ &+ \frac{B^{(3)}}{3(1-\lambda)^4} \ln^2 \ln^2 \frac{\lambda^3}{\mu_R^2} \right) \\ &+ \frac{B^{(3)}}{3(1-\lambda)^4} \ln^2 \ln^2 \frac{\lambda^3}{\mu_R^2} \right) \\ &+ \frac{B^{(3)}}{k_5^3} \left(-\frac{\lambda^3}{(1-\lambda)^3} + \frac{B^{(3)}}{\mu_R^2} \right) \\ &+ \frac{B^{(3)}}{k_5^3} \left(-\frac{\lambda^3}{(1-\lambda)^3} + \frac{B^{(3)}}{\mu_R^2} \right) \\ &+ \frac{B^{(3)}}{(1-\lambda)^4} \ln^2 \ln^2 \frac{\lambda^3}{\mu_R^2} \right] \\ \\ &+ \frac{B^{(3)}}{3(1-\lambda)^3} \ln(1-\lambda) \right) \\ &+ \frac{B^{(3)}}{\mu_R^2} \left(-\frac{\lambda^3}{(1-\lambda)^3} + \frac{B^{(3)}}{\mu_R^2} \right) \\ \\ &+ \frac{B^{(3)}}{k_5^3} \left(-\frac{\lambda^3}{(1-\lambda)^3} + \frac{B^{(3)}}{\mu_R^2} \right) \\ \\ &+ \frac{B^{(3)}}{k_5^3} \left(-\frac{\lambda^3}{(1-\lambda)^3} + \frac{B^{(3)}}{\mu_R^2} \right) \\ \\ &+ \frac{B^{(3)}}{k_5^3} \left(-\frac{\lambda^3}{(1-\lambda)^3} + \frac{B^{(3)}}{$
$\begin{split} &+\frac{\lambda^{2}(6-4\lambda+\lambda^{2})}{(1-\lambda)^{4}}\ln\frac{Q^{2}}{\mu_{R}^{2}}\right) +\overline{B}^{(3)}\left(\frac{\beta_{L}}{\beta_{0}^{2}}\left[\frac{\lambda(3-3\lambda+\lambda^{2})}{3(1-\lambda)^{3}}+\frac{\ln(1-\lambda)}{(1-\lambda)^{3}}\right] \\ &+\frac{\lambda(3-3\lambda+\lambda^{2})}{(1-\lambda)^{3}}\ln\frac{Q^{2}}{\mu_{R}^{2}}\right) +A^{(3)}\left(-\frac{\beta_{2}}{4\beta_{0}^{3}}\frac{\lambda^{3}(4-\lambda)}{(1-\lambda)^{4}}\right) \\ &+\frac{\beta_{L}^{2}}{\beta_{0}^{2}}\left[\frac{\lambda(12-24\lambda+52\lambda^{2}-13\lambda^{3})}{3(1-\lambda)^{4}}+\frac{\ln(1-\lambda)}{3(1-\lambda)^{4}}+\frac{1-4\lambda}{2(1-\lambda)^{4}}\ln^{2}(1-\lambda)\right] \\ &+\frac{\beta_{L}^{2}}{\beta_{0}^{2}}\left[\frac{\lambda(3-3\lambda+\lambda^{2})}{3(1-\lambda)^{4}}+\frac{1-4\lambda}{(1-\lambda)^{4}}\ln(1-\lambda)\right]\ln\frac{Q^{2}}{\mu_{R}^{2}} \\ &-\frac{\lambda^{2}(6-4\lambda+\lambda^{2})}{2(1-\lambda)^{4}}\ln^{2}\frac{Q^{2}}{\mu_{R}^{2}}\right) +\overline{B}^{(2)}\left(-\frac{\beta_{2}}{\beta_{0}^{2}}\frac{(3-\lambda)\lambda^{2}}{(1-\lambda)^{3}}+\frac{\beta_{1}^{2}}{\beta_{0}^{2}}\left(\frac{(3-\lambda)\lambda^{2}}{(1-\lambda)^{3}}\right) \\ &-\frac{\hbar^{2}(1-\lambda)}{(1-\lambda)^{4}}\ln^{2}\frac{Q^{2}}{\mu_{R}^{2}}\right) +\overline{B}^{(2)}\left(-\frac{\beta_{2}}{\beta_{0}^{2}}\frac{(3-\lambda)\lambda^{2}}{(1-\lambda)^{3}}+\frac{\beta_{1}^{2}}{\beta_{0}^{2}}\left(\frac{(3-\lambda)\lambda^{2}}{(1-\lambda)^{3}}\right) \\ &+\frac{\hbar^{2}(1-\lambda)}{(1-\lambda)^{4}}\ln^{2}\frac{Q^{2}}{\mu_{R}^{2}}\right) \\ &+\frac{\hbar^{2}(1-\lambda)}{(1-\lambda)^{4}}\ln^{2}\frac{\beta_{1}^{2}}{\mu_{R}^{2}}\right) +\overline{B}^{(2)}\left(-\frac{\beta_{2}}{\beta_{0}^{2}}\frac{(3-\lambda)\lambda^{2}}{(1-\lambda)^{3}}\ln^{2}\left(\frac{Q^{2}}{\mu_{R}^{2}}\right) \\ &+\frac{\hbar^{2}(1-\lambda)}{(1-\lambda)^{4}}\ln(1-\lambda)\right) +\frac{\beta_{1}^{3}}{\beta_{0}^{2}}\left(\frac{\lambda(6-21\lambda+44\lambda^{2}-20\lambda^{3})}{6(1-\lambda)^{4}}\right) \\ &+\frac{1-4\lambda+9\lambda^{2}}{(1-\lambda)^{4}}\ln(1-\lambda)\right) +\frac{\beta_{1}^{3}}{\beta_{0}^{2}}\left(\frac{\lambda(1-2+42\lambda-64\lambda^{2}+25\lambda^{3})}{6(1-\lambda)^{4}}\right) \\ &+\frac{1-4\lambda+9\lambda^{2}}{3(1-\lambda)^{4}}\ln(1-\lambda)\right) +\frac{\beta_{1}^{3}}{\beta_{0}^{2}}\left(\frac{-(3+4\lambda-\lambda^{2})\lambda^{2}}{3(1-\lambda)^{4}}-\frac{2\lambda}{(1-\lambda)^{4}}\ln^{2}(1-\lambda)\right) \\ &+\left[\frac{\beta_{2}}{\beta_{2}^{3}}\frac{(3+4\lambda-\lambda^{2})\lambda^{2}}{(1-\lambda)^{4}}+\frac{\beta_{1}^{2}}{\beta_{0}^{2}}\left(-\frac{(3+4\lambda-\lambda^{2})\lambda^{2}}{3(1-\lambda)^{4}}-\frac{2\lambda}{(1-\lambda)^{4}}\ln(1-\lambda)\right)\ln^{2}\frac{Q^{2}}{\mu_{R}^{2}}\right] \\ &+\frac{\beta_{1}}(-\lambda)^{2}(6-4\lambda+\lambda^{2})\ln^{3}}{1(1-\lambda)}\ln^{3}\frac{Q^{2}}{\mu_{R}^{2}}\right) +\overline{B}^{(1)}\left(-\frac{\beta_{3}}{\beta_{0}^{2}}\frac{(3-2\lambda)\lambda^{2}}{(1-\lambda)^{4}}\ln(1-\lambda)\right)\ln^{2}\frac{Q^{2}}{\mu_{R}^{2}}} \\ &+\frac{\beta_{1}^{3}}(6-4\lambda+\lambda^{2})\ln^{3}}{1(1-\lambda)^{4}}\ln^{3}\frac{Q^{2}}{\mu_{R}^{2}}\right) +\overline{B}^{(1)}\left(-\frac{\beta_{1}^{3}}{(1-\lambda)^{4}}\ln(1-\lambda)\right)\ln^{3}\frac{Q^{2}}{\mu_{R}^{2}}} \\ &+\frac{\beta_{1}^{3}}(6-4\lambda+\lambda^{2})h^{2}(1-\lambda)^{4}}h^{2}(1-\lambda)^{4}}{h^{2}}h^{2}\left(-\frac{\lambda^{2}}{(1-\lambda)^{4}}h^{2}(1-\lambda)\right)\ln^{3}\frac{Q^{2}}{\mu_{R}^{2}}} \\ &+\frac{\beta_{1}^{3}}(6-4\lambda+\lambda^{2})h^{2}}{h^{3}}\left(-\frac{\beta_{1}^{3}}{h^{3}}\left(-\frac{\beta_{1}^$
$\begin{aligned} + \frac{\lambda(3-3\lambda+\lambda^2)}{(1-\lambda)^3} \ln \frac{Q^2}{\mu_R^2} + A^{(3)} \left(-\frac{\beta_2}{4k_0^3} \frac{\lambda^3(4-\lambda)}{(1-\lambda)^4} + \frac{\beta_1^2}{3(1-\lambda)^4} \ln^2(1-\lambda) \right] \\ + \frac{\beta_1^2}{\beta_0^4} \left[\frac{\lambda(12-24\lambda+52\lambda^2-13\lambda^3)}{3(1-\lambda)^4} + \frac{\ln(1-\lambda)}{3(1-\lambda)^3} + \frac{1-4\lambda}{2(1-\lambda)^4} \ln^2(1-\lambda) \right] \\ + \frac{\beta_1^2}{\beta_0^4} \left[\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} + \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda) \right] \ln \frac{Q^2}{\mu_R^2} \\ - \frac{\lambda^2(6-4\lambda+\lambda^2)}{3(1-\lambda)^4} \ln^2 \frac{Q^2}{\mu_R^2} \right] + \overline{B}^{(2)} \left(-\frac{\beta_2}{3k_0^2} \frac{(3-\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(\frac{(3-\lambda)\lambda^2}{3(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(\frac{(3-\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(\frac{(3-\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(\frac{(3-\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \right) \right) \\ + A^{(2)} \left(-\frac{\beta_2}{12k_0^3} \frac{\lambda^3(8-5\lambda)}{(1-\lambda)^4} + \frac{\beta_1\beta_2}{3k_0^2} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} + \frac{1-(4\lambda+9\lambda^2)}{(1-\lambda)^4} + \frac{\beta_1\beta_2}{3k_0^2} \left(\frac{\lambda(1-21+44\lambda^2-20\lambda^3)}{3(1-\lambda)^4} + \frac{1-(4\lambda+9\lambda^2)}{(1-\lambda)^4} \ln(1-\lambda) - \frac{1-4\lambda}{3(1-\lambda)^4} \ln^3(1-\lambda) \right) \\ + \left[\frac{\beta_2}{3k_0^2} \left(\frac{3+4\lambda-\lambda^2}{(1-\lambda)^4} + \frac{\beta_1^2}{\beta_0^2} \left(-\frac{(3+4\lambda-\lambda^2)\lambda^2}{3(1-\lambda)^4} - \frac{1-4\lambda}{(1-\lambda)^4} \ln^3(1-\lambda) \right) \right] \ln^2 \frac{Q^2}{\mu_R^2} \right] \\ + \frac{\beta_0}{3} \frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4} + \frac{\beta_1^2}{\beta_0^2} \left(-\frac{(3-2\lambda)\lambda^2}{3(1-\lambda)^3} - \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda) \right] \ln^2 \frac{Q^2}{\mu_R^2} \\ + \frac{\beta_0}{3} \frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4} \ln^3 \frac{Q^2}{\mu_R^2} \right) \\ + \frac{\beta_1(1-\lambda)}{3(1-\lambda)^4} \ln^3 \frac{Q^2}{\mu_R^2} \right) + \overline{B}^{(1)} \left(-\frac{\beta_3}{63} \frac{(3-2\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1\beta_2}{\beta_0^2} \left(\frac{(3-2\lambda)\lambda^2}{3(1-\lambda)^3} \right) \\ + \frac{\lambda}{3(1-\lambda)^3} \ln(1-\lambda) \right) + \frac{\beta_1^2}{\beta_0^2} \left(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3} \ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{2(1-\lambda)^3} \right) \\ + \frac{\beta_1}{3(1-\lambda)^3} \left(\frac{\lambda}{12} + \frac{\lambda}{2\lambda} + \frac{\lambda}{\beta_0^2} \right) \ln^2 \frac{Q^2}{\mu_R^2} \right) \\ + \lambda^{(1)} \left(\frac{\beta_2}{\beta_0^2} \left(\frac{\lambda(-12+42\lambda-52\lambda^2+7\lambda^3)}{12(1-\lambda)^3} + \ln(1-\lambda) \right) + \frac{\beta_1\beta_2}{\beta_0^2} \left(\frac{\lambda(2-5\lambda)}{3} \frac{(3-3\lambda+\lambda^2)}{12(1-\lambda)^4} \right) \\ + \frac{\beta_1\beta_0^2}{3\beta_0^2} \left(\frac{\lambda(12-2\lambda+40\lambda^2-13\lambda^3)}{12(1-\lambda)^4} + \ln(1-\lambda) \right) + \frac{\beta_1\beta_2}{\beta_0^2} \left(\frac{\lambda(2-5\lambda)}{3} \frac{(3-3\lambda+\lambda^2)}{12(1-\lambda)^4} \right) \\ - \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{12(1-\lambda)^4} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \right) + \frac{\beta_1\beta_0^2}{\beta_0^2} \left(\frac{\lambda(2-5\lambda)}{3(1-\lambda)^3} + \frac{\lambda}{\beta_0^2} \right) \\ + \frac{\lambda}{3\beta_0^2} \left(\frac{\lambda}{12-2\lambda+40\lambda^2-13\lambda$
$\begin{split} &+ \frac{\beta_1^2}{\beta_0^2} \left[\frac{\lambda(12 - 24\lambda + 52\lambda^2 - 13\lambda^3)}{3(1 - \lambda)^4} + \frac{\ln(1 - \lambda)}{3(1 - \lambda)^3} + \frac{1 - 4\lambda}{2(1 - \lambda)^4} \ln^2(1 - \lambda) \right] \\ &+ \frac{\beta_1}{\beta_0^2} \left[\frac{\lambda(3 - 3\lambda + \lambda^2)}{3(1 - \lambda)^3} + \frac{1 - 4\lambda}{(1 - \lambda)^4} \ln(1 - \lambda) \right] \ln \frac{Q^2}{\mu_R^2} \\ &- \frac{\lambda^2(6 - 4\lambda + \lambda^2)}{2(1 - \lambda)^4} \ln^2 \frac{Q^2}{\mu_R^2} \right] \\ &+ \overline{B^2}(2) \left(- \frac{\beta_2}{3\beta_0^2} \frac{(3 - \lambda)\lambda^2}{(1 - \lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(\frac{(3 - \lambda)\lambda^2}{(1 - \lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(\frac{(3 - \lambda)\lambda^2}{3(1 - \lambda)^3} \right) \right] \\ &- \frac{\ln^2(1 - \lambda)}{(1 - \lambda)^3} - \frac{2\beta_1}{\beta_0} \frac{\ln(1 - \lambda)}{(1 - \lambda)^3} \ln \frac{Q^2}{\mu_R^2} - \beta_0 \frac{\lambda(3 - 3\lambda + \lambda^2)}{(1 - \lambda)^3} \ln^2 \frac{Q^2}{\mu_R^2} \right) \\ &+ A^{(2)} \left(- \frac{\beta_2}{12\beta_0^2} \frac{\lambda^3(8 - 5\lambda)}{(1 - \lambda)^4} + \frac{\beta_1\beta_2}{\beta_0^2} \left(\frac{\lambda(-21\lambda + 44\lambda^2 - 20\lambda^3)}{6(1 - \lambda)^4} \right) \\ &+ \frac{1 - 4\lambda + 9\lambda^2}{(1 - \lambda)^4} \ln(1 - \lambda) \right) + \frac{\beta_1^2}{\beta_0^2} \left(\frac{\lambda(-12 + 42\lambda - 64\lambda^2 + 25\lambda^3)}{3(1 - \lambda)^4} \right) \\ &- \left(\frac{1 - 4\lambda + 9\lambda^2}{(1 - \lambda)^4} \ln(1 - \lambda) \right) - \frac{\lambda}{\beta_0^2} \left(\frac{\lambda(-12 + 42\lambda - 64\lambda^2 + 25\lambda^3)}{3(1 - \lambda)^4} \right) \\ &- \left(\frac{1 - 4\lambda + 9\lambda^2}{(1 - \lambda)^4} \ln(1 - \lambda) \right) + \frac{\beta_1^2}{\beta_0^2} \left(- \frac{(3 + 4\lambda - \lambda^2)\lambda^2}{3(1 - \lambda)^4} - \frac{2\lambda}{(1 - \lambda)^4} \ln^3(1 - \lambda) \right) \\ &+ \left[\frac{\beta_2}{3\beta_0^2} \frac{(3 + 4\lambda - \lambda^2)\lambda^2}{(1 - \lambda)^4} + \frac{\beta_1^2}{\beta_0^2} \left(- \frac{(3 - 4\lambda)\lambda^2}{3(1 - \lambda)^4} - \frac{1 - 4\lambda}{(1 - \lambda)^4} \ln(1 - \lambda) \right) \right] \ln^2 \frac{Q^2}{\mu_R^2} \\ &+ \frac{\beta_0}{3} \frac{\lambda^2(6 - 4\lambda + \lambda^2)}{(1 - \lambda)^4} \ln^3 \frac{Q^2}{\mu_R^2} \right) \\ &+ \frac{\beta_0}{3} \frac{\lambda^2(6 - 4\lambda + \lambda^2)}{(1 - \lambda)^3} \ln^3 \frac{Q^2}{\mu_R^2} \right) \\ &+ \frac{\beta_1}{(1 - \lambda)^3} \ln(1 - \lambda) + \frac{\beta_1^3}{\beta_0^2} \left(- \frac{(3 - 2\lambda)\lambda^2}{(1 - \lambda)^3} - \frac{\lambda}{(1 - \lambda)^3} \ln(1 - \lambda) - \frac{12(1 - \lambda)}{3(1 - \lambda)^3} \right) \\ &+ \frac{\beta_1}{3(1 - \lambda)^3} \right) + \left[\frac{\beta_2}{\beta_0} \frac{\lambda}{(1 - \lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(- \frac{\lambda}{(1 - \lambda)^3} - \frac{\ln(1 - \lambda)}{(1 - \lambda)^3} + \frac{\ln^2(1 - \lambda)}{(1 - \lambda)^3} \right) \right] \ln \frac{Q^2}{\mu_R^2} \\ &+ \beta_1 \left[- \frac{\lambda(3 - 3\lambda + \lambda^2)}{\beta_0^2} + \frac{\ln(1 - \lambda)}{1(\lambda)^3} \right] \ln^2 \frac{Q^2}{\mu_R^2} + \beta_0^2 \frac{\lambda(3 - 3\lambda + \lambda^2)}{3(1 - \lambda)^3} \ln^3 \frac{Q^2}{\mu_R^2} \right) \\ &+ \lambda(1 \left(\frac{\beta_2}{\beta_0^2} \left(\frac{\lambda(12 - 42\lambda + 40\lambda^2 - 13\lambda^3)}{1(\lambda)^3} + \ln(1 - \lambda) \right) + \frac{\beta_1\beta_0^3}{\beta_0^2} \left(- \frac{\lambda(2 - 5\lambda)}{3(1 - \lambda)^3} \frac{(3 - \lambda)^4}{\mu_R^2} \right) \\ &+ \frac{\lambda(1 - \lambda)^3}{\lambda(1 - \lambda)^3} \frac{\lambda}{\lambda(1 - \lambda)^3} + \lambda(1 -$
$\begin{split} &+ \frac{\beta_1}{\beta_0^2} \left[\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} + \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda) \right] \ln \frac{Q^2}{\mu_R^2} \\ &- \frac{\lambda^2(6-4\lambda+\lambda^2)}{2(1-\lambda)^4} \ln^2 \frac{Q^2}{\mu_R^2} \right] + \overline{B}^{(2)} \left(-\frac{\beta_2}{3\beta_0^2} \frac{(3-\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(\frac{(3-\lambda)\lambda^2}{3(1-\lambda)^3} \right) \\ &- \frac{\ln^2(1-\lambda)}{\beta_0} - \frac{2\beta_1}{\beta_0} \frac{\ln(1-\lambda)}{(1-\lambda)^3} \ln \frac{Q^2}{\mu_R^2} - \beta_0 \frac{\lambda(3-3\lambda+\lambda^2)}{(1-\lambda)^3} \ln^2 \frac{Q^2}{\mu_R^2} \right) \\ &+ A^{(2)} \left(-\frac{\beta_2}{12\beta_0^3} \frac{\lambda^3(8-5\lambda)}{(1-\lambda)^4} + \frac{\beta_1\beta_2}{\beta_0^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right) \\ &+ \frac{1-4\lambda+9\lambda^2}{(1-\lambda)^4} \ln(1-\lambda) \right) + \frac{\beta_1^3}{\beta_0^6} \left(\frac{\lambda(-12+42\lambda-64\lambda^2+25\lambda^3)}{36(1-\lambda)^4} \right) \\ &- \left(\frac{1-4\lambda+9\lambda^2}{3(1-\lambda)^4} \ln(1-\lambda) \right) + \frac{\beta_1^3}{\beta_0^6} \left(\frac{\lambda(-12+42\lambda-64\lambda^2+25\lambda^3)}{3(1-\lambda)^4} - \frac{1-4\lambda}{3(1-\lambda)^4} \ln^3(1-\lambda) \right) \\ &+ \left[\frac{\beta_2}{3\beta_0^2} \frac{(3+4\lambda-\lambda^2)\lambda^2}{(1-\lambda)^4} + \frac{\beta_1^2}{\beta_0^2} \left(-\frac{(3+4\lambda-\lambda^2)\lambda^2}{(1-\lambda)^4} - \frac{1-4\lambda}{(1-\lambda)^4} \ln^3(1-\lambda) \right) \right] \ln^2 \frac{Q^2}{\mu_R^2} \\ &+ \frac{\beta_0}{3\beta_0^2} \frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4} \ln^3 \frac{Q^2}{\mu_R^2} \right) \\ &+ \frac{\beta_1(1-\lambda)}{3(1-\lambda)^4} \ln^3(1-\lambda) \right) + \frac{\beta_1^3}{\beta_0^4} \left(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3} \ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{2(1-\lambda)^3} \right) \\ &+ \frac{\lambda^3(1-\lambda)}{3(1-\lambda)^3} \right) \\ &+ \left[\frac{\beta_2}{\beta_0^2} \left(\frac{\lambda(1-2+42\lambda+6\lambda^2-13\lambda^3)}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(-\frac{\lambda(3-3\lambda+\lambda^2)}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(\frac{(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} \right) \right] \ln \frac{Q^2}{\mu_R^2} \\ &+ \beta_1 \left[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\beta_1^2}{(1-\lambda)^3} - \frac{\lambda(1-\lambda)}{(1-\lambda)^3} - \frac{\ln(1-\lambda)}{(1-\lambda)^3} + \frac{\ln^2(1-\lambda)}{(1-\lambda)^3} \right) \right] \ln \frac{Q^2}{\mu_R^2} \\ &+ \beta_1 \left[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3} \right] \ln^2 \frac{Q^2}{\mu_R^2} + \beta_0^2 \frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} \ln^3 \frac{Q^2}{\mu_R^2} \right) \\ &+ A^{(1)} \left(\frac{\beta_2}{\beta_0^2} \left(\frac{\lambda(1-2+42\lambda+40\lambda^2-13\lambda^3)}{1(1-\lambda)^3} + \ln(1-\lambda) \right) + \frac{\beta_1\beta_3}{\beta_0^2} \left(-\frac{\lambda(2-5\lambda)}{3} \frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} - \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{12(1-\lambda)^4} \ln(1-\lambda) \right) + \frac{\beta_1\beta_2}{\beta_0^2} \left(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{(1-\lambda)^4} - \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{12(1-\lambda)^4} \ln(1-\lambda) \right) + \frac{\beta_1\beta_3}{\beta_0^2} \left(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{(1-\lambda)^4} - \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{10(1-\lambda)} - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \right) + \frac{\beta_1\beta_3}{\beta_0^2} \left(-\frac{\lambda(3-3\lambda+\lambda^2)}{(1-\lambda)^4} + \frac{\lambda(3-3\lambda^2+3\lambda^3)}{(1-\lambda)^4} - \frac{\lambda(3-3\lambda+\lambda^2)}$
$\begin{split} &-\frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4}\ln^2\frac{Q^2}{\mu_R^2}\right) + \overline{B}^{(2)}\left(-\frac{\beta_2}{3\beta_0^2}\frac{(3-\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2}\left(\frac{(3-\lambda)\lambda^2}{(1-\lambda)^3}\right) \\ &-\frac{\ln^2(1-\lambda)}{(1-\lambda)^3}\right) - \frac{2\beta_1}{\beta_0}\frac{\ln(1-\lambda)}{(1-\lambda)^3}\ln\frac{Q^2}{\mu_R^2} - \beta_0\frac{\lambda(3-3\lambda+\lambda^2)}{(1-\lambda)^3}\ln^2\frac{Q^2}{\mu_R^2}\right) \\ &+ A^{(2)}\left(-\frac{\beta_3}{12\beta_0^3}\frac{\lambda^3(8-5\lambda)}{(1-\lambda)^4} + \frac{\beta_1\beta_2}{3\beta_0^4}\left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4}\right) \\ &+\frac{1-4\lambda+9\lambda^2}{(1-\lambda)^4}\ln(1-\lambda)\right) + \frac{\beta_1^3}{\beta_0^5}\left(\frac{\lambda(-12+42\lambda-64\lambda^2+25\lambda^3)}{36(1-\lambda)^4}\right) \\ &-\frac{(1-4\lambda+9\lambda^2)}{(1-\lambda)^4}\ln(1-\lambda) - \frac{\lambda}{(1-\lambda)^4}\ln^2(1-\lambda) - \frac{1-4\lambda}{3(1-\lambda)^4}\ln^3(1-\lambda)\right) \\ &+ \left[\frac{\beta_2}{3\beta_0^2}\frac{(3+4\lambda-\lambda^2)\lambda^2}{(1-\lambda)^4} + \frac{\beta_1^2}{\beta_0^2}\left(-\frac{(3+4\lambda-\lambda^2)\lambda^2}{3(1-\lambda)^4} - \frac{2\lambda}{(1-\lambda)^4}\ln(1-\lambda)\right)\ln^2\frac{Q^2}{\mu_R^2}\right) \\ &+ \frac{\beta_0}{3\beta_0^2}\frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4}\ln^3\frac{Q^2}{\mu_R^2}\right) + \overline{B}^{(1)}\left(-\frac{\beta_3}{6\beta_0^2}\frac{(3-2\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1\beta_2}{\beta_0^2}\left(\frac{(3-2\lambda)\lambda^2}{3(1-\lambda)^3}\right) \\ &+ \frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda)\right) + \frac{\beta_1^3}{\beta_0^2}\left(-\frac{(3-2\lambda)\lambda^2}{(6(1-\lambda)^3)} - \frac{\lambda(1-\lambda)}{(1-\lambda)^3}\ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{2(1-\lambda)^3}\right) \\ &+ \frac{\lambda}{n^3(1-\lambda)^3}\right) + \left[\frac{\beta_2}{\beta_0}\frac{\lambda}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2}\left(-\frac{\lambda}{(1-\lambda)^3} - \frac{\ln(1-\lambda)}{3(1-\lambda)^3} + \frac{n^2(1-\lambda)}{2(1-\lambda)^3}\right)\right]\ln\frac{Q^2}{\mu_R^2} \\ &+ \beta_1\left[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{1(1-\lambda)^3}\right]\ln^2\frac{Q^2}{\mu_R^2} + \beta_0^2\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3}\ln^3\frac{Q^2}{\mu_R^2}\right) \\ &+ A^{(1)}\left(\frac{\beta_2^2}{3\beta_0^4}\left(\frac{\lambda(-12+42\lambda+52\lambda^2+1\lambda^3)}{12(1-\lambda)^4} + \ln(1-\lambda)\right) + \frac{\beta_1\beta_3}{6\beta_0^4}\left(-\frac{\lambda(2-5\lambda)}{3}\frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4}\right) \\ &- \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{12(1-\lambda)^4}\ln(1-\lambda) + \frac{\beta_1\beta_3}{\beta_0^2}\left(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{3(1-\lambda)^4}\right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\right) + \frac{\beta_1^2}{2\beta_0^6}\left(-\frac{\lambda^3(2+3\lambda)}{3(1-\lambda)^4}\right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\right) + \frac{\beta_1^2}{2\beta_0^6}\left(-\frac{\lambda^3(2+3\lambda)}{3(1-\lambda)^4}\right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\right) + \frac{\beta_1^2}{2\beta_0^6}\left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}\right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\right) + \frac{\beta_1^2}{2\beta_0^6}\left(-\frac{\lambda^3(2+3\lambda)}{3(1-\lambda)^4}\right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\right) + \frac{\beta_1^2}{$
$\begin{split} &-\frac{\ln^2(1-\lambda)}{(1-\lambda)^3}\right) - \frac{2\beta_1}{\beta_0}\frac{\ln(1-\lambda)}{(1-\lambda)^3}\ln\frac{Q^2}{\mu_R^2} - \beta_0\frac{\lambda(3-3\lambda+\lambda^2)}{(1-\lambda)^3}\ln^2\frac{Q^2}{\mu_R^2}\right) \\ &+ A^{(2)}\bigg(-\frac{\beta_3}{12\beta_0^3}\frac{\lambda^3(8-5\lambda)}{(1-\lambda)^4} + \frac{\beta_1\beta_2}{3\beta_0^3}\bigg(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \\ &+ \frac{1-4\lambda+9\lambda^2}{(1-\lambda)^4}\ln(1-\lambda)\bigg) + \frac{\beta_1^3}{\beta_0^3}\bigg(\frac{\lambda(-12+42\lambda-64\lambda^2+25\lambda^3)}{36(1-\lambda)^4} \\ &- \frac{(1-4\lambda+9\lambda^2)}{(1-\lambda)^4}\ln(1-\lambda) - \frac{\lambda}{(1-\lambda)^4}\ln^2(1-\lambda) - \frac{1-4\lambda}{3(1-\lambda)^4}\ln^3(1-\lambda)\bigg) \\ &+ \bigg[\frac{\beta_2}{3\beta_0^2}\frac{(3+4\lambda-\lambda^2)\lambda^2}{(1-\lambda)^4} + \frac{\beta_1^2}{\beta_0^3}\bigg(-\frac{(3+4\lambda-\lambda^2)\lambda^2}{3(1-\lambda)^4} - \frac{2\lambda}{(1-\lambda)^4}\ln(1-\lambda)\bigg]\ln^2\frac{Q^2}{\mu_R^2} \\ &+ \frac{\beta_0}{3\beta_0^2}\frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4}\ln^3\frac{Q^2}{\mu_R^2}\bigg) + \overline{B}^{(1)}\bigg(-\frac{\beta_3}{6\beta_0^2}\frac{(3-2\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1\beta_2}{\beta_0^2}\bigg(\frac{(3-2\lambda)\lambda^2}{(3(1-\lambda)^3)} \\ &+ \frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda)\bigg) + \frac{\beta_1^2}{\beta_0^4}\bigg(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{2(1-\lambda)^3}\bigg)\bigg]\ln\frac{Q^2}{\mu_R^2} \\ &+ \beta_1\bigg[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3}\bigg]\ln^2\frac{Q^2}{\mu_R^2} + \beta_0^2\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3}\ln^3\frac{Q^2}{\mu_R^2}\bigg) \\ &+ A^{(1)}\bigg(\frac{\beta_2^2}{3\beta_0^4}\bigg(\frac{\lambda(-12+42\lambda-52\lambda^2+7\lambda^3)}{12(1-\lambda)^4} - \ln(1-\lambda)\bigg)\bigg) \\ &+ \frac{\beta_4}{3\beta_0^3}\bigg(\frac{\lambda(12-42\lambda+40\lambda^2-13\lambda^3)}{12(1-\lambda)^4} + \ln(1-\lambda)\bigg) + \frac{\beta_1\beta_3}{\beta_0^2}\bigg(-\frac{\lambda(2-5\lambda)}{3}\frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4}\bigg) \\ &- \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{12(1-\lambda)^4}\ln(1-\lambda)\bigg) + \frac{\beta_1^2\beta_2}{2(1-\lambda)^4}\ln^2(1-\lambda)\bigg) + \frac{\beta_1^2\beta_0}{\beta_0^2}\bigg(-\frac{\lambda(12-42\lambda+40\lambda^2-13\lambda^3)}{3(1-\lambda)^4}\bigg) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^4}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\bigg) + \frac{\beta_1^4}{\beta_0^2}\bigg(-\frac{\lambda^3(2+3\lambda)}{3(1-\lambda)^4}\bigg) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\bigg) + \frac{\beta_1^4}{\beta_0^2}\bigg(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}\bigg) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\bigg) + \frac{\beta_1^4}{\beta_0^2}\bigg(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}\bigg) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\bigg) + \frac{\beta_1^4}{2\beta_0^6}\bigg(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}\bigg) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\bigg) \\ &+ \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\bigg$
$\begin{aligned} &+A^{(2)} \left(-\frac{\beta_3}{12\beta_0^3} \frac{\lambda^3(8-5\lambda)}{(1-\lambda)^4} + \frac{\beta_1\beta_2}{3\beta_0^4} \left(\frac{\lambda(6-21\lambda+44\lambda^2-20\lambda^3)}{6(1-\lambda)^4} \right. \\ &+ \frac{1-4\lambda+9\lambda^2}{(1-\lambda)^4} \ln(1-\lambda) \right) + \frac{\beta_1^3}{\beta_0^5} \left(\frac{\lambda(-12+42\lambda-64\lambda^2+25\lambda^3)}{36(1-\lambda)^4} \right. \\ &- \left(\frac{1-4\lambda+9\lambda^2}{3(1-\lambda)^4} \ln(1-\lambda) - \frac{\lambda}{(1-\lambda)^4} \ln^2(1-\lambda) - \frac{1-4\lambda}{3(1-\lambda)^4} \ln^3(1-\lambda) \right) \\ &+ \left[\frac{\beta_2}{3\beta_0^2} \frac{(3+4\lambda-\lambda^2)\lambda^2}{(1-\lambda)^4} + \frac{\beta_1^2}{\beta_0^3} \left(- \frac{(3+4\lambda-\lambda^2)\lambda^2}{3(1-\lambda)^4} - \frac{2\lambda}{(1-\lambda)^4} \ln(1-\lambda) \right) \right] \ln \frac{Q^2}{\mu_R^2} \\ &+ \frac{\beta_0}{3\beta_0^2} \frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4} \ln^3 \frac{Q^2}{\mu_R^2} \right) + \overline{B}^{(1)} \left(-\frac{\beta_3}{6\beta_0^2} \frac{(3-2\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1\beta_2}{\beta_0^3} \left(\frac{(3-2\lambda)\lambda^2}{3(1-\lambda)^3} \right) \right] \ln \frac{Q^2}{\mu_R^2} \\ &+ \frac{\beta_0}{3} \frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4} \ln^3 \frac{Q^2}{\mu_R^2} \right) \\ &+ \frac{\beta_1}{3(1-\lambda)^3} \ln(1-\lambda) \right) + \frac{\beta_1^3}{\beta_0^4} \left(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3} \ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{2(1-\lambda)^3} \right) \\ &+ \frac{\lambda}{(1-\lambda)^3} \ln(1-\lambda) \right) + \frac{\beta_1^3}{\beta_0^4} \left(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3} \ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{2(1-\lambda)^3} \right) \\ &+ \beta_1 \left[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3} \right] \ln^2 \frac{Q^2}{\mu_R^2} \\ &+ \beta_0 \frac{\lambda^2}{3\beta_0^4} \left(\frac{\lambda(-12+42\lambda-52\lambda^2+7\lambda^3)}{12(1-\lambda)^4} - \ln(1-\lambda) \right) \\ &+ \frac{\beta_4}{3\beta_0^3} \left(\frac{\lambda(12-42\lambda+40\lambda^2-13\lambda^3)}{12(1-\lambda)^4} + \ln(1-\lambda) \right) + \frac{\beta_1\beta_3}{\beta_0^2} \left(-\frac{\lambda(2-5\lambda)}{3} \frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} \right) \\ &- \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{12(1-\lambda)^4} \ln(1-\lambda) \\ &+ \frac{\beta_1^2\beta_2}{\beta_0^2} \left(\frac{\lambda(12-42\lambda+40\lambda^2-13\lambda^3)}{12(1-\lambda)^4} + \ln(1-\lambda) \right) + \frac{\beta_1\beta_3}{\beta_0^2} \left(-\frac{\lambda(2-5\lambda)}{3} \frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} \right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \right) + \frac{\beta_1^4}{\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{3(1-\lambda)^4} \right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \right) + \frac{\beta_1^2\beta_0^2}{\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} \right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \right) + \frac{\beta_1^4}{\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} \right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \right) + \frac{\beta_1^2\beta_0^2}{3(1-\lambda)^4} \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3} \ln^2(1-\lambda) + \frac{\beta_1^2\beta_0^2}{3(1-\lambda)^4} \left(-\frac{\lambda^3(2+3\lambda)}{3(1-\lambda)^4} \right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^4} \ln^2(1$
$\begin{split} &+ \frac{1-(4)+9\lambda^2}{(1-\lambda)^4}\ln(1-\lambda) + \frac{\beta_0^3}{\beta_0^5} \left(\frac{\lambda(-12+42\lambda-64\lambda^2+25\lambda^3)}{36(1-\lambda)^4}\right) \\ &- \frac{(1-4\lambda+9\lambda^2)}{3(1-\lambda)^4}\ln(1-\lambda) - \frac{\lambda}{(1-\lambda)^4}\ln^2(1-\lambda) - \frac{1-4\lambda}{3(1-\lambda)^4}\ln^3(1-\lambda) \\ &+ \left[\frac{\beta_2}{3\beta_0^2}\frac{(3+4\lambda-\lambda^2)\lambda^2}{(1-\lambda)^4} + \frac{\beta_1^2}{\beta_0^3} \left(-\frac{(3+4\lambda-\lambda^2)\lambda^2}{3(1-\lambda)^4} - \frac{2\lambda}{(1-\lambda)^4}\ln(1-\lambda)\right)\right] \ln^2\frac{Q^2}{\mu_R^2} \\ &- \frac{1-4\lambda}{(1-\lambda)^4}\ln^2(1-\lambda) \right) \left] \ln\frac{Q^2}{\mu_R^2} + \frac{\beta_1}{\beta_0} \left[-\frac{\lambda}{(1-\lambda)^4} - \frac{1-4\lambda}{(1-\lambda)^4}\ln(1-\lambda)\right] \ln^2\frac{Q^2}{\mu_R^2} \\ &+ \frac{\beta_0}{3}\frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4}\ln^3\frac{Q^2}{\mu_R^2} + \overline{B}^{(1)} \left(-\frac{\beta_3}{6\beta_0^2}\frac{(3-2\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1\beta_2}{\beta_0^3} \left(\frac{(3-2\lambda)\lambda^2}{3(1-\lambda)^3} + \frac{\lambda}{\beta_0^4}\left(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{2(1-\lambda)^3}\right) \\ &+ \frac{\lambda}{3(1-\lambda)}\ln(1-\lambda) + \frac{\beta_1^3}{\beta_0^4} \left(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{(1-\lambda)^3}\right) \right] \ln\frac{Q^2}{\mu_R^2} \\ &+ \beta_1 \left[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3}\right] \ln^2\frac{Q^2}{\mu_R^2} + \beta_0^2\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3}\ln^3\frac{Q^2}{\mu_R^2}\right) \\ &+ A^{(1)} \left(\frac{\beta_2^3}{\beta\delta_0^4} \left(\frac{\lambda(-12+42\lambda-52\lambda^2+7\lambda^3)}{12(1-\lambda)^4} - \ln(1-\lambda)\right) + \frac{\beta_1\beta_3}{\delta\delta_0^4} \left(-\frac{\lambda(2-5\lambda)}{3}\frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} - \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{12(1-\lambda)^4}\ln(1-\lambda)\right) + \frac{\beta_1\beta_3}{\beta\delta_0^5} \left(-\frac{\lambda(2-5\lambda)}{3(1-\lambda)^4}\frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} - \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\right) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}\right) \end{split}$
$\begin{split} &-\frac{(1-4\lambda+9\lambda^2)}{3(1-\lambda)^4}\ln(1-\lambda)-\frac{\lambda}{(1-\lambda)^4}\ln^2(1-\lambda)-\frac{1-4\lambda}{3(1-\lambda)^4}\ln^3(1-\lambda)\right)\\ &+\left[\frac{\beta_2}{3\beta_0^2}\frac{(3+4\lambda-\lambda^2)\lambda^2}{(1-\lambda)^4}+\frac{\beta_1^2}{\beta_0^3}\left(-\frac{(3+4\lambda-\lambda^2)\lambda^2}{3(1-\lambda)^4}-\frac{2\lambda}{(1-\lambda)^4}\ln(1-\lambda)\right)\right]\ln^2\frac{Q^2}{\mu_R^2}\\ &-\frac{1-4\lambda}{(1-\lambda)^4}\ln^2(1-\lambda)\right)\right]\ln\frac{Q^2}{\mu_R^2}+\frac{\beta_1}{\beta_0}\left[-\frac{\lambda}{(1-\lambda)^4}-\frac{1-4\lambda}{(1-\lambda)^4}\ln(1-\lambda)\right]\ln^2\frac{Q^2}{\mu_R^2}\\ &+\frac{\beta_0}{3}\frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4}\ln^3\frac{Q^2}{\mu_R^2}\right)+\overline{B}^{(1)}\left(-\frac{\beta_3}{6\beta_0^2}\frac{(3-2\lambda)\lambda^2}{(1-\lambda)^3}+\frac{\beta_1\beta_2}{\beta_0^3}\left(\frac{(3-2\lambda)\lambda^2}{3(1-\lambda)^3}\right)\\ &+\frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda)\right)+\frac{\beta_1^3}{\beta_0^4}\left(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3}-\frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda)-\frac{\ln^2(1-\lambda)}{2(1-\lambda)^3}\right)\\ &+\frac{\ln^3(1-\lambda)}{3(1-\lambda)^3}\right)+\left[\frac{\beta_2}{\beta_0}\frac{\lambda}{(1-\lambda)^3}+\frac{\beta_1^2}{\beta_0^2}\left(-\frac{\lambda}{(1-\lambda)^3}-\frac{\ln(1-\lambda)}{(1-\lambda)^3}+\frac{\ln^2(1-\lambda)}{(1-\lambda)^3}\right)\right]\ln\frac{Q^2}{\mu_R^2}\\ &+\beta_1\left[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3}+\frac{\ln(1-\lambda)}{(1-\lambda)^3}\right]\ln^2\frac{Q^2}{\mu_R^2}+\beta_0^2\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3}\ln^3\frac{Q^2}{\mu_R^2}\right)\\ &+A^{(1)}\left(\frac{\beta_2^2}{3\beta_0^4}\left(\frac{\lambda(-12+42\lambda-52\lambda^2+7\lambda^3)}{12(1-\lambda)^4}-\ln(1-\lambda)\right)+\frac{\beta_1\beta_3}{6\beta_0^4}\left(-\frac{\lambda(2-5\lambda)}{3}\frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4}-\frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{12(1-\lambda)}\ln(1-\lambda)\right)+\frac{\beta_1\beta_3}{\beta_0^2}\left(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{3(1-\lambda)^4}-\frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda)-\frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\right)+\frac{\beta_1^4}{2\beta_0^6}\left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}\right) \end{split}$
$\begin{split} &+ \left[\frac{\beta_2}{3\beta_0^2} \frac{(3+4\lambda-\lambda^2)\lambda^2}{(1-\lambda)^4} + \frac{\beta_1^2}{\beta_0^3} \left(-\frac{(3+4\lambda-\lambda^2)\lambda^2}{3(1-\lambda)^4} - \frac{2\lambda}{(1-\lambda)^4} \ln(1-\lambda)\right) - \frac{1-4\lambda}{(1-\lambda)^4} \ln^2(1-\lambda)\right] \ln^2 \frac{Q^2}{\mu_R^2} \\ &- \frac{1-4\lambda}{(1-\lambda)^4} \ln^2(1-\lambda) \right) \ln^2 \frac{Q^2}{\mu_R^2} + \frac{\beta_1}{\beta_0} \left[-\frac{\lambda}{(1-\lambda)^4} - \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda)\right] \ln^2 \frac{Q^2}{\mu_R^2} \\ &+ \frac{\beta_0}{3} \frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4} \ln^3 \frac{Q^2}{\mu_R^2} \right) + \overline{B}^{(1)} \left(-\frac{\beta_3}{6\beta_0^2} \frac{(3-2\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1\beta_2}{\beta_0^3} \left(\frac{(3-2\lambda)\lambda^2}{3(1-\lambda)^3} + \frac{\lambda}{\beta_0^4} \left(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3} \ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{2(1-\lambda)^3} \right) \right] \\ &+ \frac{\lambda}{(1-\lambda)^3} \ln(1-\lambda) + \frac{\beta_1^2}{\beta_0^4} \left(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3} - \frac{\ln(1-\lambda)}{(1-\lambda)^3} + \frac{\ln^2(1-\lambda)}{(1-\lambda)^3} \right) \right] \ln \frac{Q^2}{\mu_R^2} \\ &+ \beta_1 \left[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3}\right] \ln^2 \frac{Q^2}{\mu_R^2} + \beta_0^2 \frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} \ln^3 \frac{Q^2}{\mu_R^2}\right) \\ &+ A^{(1)} \left(\frac{\beta_2^2}{3\beta_0^4} \left(\frac{\lambda(-12+42\lambda-52\lambda^2+7\lambda^3)}{12(1-\lambda)^4} - \ln(1-\lambda)\right) + \frac{\beta_1\beta_3}{6\beta_0^4} \left(-\frac{\lambda(2-5\lambda)}{3} \frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} - \frac{2-8\lambda+9\lambda^2 - 10\lambda^3 + 4\lambda^4}{12(1-\lambda)^4} \ln(1-\lambda)\right) + \frac{\beta_1\beta_2}{\beta_0^5} \left(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{3(1-\lambda)^4} - \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^4} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda)\right) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} - \frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}\right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda)\right) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}\right) \\ &+ \frac{\beta_1}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} + \frac{\beta_1}{2\beta_0^6} \right) \right) \\ &+ \frac{\beta_1}{\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} + \frac{\beta_1}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} + \frac{\beta_1}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} + \frac{\beta_1}{2\beta_0^6} \right) \right) \\ &+ \frac{\beta_1}{\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} + \frac{\beta_1}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} + \frac{\beta_1}{2\beta_0^6} + \frac{\beta_1}{2\beta_0^6} + \frac{\beta_1}{2\beta$
$\begin{split} &-\frac{1-4\lambda}{(1-\lambda)^4}\ln^2(1-\lambda)\Big) \Bigg] \ln\frac{Q^2}{\mu_R^2} + \frac{\beta_1}{\beta_0} \Bigg[-\frac{\lambda}{(1-\lambda)^4} - \frac{1-4\lambda}{(1-\lambda)^4}\ln(1-\lambda) \Bigg] \ln^2\frac{Q^2}{\mu_R^2} \\ &+ \frac{\beta_0}{3}\frac{\lambda^2(6-4\lambda+\lambda^2)}{(1-\lambda)^4}\ln^3\frac{Q^2}{\mu_R^2} \Bigg) + \overline{B}^{(1)} \Bigg(-\frac{\beta_3}{6\beta_0^2}\frac{(3-2\lambda)\lambda^2}{(1-\lambda)^3} + \frac{\beta_1\beta_2}{\beta_0^2} \Big(\frac{(3-2\lambda)\lambda^2}{3(1-\lambda)^3} \\ &+ \frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda) \Big) + \frac{\beta_1^3}{\beta_0^4} \Big(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3}\ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{2(1-\lambda)^3} \\ &+ \frac{\ln^3(1-\lambda)}{3(1-\lambda)^3} \Big) + \Bigg[\frac{\beta_2}{\beta_0}\frac{\lambda}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \Big(-\frac{\lambda}{(1-\lambda)^3} - \frac{\ln(1-\lambda)}{(1-\lambda)^3} + \frac{\ln^2(1-\lambda)}{(1-\lambda)^3} \Big) \Bigg] \ln\frac{Q^2}{\mu_R^2} \\ &+ \beta_1 \Bigg[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3} \Bigg] \ln^2\frac{Q^2}{\mu_R^2} + \beta_0^2\frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} \ln^3\frac{Q^2}{\mu_R^2} \Bigg) \\ &+ A^{(1)} \Bigg(\frac{\beta_2}{3\beta_0^4} \Big(\frac{\lambda(-12+42\lambda-52\lambda^2+7\lambda^3)}{12(1-\lambda)^4} - \ln(1-\lambda) \Big) \\ &+ \frac{\beta_4}{3\beta_0^3} \Big(\frac{\lambda(12-42\lambda+40\lambda^2-13\lambda^3)}{12(1-\lambda)^4} + \ln(1-\lambda) \Big) + \frac{\beta_1\beta_3}{6\beta_0^4} \Big(-\frac{\lambda(2-5\lambda)}{3}\frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} \\ &- \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{(1-\lambda)^4} \ln(1-\lambda) \Bigg) + \frac{\beta_1^2\beta_2}{\beta_0^5} \Big(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{3(1-\lambda)^4} \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \Bigg) + \frac{\beta_1^4}{2\beta_0^6} \Big(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} \Bigg) \end{aligned}$
$\begin{aligned} &+ \frac{\beta_0}{3} \frac{\lambda^2 (6 - 4\lambda + \lambda^2)}{(1 - \lambda)^4} \ln^3 \frac{Q^2}{\mu_R^2} \right) + \overline{B}^{(1)} \left(-\frac{\beta_3}{6\beta_0^2} \frac{(3 - 2\lambda)\lambda^2}{(1 - \lambda)^3} + \frac{\beta_1 \beta_2}{\beta_0^3} \left(\frac{(3 - 2\lambda)\lambda^2}{3(1 - \lambda)^3} \right) \\ &+ \frac{\lambda}{(1 - \lambda)^3} \ln(1 - \lambda) \right) + \frac{\beta_1^3}{\beta_0^4} \left(-\frac{(3 - 2\lambda)\lambda^2}{6(1 - \lambda)^3} - \frac{\lambda}{(1 - \lambda)^3} \ln(1 - \lambda) - \frac{\ln^2(1 - \lambda)}{2(1 - \lambda)^3} \right) \\ &+ \frac{\ln^3(1 - \lambda)}{3(1 - \lambda)^3} \right) + \left[\frac{\beta_2}{\beta_0} \frac{\lambda}{(1 - \lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(-\frac{\lambda}{(1 - \lambda)^3} - \frac{\ln(1 - \lambda)}{(1 - \lambda)^3} + \frac{\ln^2(1 - \lambda)}{(1 - \lambda)^3} \right) \right] \ln \frac{Q^2}{\mu_R^2} \\ &+ \beta_1 \left[-\frac{\lambda(3 - 3\lambda + \lambda^2)}{2(1 - \lambda)^3} + \frac{\ln(1 - \lambda)}{(1 - \lambda)^3} \right] \ln^2 \frac{Q^2}{\mu_R^2} + \beta_0^2 \frac{\lambda(3 - 3\lambda + \lambda^2)}{3(1 - \lambda)^3} \ln^3 \frac{Q^2}{\mu_R^2} \right) \\ &+ A^{(1)} \left(\frac{\beta_2^2}{3\beta_0^4} \left(\frac{\lambda(-12 + 42\lambda - 52\lambda^2 + 7\lambda^3)}{12(1 - \lambda)^4} - \ln(1 - \lambda) \right) + \frac{\beta_1 \beta_3}{6\beta_0^4} \left(-\frac{\lambda(2 - 5\lambda)}{3} \frac{(3 - 3\lambda + \lambda^2)}{(1 - \lambda)^4} \right) \\ &- \frac{2 - 8\lambda + 9\lambda^2 - 10\lambda^3 + 4\lambda^4}{(1 - \lambda)^4} \ln(1 - \lambda) \right) + \frac{\beta_1^2 \beta_2}{\beta_0^5} \left(\frac{\lambda(12 - 42\lambda + 52\lambda^2 + 5\lambda^3)}{3(1 - \lambda)^4} \right) \\ &- \frac{(-1 + 3\lambda - 3\lambda^2 + 3\lambda^3)}{3(1 - \lambda)^3} \ln(1 - \lambda) - \frac{3\lambda^2}{2(1 - \lambda)^4} \ln^2(1 - \lambda) \right) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2 + 3\lambda)}{6(1 - \lambda)^4} \right) \end{aligned}$
$\begin{aligned} &+ \frac{\lambda}{(1-\lambda)^3} \ln(1-\lambda) \bigg) + \frac{\beta_1^3}{\beta_0^4} \bigg(-\frac{(3-2\lambda)\lambda^2}{6(1-\lambda)^3} - \frac{\lambda}{(1-\lambda)^3} \ln(1-\lambda) - \frac{\ln^2(1-\lambda)}{2(1-\lambda)^3} \\ &+ \frac{\ln^3(1-\lambda)}{3(1-\lambda)^3} \bigg) + \bigg[\frac{\beta_2}{\beta_0} \frac{\lambda}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \bigg(-\frac{\lambda}{(1-\lambda)^3} - \frac{\ln(1-\lambda)}{(1-\lambda)^3} + \frac{\ln^2(1-\lambda)}{(1-\lambda)^3} \bigg) \bigg] \ln \frac{Q^2}{\mu_R^2} \\ &+ \beta_1 \bigg[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3} \bigg] \ln^2 \frac{Q^2}{\mu_R^2} + \beta_0^2 \frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} \ln^3 \frac{Q^2}{\mu_R^2} \bigg) \\ &+ A^{(1)} \bigg(\frac{\beta_2^2}{3\beta_0^4} \bigg(\frac{\lambda(-12+42\lambda-52\lambda^2+7\lambda^3)}{12(1-\lambda)^4} - \ln(1-\lambda) \bigg) \\ &+ \frac{\beta_4}{3\beta_0^3} \bigg(\frac{\lambda(12-42\lambda+40\lambda^2-13\lambda^3)}{12(1-\lambda)^4} + \ln(1-\lambda) \bigg) + \frac{\beta_1\beta_3}{6\beta_0^4} \bigg(-\frac{\lambda(2-5\lambda)}{3} \frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} \\ &- \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{(1-\lambda)^4} \ln(1-\lambda) \bigg) + \frac{\beta_1^2\beta_2}{\beta_0^5} \bigg(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{3(1-\lambda)^4} \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \bigg) + \frac{\beta_1^4}{2\beta_0^6} \bigg(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} \bigg) \end{aligned}$
$\begin{aligned} &+ \frac{\ln^3(1-\lambda)}{3(1-\lambda)^3} + \left[\frac{\beta_2}{\beta_0} \frac{\lambda}{(1-\lambda)^3} + \frac{\beta_1^2}{\beta_0^2} \left(-\frac{\lambda}{(1-\lambda)^3} - \frac{\ln(1-\lambda)}{(1-\lambda)^3} + \frac{\ln^2(1-\lambda)}{(1-\lambda)^3} \right) \right] \ln \frac{Q^2}{\mu_R^2} \\ &+ \beta_1 \left[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3} \right] \ln^2 \frac{Q^2}{\mu_R^2} + \beta_0^2 \frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} \ln^3 \frac{Q^2}{\mu_R^2} \right) \\ &+ A^{(1)} \left(\frac{\beta_2^2}{3\beta_0^4} \left(\frac{\lambda(-12+42\lambda-52\lambda^2+7\lambda^3)}{12(1-\lambda)^4} - \ln(1-\lambda) \right) \right) \\ &+ \frac{\beta_4}{3\beta_0^3} \left(\frac{\lambda(12-42\lambda+40\lambda^2-13\lambda^3)}{12(1-\lambda)^4} + \ln(1-\lambda) \right) + \frac{\beta_1\beta_3}{6\beta_0^4} \left(-\frac{\lambda(2-5\lambda)}{3} \frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} \right) \\ &- \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{(1-\lambda)^4} \ln(1-\lambda) \right) + \frac{\beta_1^2\beta_2}{\beta_0^5} \left(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{3(1-\lambda)^4} \right) \\ &- \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \right) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} \right) \end{aligned}$
$\begin{aligned} &+ \beta_1 \left[-\frac{\lambda(3-3\lambda+\lambda^2)}{2(1-\lambda)^3} + \frac{\ln(1-\lambda)}{(1-\lambda)^3} \right] \ln^2 \frac{Q^2}{\mu_R^2} + \beta_0^2 \frac{\lambda(3-3\lambda+\lambda^2)}{3(1-\lambda)^3} \ln^3 \frac{Q^2}{\mu_R^2} \right) \\ &+ A^{(1)} \left(\frac{\beta_2^2}{3\beta_0^4} \left(\frac{\lambda(-12+42\lambda-52\lambda^2+7\lambda^3)}{12(1-\lambda)^4} - \ln(1-\lambda) \right) \right) \\ &+ \frac{\beta_4}{3\beta_0^3} \left(\frac{\lambda(12-42\lambda+40\lambda^2-13\lambda^3)}{12(1-\lambda)^4} + \ln(1-\lambda) \right) + \frac{\beta_1\beta_3}{6\beta_0^4} \left(-\frac{\lambda(2-5\lambda)}{3} \frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} - \frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{(1-\lambda)^4} \ln(1-\lambda) \right) + \frac{\beta_1^2\beta_2}{\beta_0^5} \left(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{36(1-\lambda)^4} - \frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \right) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} - \frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} - \frac{\lambda^3(2+3\lambda)}{2(1-\lambda)^4} + \frac{\lambda^4}{2\beta_0^6} - \frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} - \frac{\lambda^4}{2\beta_0^6} - \frac{\lambda^4}{6(1-\lambda)^4} - \frac{\lambda^4}{2\beta_0^6} + \frac{\lambda^4}{6(1-\lambda)^4} - \frac{\lambda^4}{6(1-\lambda)^4} - \frac{\lambda^4}{2\beta_0^6} + \frac{\lambda^4}{6(1-\lambda)^4} - \frac{\lambda^4}{6(1-\lambda)^4} - \frac{\lambda^4}{6(1-\lambda)^4} - \frac{\lambda^4}{2\beta_0^6} + \frac{\lambda^4}{6(1-\lambda)^4} - \frac{\lambda^4}{6(1-\lambda$
$+ A^{(1)} \left(\frac{\beta_2^2}{3\beta_0^4} \left(\frac{\lambda(-12 + 42\lambda - 52\lambda^2 + 7\lambda^3)}{12(1-\lambda)^4} - \ln(1-\lambda) \right) + \frac{\beta_1\beta_3}{6\beta_0^4} \left(-\frac{\lambda(2-5\lambda)}{3} \frac{(3-3\lambda+\lambda^2)}{(1-\lambda)^4} - \frac{2-8\lambda + 9\lambda^2 - 10\lambda^3 + 4\lambda^4}{(1-\lambda)^4} \ln(1-\lambda) \right) + \frac{\beta_1^2\beta_2}{\beta_0^5} \left(\frac{\lambda(12 - 42\lambda + 52\lambda^2 + 5\lambda^3)}{36(1-\lambda)^4} - \frac{(-1+3\lambda - 3\lambda^2 + 3\lambda^3)}{3(1-\lambda)^3} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \right) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} - \frac{(-1+3\lambda - 3\lambda^2 + 3\lambda^3)}{3(1-\lambda)^3} \ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4} \ln^2(1-\lambda) \right) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} - \frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4} - \lambda^3(2+3$
$ + \frac{\beta_4}{3\beta_0^3} \left(\frac{\lambda(12 - 42\lambda + 40\lambda^2 - 13\lambda^3)}{12(1 - \lambda)^4} + \ln(1 - \lambda) \right) + \frac{\beta_1\beta_3}{6\beta_0^4} \left(-\frac{\lambda(2 - 5\lambda)}{3} \frac{(3 - 3\lambda + \lambda^2)}{(1 - \lambda)^4} - \frac{2 - 8\lambda + 9\lambda^2 - 10\lambda^3 + 4\lambda^4}{(1 - \lambda)^4} \ln(1 - \lambda) \right) + \frac{\beta_1^2\beta_2}{\beta_0^5} \left(\frac{\lambda(12 - 42\lambda + 52\lambda^2 + 5\lambda^3)}{36(1 - \lambda)^4} - \frac{(-1 + 3\lambda - 3\lambda^2 + 3\lambda^3)}{3(1 - \lambda)^3} \ln(1 - \lambda) - \frac{3\lambda^2}{2(1 - \lambda)^4} \ln^2(1 - \lambda) \right) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2 + 3\lambda)}{6(1 - \lambda)^4} - \frac{\lambda^3(2 - 3\lambda)}{6(1 - \lambda)^4} + \frac{\lambda^3(2 - 3\lambda)}{6(1 - \lambda)^4} - \frac{\lambda^3(2 - 3\lambda)}{2(1 - \lambda)^4} + \frac{\lambda^3(2 - 3\lambda)}{2(1 - \lambda)^4} + \frac{\lambda^3(2 - 3\lambda)}{6(1 - \lambda)^4} + \lambda^3(2 - $
$-\frac{2-8\lambda+9\lambda^2-10\lambda^3+4\lambda^4}{(1-\lambda)^4}\ln(1-\lambda)\right)+\frac{\beta_1^2\beta_2}{\beta_0^5}\left(\frac{\lambda(12-42\lambda+52\lambda^2+5\lambda^3)}{36(1-\lambda)^4}-\frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda)-\frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda)\right)+\frac{\beta_1^4}{2\beta_0^6}\left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}+\frac{\beta_1^4}{6(1-\lambda)^4}\right)$
$-\frac{(-1+3\lambda-3\lambda^2+3\lambda^3)}{3(1-\lambda)^3}\ln(1-\lambda) - \frac{3\lambda^2}{2(1-\lambda)^4}\ln^2(1-\lambda) + \frac{\beta_1^4}{2\beta_0^6} \left(-\frac{\lambda^3(2+3\lambda)}{6(1-\lambda)^4}\right) + \frac{\beta_1^4}{6(1-\lambda)^4} + \frac{\beta_1^4}{6(1-\lambda)^4}$
$+\frac{1-4\lambda}{6(1-\lambda)^4}\ln^4(1-\lambda)\bigg) + \Bigg[-\frac{\beta_3}{6\beta_0^2}\frac{\lambda^2(-3-2\lambda+2\lambda^2)}{(1-\lambda)^4} - \frac{\beta_1\beta_2}{\beta_0^3}\bigg(\frac{2\lambda^3}{3(1-\lambda)^3} + \frac{3\lambda^2}{(1-\lambda)^4}\ln(1-\lambda)\bigg)$
$+\frac{\beta_1^3}{\beta_0^4}\bigg(-\frac{\lambda^2(3-2\lambda+2\lambda^2)}{6(1-\lambda)^4}-\frac{(1-3\lambda)\lambda}{(1-\lambda)^4}\ln(1-\lambda)-\frac{1-6\lambda}{2(1-\lambda)^4}\ln^2(1-\lambda)$
$+\frac{1-4\lambda}{3(1-\lambda)^4}\ln^3(1-\lambda)\bigg)\bigg]\ln\frac{Q^2}{\mu_R^2}+\bigg[-\frac{3\beta_2}{2\beta_0}\frac{\lambda^2}{(1-\lambda)^4}+\frac{\beta_1^2}{2\beta_0^2}\bigg(-\frac{(1-3\lambda)\lambda}{(1-\lambda)^4}-\frac{(1-6\lambda)}{(1-\lambda)^4}\ln(1-\lambda)\bigg)\bigg]$
$+ \frac{(1-4\lambda)}{(1-\lambda)^4} \ln^2(1-\lambda) \bigg) \Bigg] \ln^2 \frac{Q^2}{\mu_R^2} + \frac{\beta_1}{3} \Bigg[\frac{\lambda(2+6\lambda-4\lambda^2+\lambda^3)}{2(1-\lambda)^4} + \frac{1-4\lambda}{(1-\lambda)^4} \ln(1-\lambda) \Bigg] \ln^3 \frac{Q^2}{\mu_R^2} + \frac{1-4\lambda}{2(1-\lambda)^4} + \frac{1-4\lambda}{2(1-\lambda)^4} + \frac{1-4\lambda}{2(1-\lambda)^4} + \frac{1-4\lambda}{2(1-\lambda)^4} + \frac{1-4\lambda}{2(1-\lambda)^4} + \frac{1-4\lambda}{2(1-\lambda)^4} + $
$-\frac{\beta_0^2}{12}\frac{(6-4\lambda+\lambda^2)\lambda^2}{(1-\lambda)^4}\ln^4\frac{Q^2}{\mu_R^2}\right),\qquad \qquad g(5) \text{ still fits in a slide!}$

Transverse momentum resummation Camarda, LC, Ferrera [2023] up to N4LL+N4LO accuracy

 $\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$

$$\mathcal{G}(\alpha_{S}, L) = -\int_{b_{0}^{2}/b^{2}}^{Q^{2}} \frac{dq^{2}}{q^{2}} \left[A(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + \widetilde{B}(\alpha_{S}(q^{2})) \right]$$

$$= L g^{(1)}(\alpha_{S}L) + g^{(2)}(\alpha_{S}L) + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} g^{(n+2)}(\alpha_{S}L)$$

g(n) controls and resums the $\alpha_{S}L^{k}$ (k $\geq 1)$ logarithmic terms

$$\widetilde{B}(\alpha_S) = B(\alpha_S) + 2\beta(\alpha_S) \frac{d\ln C(\alpha_S)}{d\ln \alpha_S} + 2\gamma(\alpha_S)$$

$$\lambda = \frac{1}{\pi} \beta_0 \, \alpha_S(\mu_R^2) \, L \ , \ \overline{B}^{(n)} = \widetilde{B}^{(n)} + A^{(n)} \ln \frac{M^2}{Q^2}$$

- At N4LL we need the resummation coefficients
- (A5) $1-3\cdot10^{-3}$ relative uncertainty
- (B4) negligible uncertainty
- C4: 1–2·10⁻³ relative uncertainty
- γ (γ 4) singlet : 1–3·10⁻³ relative uncertainty (non-singlet negligible)

Herzog, Moch, Ruijl, Ueda, Vermaseren, Vogt [2019] Henn, Korchemsky, Mistlberger [2020] von Manteuffel, Panzer, Schabinger [2020] Moult, Xing Zhu, Jiao Zhu [2022]

[DYTurbo]

ncertainty (non-singlet negligible) Falcioni, Herzog, Moch, Vogt [2023] Moch, Ruijl, Ueda, Vermaseren, Vogt [2022]

Transverse momentum resummation Camarda, LC, Ferrera [2023] up to N4LL+N4LO accuracy

[DYTurbo]

 $\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$

$$\mathcal{G}(\alpha_{S}, L) = -\int_{b_{0}^{2}/b^{2}}^{Q^{2}} \frac{dq^{2}}{q^{2}} \left[A(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + \widetilde{B}(\alpha_{S}(q^{2})) \right]$$

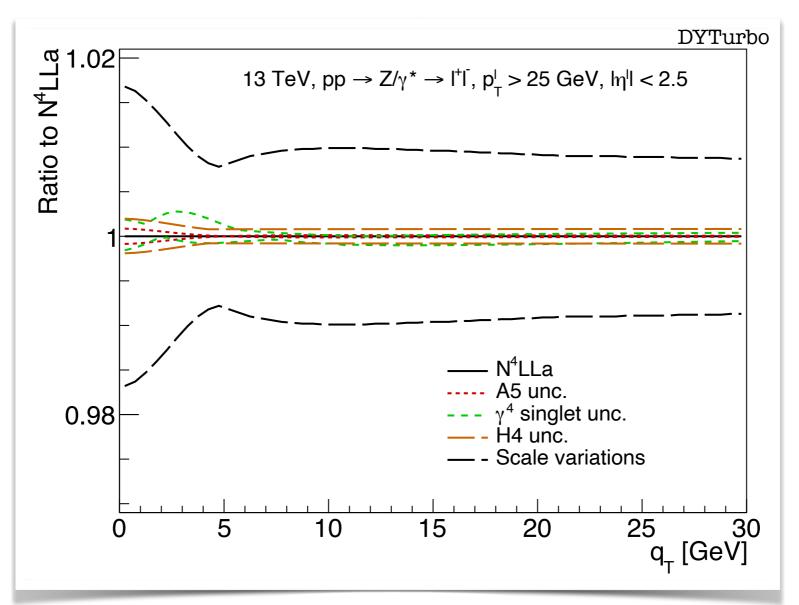
$$= L g^{(1)}(\alpha_{S}L) + g^{(2)}(\alpha_{S}L) + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} g^{(n+2)}(\alpha_{S}L)$$

g(n) controls and resums the $\alpha_{S}L^{k}$ (k $\geq 1)$ logarithmic terms

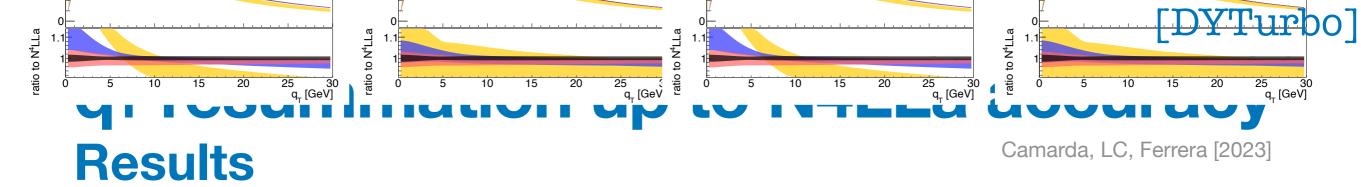
$$\widetilde{B}(\alpha_S) = B(\alpha_S) + 2\beta(\alpha_S) \frac{d\ln C(\alpha_S)}{d\ln \alpha_S} + 2\gamma(\alpha_S)$$

$$\lambda = \frac{1}{\pi} \,\beta_0 \,\alpha_S(\mu_R^2) \,L \ , \ \overline{B}^{(n)} = \widetilde{B}^{(n)} + A^{(n)} \ln \frac{M^2}{Q^2}$$

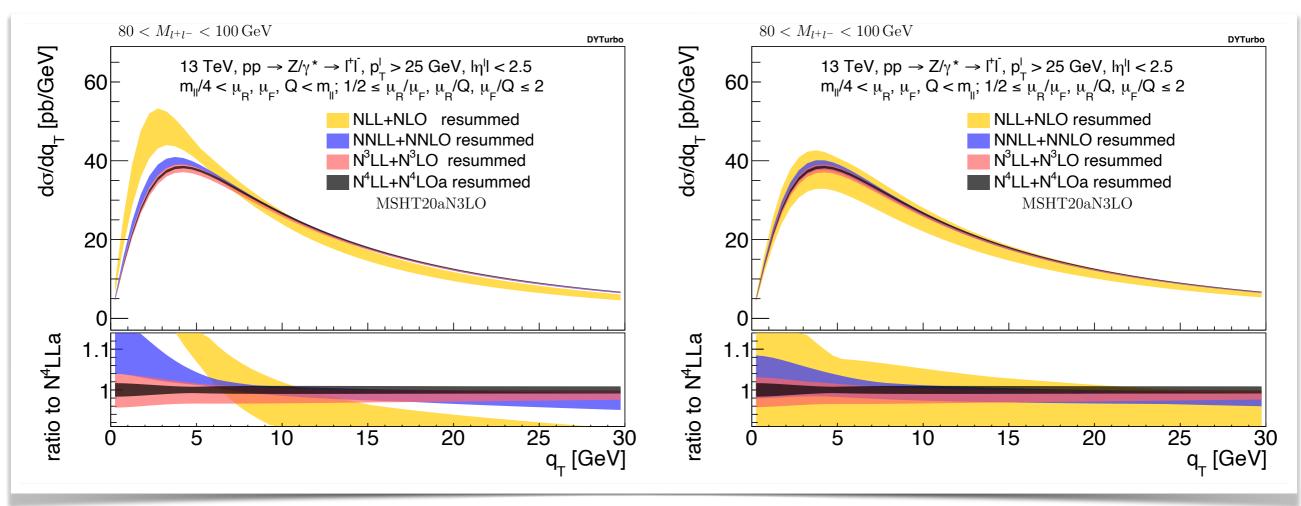
- At N4LL we need the resummation coefficients
- A5 : 1–3·10⁻³ relative uncertainty
- B4 : negligible uncertainty
- C4 : 1–2·10⁻³ relative uncertainty
- γ4 singlet : 1–3·10⁻³ relative uncertainty (non-singlet negligible)


We rely on the Levin transform assigning 100% uncertainty → We assume that the Levin transform estimates the correct sign and order of magnitude.

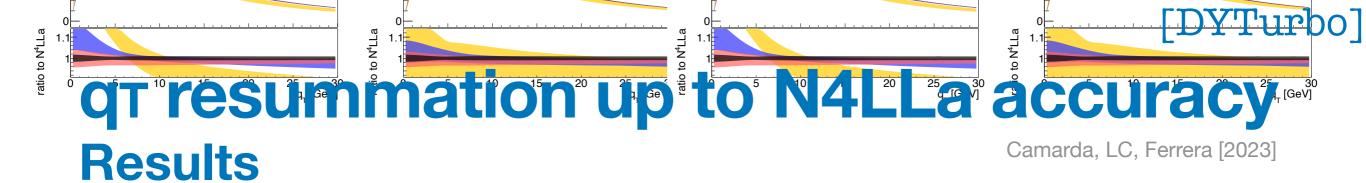
Transverse momentum resummation


Camarda, LC, Ferrera [2023]

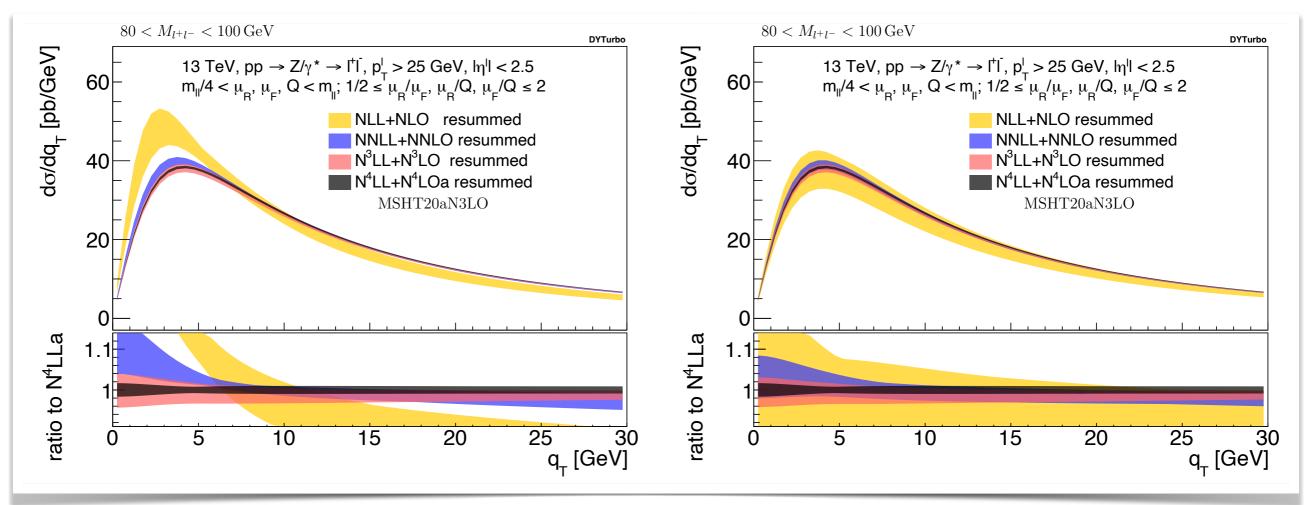
up to N4LL+N4LO accuracy


Anticipating our results

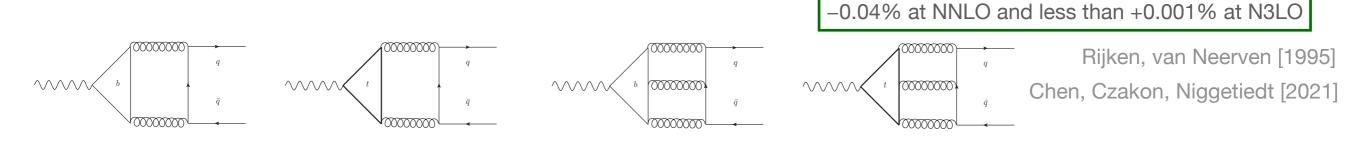
- The uncertainties in the N4LL+N4LO approximation are found to be 5 to 10 times smaller compared to the missing higher order uncertainties estimated through scale variations.
- All "main" channels already present at NNLO : qqbar, qg, gg.
- N4LL is the first order at which all the combination of the channels are opened: {q,qb,qp,qbp,g} x {q,qb,qp,qbp,g} (all combinations)



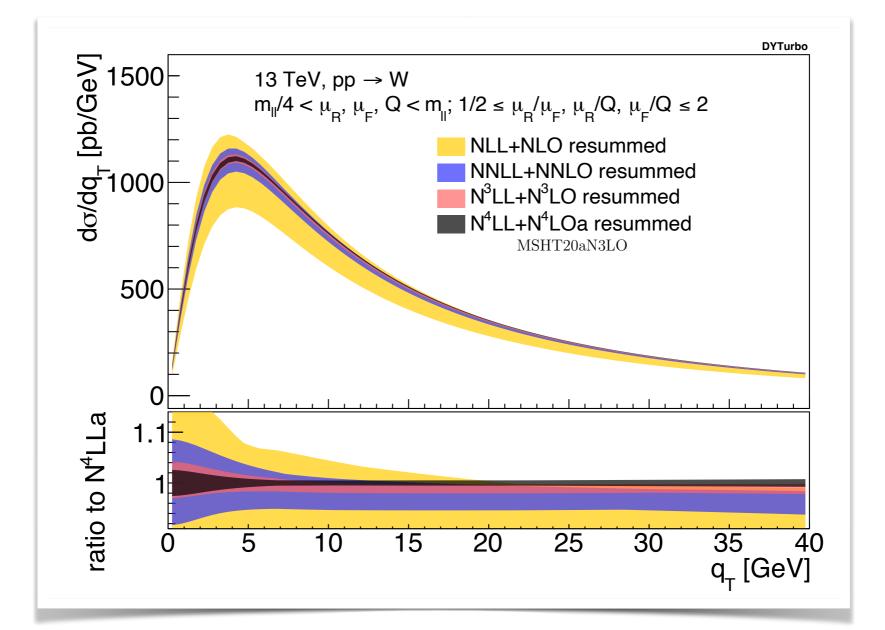
The qT spectrum of $Z/\gamma *$ bosons with lepton selection cuts at the LHC ($\sqrt{s} = 13$ TeV) at various perturbative orders



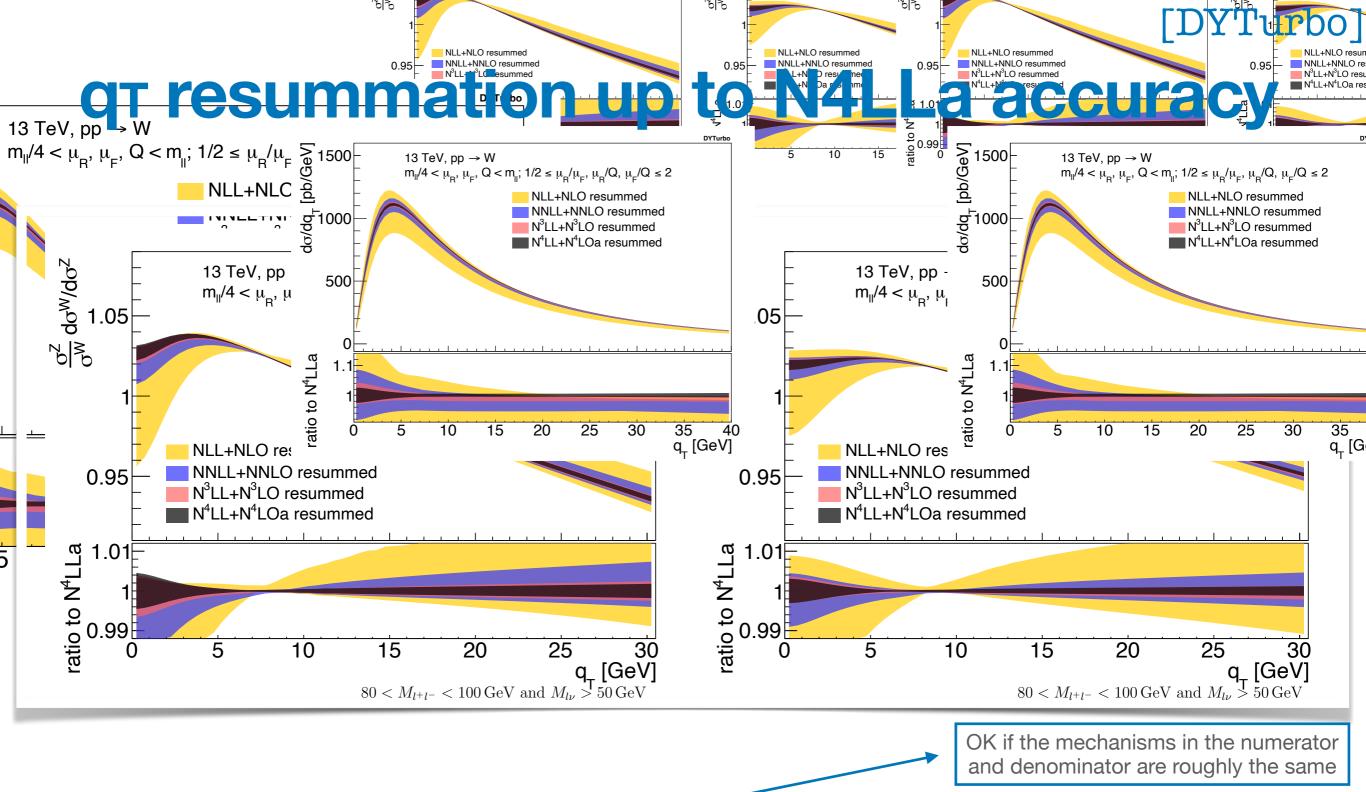
Formal mismatch between the N³LO Altarelli-Parisi evolution as encoded in the N³LO parton densities functions and the corresponding N^kLO evolution included in the N^(k+1)LL partonic resummed formula. The order of Altarelli-Parisi evolution in the resummed prediction is equal to the order of the parton densities


- Negligible impact at N3LL and N4LL on the choice → we apply this strategy in the next slides
- Scale dependence reduced a factor 2 from N3LL to N4LL → N4LL accuracy is at the 1%-1.5%

The qT spectrum of $Z/\gamma *$ bosons with lepton selection cuts at the LHC ($\sqrt{s} = 13$ TeV) at various perturbative orders



- Negligible impact at N3LL and N4LL on the choice → we apply this strategy in the next slides
- Scale dependence reduced a factor 2 from N3LL to N4LL → N4LL accuracy is at the 1%-1.5%
- Effect of a finite top-quark mass including the singlet contributions mediated by heavy-quark loops at NNLO and N³LO included



qT resummation up to N4LLa accuracy Camarda, LC, Ferrera [2023]

The qT spectrum of W+ and W– bosons with inclusive leptonic decay at the LHC ($\sqrt{s} = 13$ TeV) at various perturbative orders

The scale variation at N4LLa accuracy is around $\pm 2\%$ at qT ~ 1GeV, then it reduces at $\pm 1\%$ level at the peak (qT ~ 4GeV), it decreases further to $\pm 0.5\%$ for qT ~ 7 GeV and remains below $\pm 1\%$ level up to qT ~ 30 GeV.

Correlated scale variation

$$R(q_T) = \frac{\sigma_Z}{\sigma_W} \frac{d\sigma_W}{dq_T} \Big/ \frac{d\sigma_Z}{dq_T}$$

- N4LL very relevant removing uncertainties in the W/Z pT distribution ratio
- However, analysis is not complete : flavour-dependent intrinsic kT, processdependent EW effects

Next part of the talk

Main differences respect to pure QCD case On-shell Z and W production

The cross section can be decomposed as Catani, Grazzini, Torre [2014] $\begin{bmatrix} d\hat{\sigma}_{a_1a_2 \rightarrow l_3l_4} \end{bmatrix} = \begin{bmatrix} d\hat{\sigma}_{a_1a_2 \rightarrow l_3l_4}^{(\text{rcs.})} \end{bmatrix} + \begin{bmatrix} d\hat{\sigma}_{a_1a_2 \rightarrow l_3l_4}^{(\text{fin.})} \end{bmatrix} + \begin{bmatrix} d\hat{\sigma}_{a_1a_2 \rightarrow l_3l_4}^{(\text{fin.})} \end{bmatrix}$ $\begin{bmatrix} d\hat{\sigma}_{a_1a_2 \rightarrow l_3l_4} \end{bmatrix} = \sum_{b_1, b_2 = q, \bar{q}} \frac{d\hat{\sigma}_{b_1b_2 \rightarrow l_3l_4}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int_0^\infty \frac{db}{2\pi} b J_0(bq_T) \mathcal{W}_{a_1a_2, b_1b_2 \rightarrow V}(b, M, \hat{y}, \hat{s}; \alpha_S, \mu_R^2, \mu_F^2)$ $\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$ $L = \log\left(\frac{b^2 Q^2}{b_0^2} + 1\right)$ Here we include the f.o predictions at NLO (QED and QCD) Unitary constraint $L = \log\left(\frac{b^2 Q^2}{b_0^2} + 1\right)$ Here we include the f.o predictions at NLO (QED and QCD) Unitary constraint $L = \log\left(\frac{b^2 Q^2}{b_0^2} + 1\right)$ Here we include the f.o predictions at NLO (QED and QCD) Unitary constraint $L = \log\left(\frac{b^2 Q^2}{b_0^2} + 1\right)$ Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD) Here we include the f.o predictions at NLO (QED and QCD)

• W on-shell at NLL+NLO: colourless and charged final state → New Autieri, LC, Ferrera, Sborlini [2023]

The resummation formalism can be obtained with plain abelianization of the QCD results and it will be not presented in detail here

[DYqT]

Autieri, LC, Ferrera, Sborlini [2023]

Naive abelianization of the QCD results does not work. Apart from this fact, the (more involved) abelizanization procedure has to be applied to the QCD resummation for ttbar final state

Main differences respect to pure QCD case **On-shell Z and W production**

The cross section can be decomposed as

$$[d\hat{\sigma}_{a_1a_2 \to l_3l_4}] = [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{res.})}] + [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{fin.})}]$$

$$\left[d\hat{\sigma}_{a_{1}a_{2}\to l_{3}l_{4}}^{(\text{res.})}\right] = \sum_{b_{1},b_{2}=q,\bar{q}} \frac{d\hat{\sigma}_{b_{1}b_{2}\to l_{3}l_{4}}^{(0)}}{d\mathbf{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{db}{2\pi} b J_{0}(bq_{T}) \mathcal{W}_{a_{1}a_{2},b_{1}b_{2}\to V}(b,M,\hat{y},\hat{s};\alpha_{S},\mu_{R}^{2},\mu_{F}^{2})$$

$$\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$$

 $L = \log\left(\frac{b^2 Q^2}{b_0^2} + 1\right)$ Unitary constraint

W on-shell at NLL+NLO: colourless and charged final state \rightarrow New Autieri, LC, Ferrera, Sborlini [2023]

$$\mathcal{G}_{N}'(\alpha,L) = -\int_{b_{0}^{2}/b^{2}}^{Q^{2}} \frac{dq^{2}}{q^{2}} \left(A'(\alpha(q^{2})) \log\left(\frac{M^{2}}{q^{2}}\right) + \widetilde{B}_{N}'(\alpha(q^{2})) + D'(\alpha(q^{2})) \right) \qquad D'(\alpha) = \frac{\alpha}{\pi} D'^{(1)} + \sum_{n=2}^{+\infty} \left(\frac{\alpha}{\pi}\right)^{n} D'^{(n)}$$

$$\mathcal{G}_{N}'(\alpha_{\mathrm{S}},\alpha,L) = \mathcal{G}_{N}(\alpha_{\mathrm{S}},L) + L g'^{(1)}(\alpha L) + g'^{(2)}_{N}(\alpha L) + \sum_{n=3}^{+\infty} \left(\frac{\alpha}{\pi}\right)^{n-2} g'^{(n)}_{N}(\alpha L)$$

$$+ g'^{(1,1)}(\alpha_{\mathrm{S}}L,\alpha L) + \sum_{\substack{n,m=1\\n+m\neq 2}}^{+\infty} \left(\frac{\alpha_{\mathrm{S}}}{\pi}\right)^{n-1} \left(\frac{\alpha}{\pi}\right)^{m-1} g'^{(n,m)}_{N}(\alpha_{\mathrm{S}}L,\alpha L)$$

$$\mathrm{New \ linear \ logarithmic \ term \ lit \ is \ specific \ of \ charged \ highmass \ system \ production \ and \ it \ is \ due \ to \ QED \ soft \ non-collinear \ (wide \ angle) \ radiation \ from \ the \ underlying \ subprocess \ due \ to \ delta \ due \ to \ delta \ due \ to \ delta \ subprocess \ due \ to \ delta \ subprocess \ due \ to \ delta \ due \ to \ delta \ subprocess \ due \ to \ delta \ to \ subprocess \ due \ to \ delta \ subprocess \ due \ subprocess \ due$$

$$D'^{(1)} = -\frac{e_V^2}{2}$$

Autieri, LC, Ferrera, Sborlini [2023]

$$\begin{array}{c} h_1(p_1) & \overbrace{\mathbf{f_{a_1/h_1}}}^{\mathbf{f_{a_1/h_1}}} & \overbrace{\mathbf{C_{qa_1}}}^{\mathbf{r_1}} & \overbrace{\mathbf{S_q}}^{\mathbf{l/2}} \\ \mu_F^2) & \overbrace{\mathbf{S_q}}^{\mathbf{l/2}} & \overbrace{\mathbf{H_q}}^{\mathbf{H_q}} & V \\ M/Q) \\ h_2(p_2) & \overbrace{\mathbf{f_{a_2/h_2}}}^{\mathbf{r_2}} & \overbrace{\mathbf{C_{qa_2}}}^{\mathbf{r_2}} & \overbrace{\mathbf{S_q}}^{\mathbf{l/2}} \\ \end{array}$$

Main differences respect to pure QCD case On-shell Z and W production

The cross section can be decomposed as

$$[d\hat{\sigma}_{a_1a_2 \to l_3l_4}] = [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{res.})}] + [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{fin.})}] \qquad \qquad h_1(p_1)$$

$$\left[d\hat{\sigma}_{a_{1}a_{2}\to l_{3}l_{4}}^{(\text{res.})}\right] = \sum_{b_{1},b_{2}=q,\bar{q}} \frac{d\hat{\sigma}_{b_{1}b_{2}\to l_{3}l_{4}}^{(0)}}{d\mathbf{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{db}{2\pi} b J_{0}(bq_{T}) \mathcal{W}_{a_{1}a_{2},b_{1}b_{2}\to V}(b,M,\hat{y},\hat{s};\alpha_{S},\mu_{R}^{2},\mu_{F}^{2})$$

$$\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$$

 $L = \log\left(\frac{b^2 Q^2}{b_0^2} + 1\right)$ Here we include the f.o predictions at NLO (QED and QCD) Unitary constraint

• W on-shell at NLL+NLO: colourless and charged final state → New Autieri, LC, Ferrera, Sborlini [2023]

$$\mathcal{G}'_{N}(\alpha,L) = -\int_{b_{0}^{2}/b^{2}}^{Q^{2}} \frac{dq^{2}}{q^{2}} \left(A'(\alpha(q^{2})) \log\left(\frac{M^{2}}{q^{2}}\right) + \widetilde{B}'_{N}(\alpha(q^{2})) + D'(\alpha(q^{2})) \right) \qquad D'(\alpha) = \frac{\alpha}{\pi} D'^{(1)} + \sum_{n=2}^{+\infty} \left(\frac{\alpha}{\pi}\right)^{n} D'^{(n)}$$

$$g^{\prime(1)}(\alpha L) = \frac{A_q^{\prime(1)}}{\beta_0'} \frac{\lambda' + \ln(1 - \lambda')}{\lambda'} ,$$

$$g_N^{\prime(2)}(\alpha L) = \frac{\widetilde{B}_{q,N}^{\prime(1)}}{\beta_0'} \ln(1 - \lambda') - \frac{A_q^{\prime(2)}}{\beta_0'^2} \left(\frac{\lambda'}{1 - \lambda'} + \ln(1 - \lambda')\right) + \frac{A_q^{\prime(1)}\beta_1'}{\beta_0'^3} \left(\frac{1}{2}\ln^2(1 - \lambda') + \frac{\ln(1 - \lambda')}{1 - \lambda'} + \frac{\lambda'}{1 - \lambda'}\right)$$

$$g^{\prime(1,1)}(\alpha_S L, \alpha L) = \frac{A_q^{(1)} \beta_{0,1}}{\beta_0^2 \beta_0^{\prime}} h(\lambda, \lambda^{\prime}) + \frac{A_q^{\prime(1)} \beta_{0,1}^{\prime}}{\beta_0^{\prime 2} \beta_0} h(\lambda^{\prime}, \lambda)$$

 $h_2(p_2)$

$$h(\lambda,\lambda') = -\frac{\lambda'}{\lambda-\lambda'}\ln(1-\lambda) + \ln(1-\lambda')\left[\frac{\lambda(1-\lambda')}{(1-\lambda)(\lambda-\lambda')} + \ln\left(\frac{-\lambda'(1-\lambda)}{\lambda-\lambda'}\right)\right] - \operatorname{Li}_2\left(\frac{\lambda}{\lambda-\lambda'}\right) + \operatorname{Li}_2\left(\frac{\lambda(1-\lambda')}{\lambda-\lambda'}\right),$$

[DYqT]

Autieri, LC, Ferrera, Sborlini [2023]

"New" mixed contribution not present by trivial abelianization of QCD results

Main differences respect to pure QCD case **On-shell Z and W production**

The cross section can be decomposed as

$$[d\hat{\sigma}_{a_1a_2 \to l_3l_4}] = [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{res.})}] + [d\hat{\sigma}_{a_1a_2 \to l_3l_4}^{(\text{fin.})}]$$

$$\left[d\hat{\sigma}_{a_{1}a_{2}\to l_{3}l_{4}}^{(\text{res.})}\right] = \sum_{b_{1},b_{2}=q,\bar{q}} \frac{d\hat{\sigma}_{b_{1}b_{2}\to l_{3}l_{4}}^{(0)}}{d\mathbf{\Omega}} \frac{1}{\hat{s}} \int_{0}^{\infty} \frac{db}{2\pi} b J_{0}(bq_{T}) \mathcal{W}_{a_{1}a_{2},b_{1}b_{2}\to V}(b,M,\hat{y},\hat{s};\alpha_{S},\mu_{R}^{2},\mu_{F}^{2})$$

$$\mathcal{W}_V(b, M; \alpha_S, \mu_R^2, \mu_F^2) = \mathcal{H}_V(\alpha_S; M/\mu_R, M/\mu_F, M/Q) \times \exp\{\mathcal{G}(\alpha_S, L; M/\mu_R, M/Q)\}$$

Here we include the f.o predictions at NLO (QED and QCD) Unitary constraint $L = \log\left(\frac{b^2 Q^2}{b_0^2} + 1\right)$

W on-shell at NLL+NLO: colourless and charged final state \rightarrow New Autieri, LC, Ferrera, Sborlini [2023]

$$\begin{aligned} \mathcal{G}'_{N}(\alpha,L) &= -\int_{b_{0}^{2}/b^{2}}^{Q^{2}} \frac{dq^{2}}{q^{2}} \left(A'(\alpha(q^{2})) \log\left(\frac{M^{2}}{q^{2}}\right) + \widetilde{B}'_{N}(\alpha(q^{2})) + D'(\alpha(q^{2})) \right) \\ A'^{(1)} &= \frac{e_{qf}^{2} + e_{\bar{q}f'}^{2}}{2}, \\ A'^{(2)} &= -\frac{5}{9} \frac{e_{qf}^{2} + e_{\bar{q}f'}^{2}}{2} N^{(2)}, \\ \widetilde{B}'^{(1)} &= B'^{(1)} + \gamma'^{(1)}_{qfqf,N} + \gamma'^{(1)}_{\bar{q}f'\bar{q}f',N}, \end{aligned} \qquad \begin{aligned} N^{(2)} &= 3\sum_{q=1}^{n_{f}} e_{q}^{2} + \sum_{l=1}^{n_{l}} e_{l}^{2}, \\ B'^{(1)} &= -\frac{3}{2} \frac{e_{qf}^{2} + e_{\bar{q}f'}^{2}}{2}, \\ \gamma'^{(1)}_{qq,N} &= e_{q}^{2} \left(\frac{3}{4} + \frac{1}{2N(N+1)} - \gamma_{E} - \psi_{0}(N+1)\right) \\ \gamma'^{(1)}_{qr,N} &= \frac{3}{2} e_{q}^{2} \frac{N^{2} + N + 2}{N(N+1)(N+2)}, \end{aligned} \qquad \begin{aligned} N^{(2)} &= 3\sum_{q=1}^{n_{f}} e_{q}^{2} + \sum_{l=1}^{n_{l}} e_{l}^{2}, \\ New \text{ linear logarithmic term} \end{aligned}$$

$$\begin{aligned} \text{It is specific of charged high-mass system production and it is due to QED soft non-collinear (wide angle) radiation from the underlying subprocess \end{aligned}$$

$$\begin{aligned} D'(\alpha) &= \frac{\alpha}{\pi} D'^{(1)} + \sum_{n=2}^{\infty} \left(\frac{\alpha}{\pi}\right)^{n} D'^{(n)} \\ New \text{ linear logarithmic term} \end{aligned}$$

$$h_{1}(p_{1}) \xrightarrow{f_{a_{1}/h_{1}}} \xrightarrow{r_{1}} C_{qa_{1}}$$

$$\mu_{R}^{2}, \mu_{F}^{2})$$

$$\mu_{R}, M/Q) \} \xrightarrow{x_{2}}{z_{2}} C_{\bar{q}a_{2}}$$

$$h_{2}(p_{2}) \xrightarrow{f_{a_{2}/h_{2}}} \xrightarrow{r_{2}} C_{\bar{q}a_{2}}$$

Autieri, LC, Ferrera, Sborlini [2023]

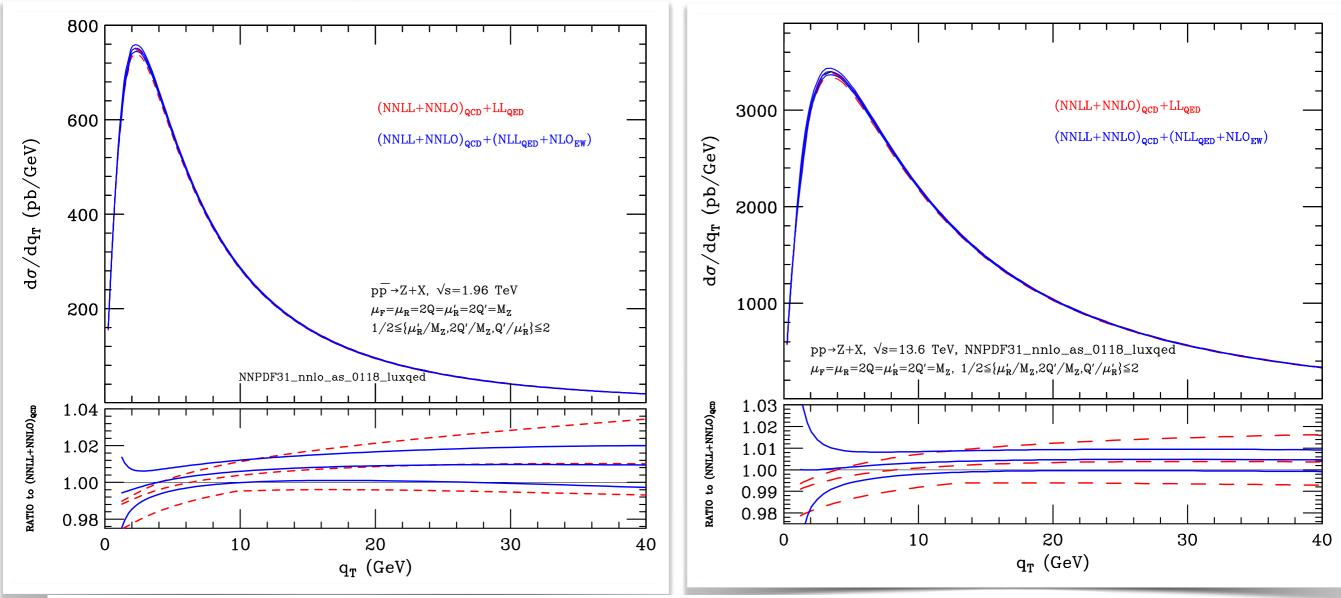
[DYqT]

е

2

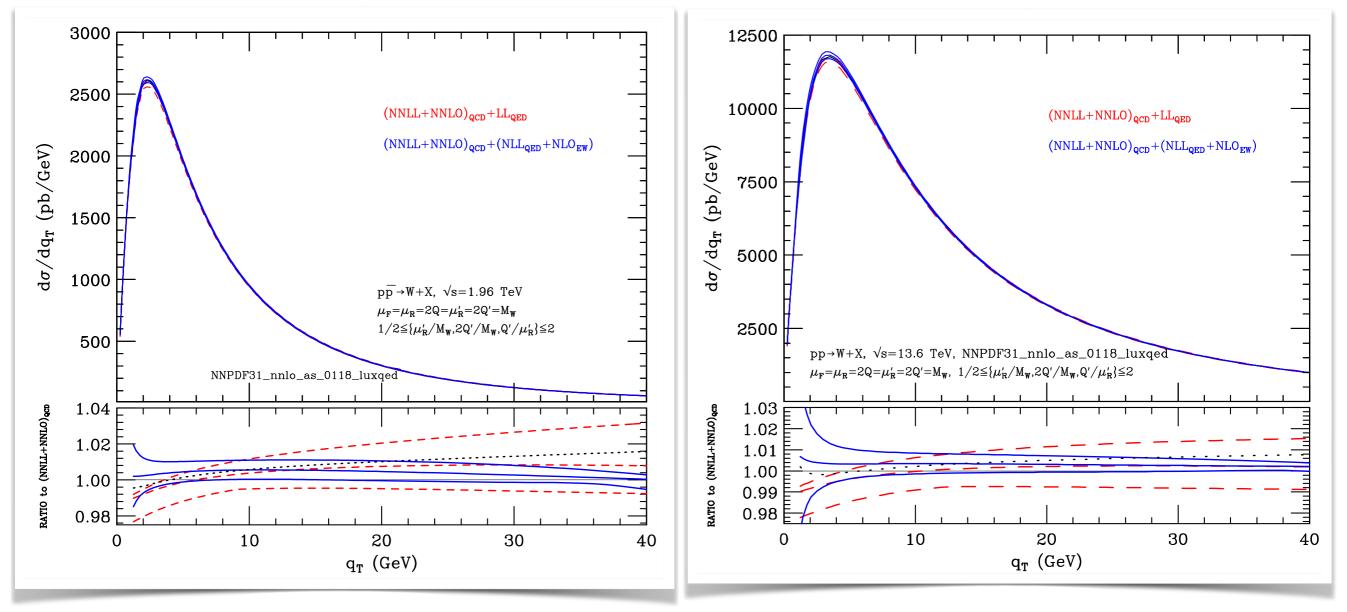
Main differences respect to pure QCD case On-shell Z and W production

The cross section can be decomposed as

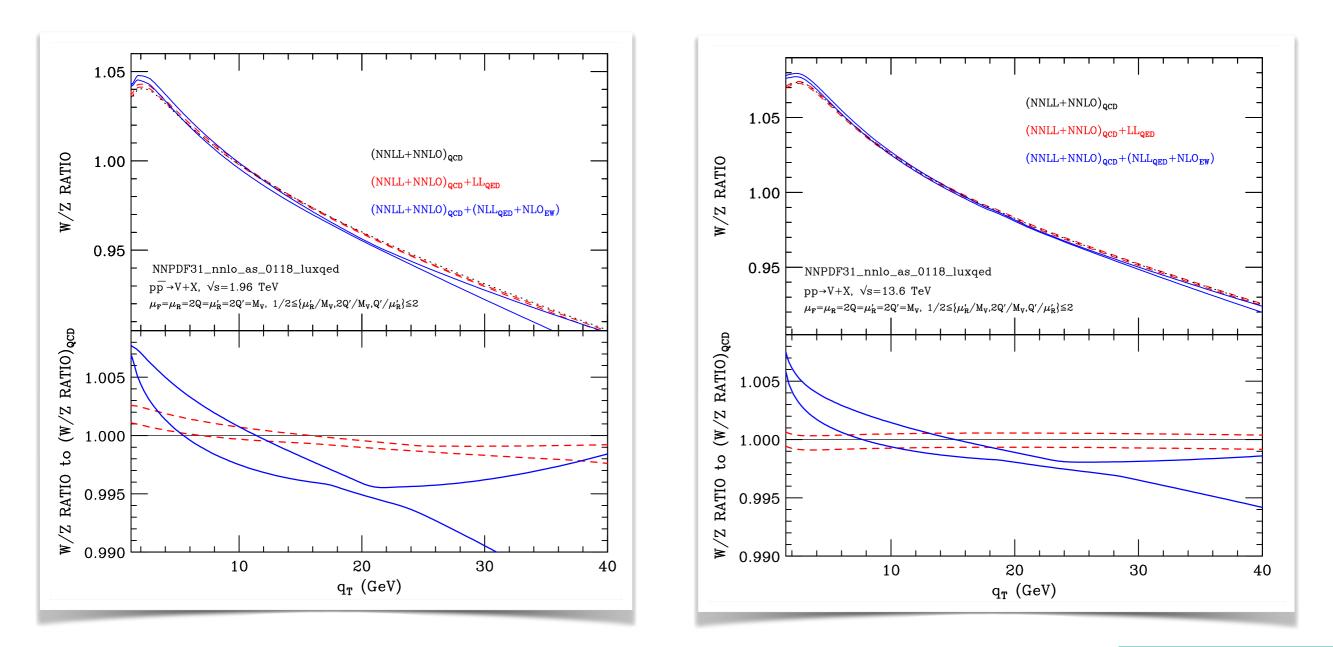

$$\begin{split} \left[d\hat{\sigma}_{a_{1}a_{2} \rightarrow l_{3}l_{4}} \right] &= \left[d\hat{\sigma}_{a_{1}a_{2} \rightarrow l_{3}l_{4}}^{(\text{fres.})} \right] + \left[d\hat{\sigma}_{a_{1}a_{2} \rightarrow l_{3}l_{4}}^{(\text{fin.})} \right] & \stackrel{h_{1}(p_{1})}{\longrightarrow} \left[f_{n/h} f_$$

- The hard virtual factor H'^V requires the definition of subtraction operators I, suitable to treat massive and charged final states → we left this topic to the discussion session
- The expansion of the f.o contribution served as a check for the involved abelianization procedure → we left this topic to the discussion session (also the linear power corrections)

Autieri, LC, Ferrera, Sborlini [2023]


QED+QCD qT resummation at NLL+NLO Autieri, LC, Ferrera, Sborlini [2023]

• The scale variation band is reduced by roughly a factor 2 with the inclusion of the NLL+NLO corrections


- At the Tevatron and at the LHC, QED uncertainty is dominated by the renormalization scale at LL accuracy and resummation scale at NLL+NLO LC, Ferrera, Sborlini [2018]
- The effect of EW loop corrections is extremely small (per-mille level effect)
- Overall order 0.5% at the LHC at NLL

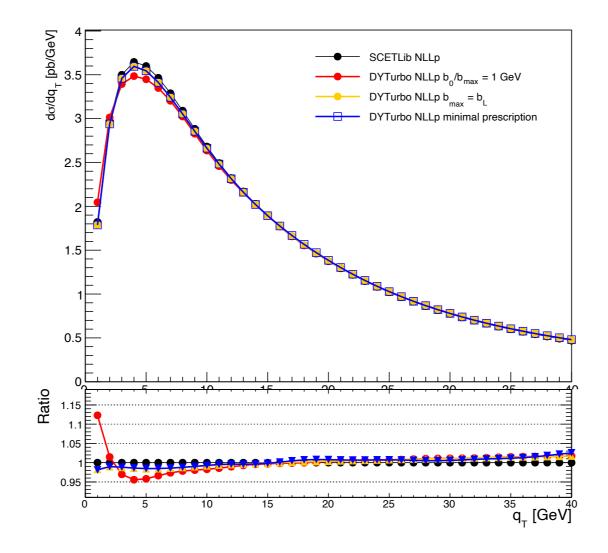
QED+QCD qT resummation at NLL+NLO Autieri, LC, Ferrera, Sborlini [2023]

- The NLL+NLO prediction without the effect of soft wide-angle QED radiation (black dotted curve)
- NLL+NLO scale variation band reduction factor 1.5-2 for qT \lesssim 20GeV and up to a factor 3 for qT \gtrsim 30GeV
- Overall order 0.5% at the LHC at NLL

QED+QCD qT resummation at NLL+NLO Autieri, LC, Ferrera, Sborlini [2023]

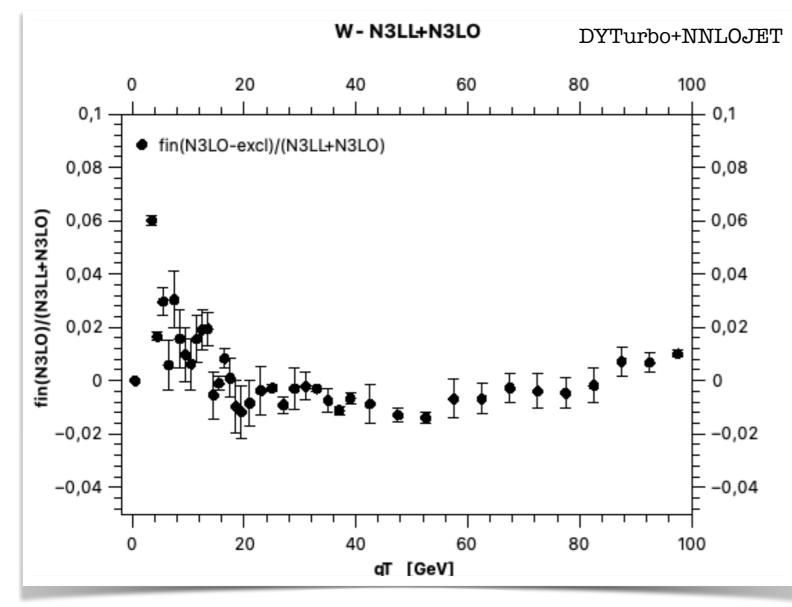
- Correlated scale variation → use the difference between the prediction at NLL+NLO and the LL?
- The impact of NLL+NLO QED corrections is to make the distribution softer at O(0.5 1%) level
- This is the combined effect of the W distribution slightly softer and the Z distribution harder

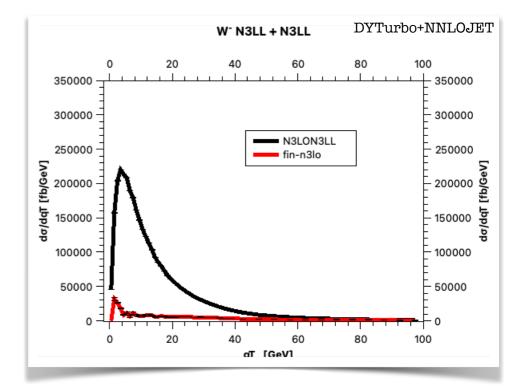
Example of what happen with different mechanisms in numerator and denominator


Outlook

- N4LL QCD plays a relevant role removing uncertainties in the W/Z pT distribution ratio
- NLL+NLO QCD+QED corrections to on shell Z and W boson production introduce non negligible effects for the W/Z pT distribution ratio
- QCD resummation at N4LL is implemented in the public code DYTurbo
- NLL+NLO QCD+QED corrections to on shell Z and W boson production are encoded in DYqT. (very soon in DYTurbo)
- Full NLL+NLO QCD+QED corrections to Z and W boson production with decays → very soon in DYTurbo

Thank you!!!


Backup slides


Comparison of b* and minimal prescription

- keep bstar with bmax = b0/1GeV to evaluate PDFs, but integrate up to or beyond the Landau pole in the Sudakov
- In one prescription bmax = bL with $bL = b0 \cdot exp(1/(2\alpha s \beta 0))$
- In the other prescription the path of integration is deformed in the complex plane (minimal prescription)

Size of the finite part W-

Non perturbative model used in the N4LLa

For the non-perturbative (NP) effects at very small transverse momenta we introduced, in the conjugated bspace, a NP form factor of the form

Collins, Rogers [2015]

$$S_{NP}(b) = \exp\{-g_1 b^2 - g_K(b) \ln(M^2/Q_0^2)\}$$

$$g_K(b) = g_0 \left(1 - \exp\left[-\frac{C_F \alpha_S ((b_0/b_\star)^2) b^2}{\pi g_0 b_{\lim}^2} \right] \right)$$

$$g_1 = 0.5 \text{ GeV}^2, Q_0 = 1 \text{ GeV}, g_0 = 0.3, b_{\text{lim}} = 1.5 \text{ GeV}^{-1}$$

$$b_{\star}^2 = b^2 b_{\rm lim}^2 / (b^2 + b_{\rm lim}^2)$$

Other choices available in the code

$$S_{NP}(b) = \exp\left\{-\left(g_1 + g_2 \log\left(\frac{m}{Q_0}\right) + g_3 \log\left(\frac{100m}{\sqrt{s}}\right)\right)b^2\right\}$$