

UNIVERSITÀ DEGLI STUDI di Milano

MW determination at hadron colliders

Alessandro Vicini University of Milano, INFN Milano

CERN, April 18th 2023

based on: L.Rottoli, P.Torrielli, AV, arXiv:2301.04059

Alessandro Vicini - University of Milano

Outline of the talk

• The Drell-Yan kinematical distributions and the m_W determination

- The modelling of the QCD effects and the difficult estimate of the associated uncertainties
- Proposal of a new observable, suitable for a transparent discussion of the uncertainties on m_W

	D0 I		80478	<u>+</u>	83	
	CDF	I	80432	±	79	
	DEL	PHI	80336	±	67	
	L3		80270	±	55	
	OPA	L	80415	±	52	
	ALE	PH	80440	±	51	
	D0 II ATLA	4S 4S	80376 80360 80370	± ±1 +	23 6 19	
	LHC CDF	b II	80354 80433	± 32	2 9	
79	900	80000	<u> </u>	00	802	<u>}</u>
			۱۸	1 hc	ncon r	V

Alessandro Vicini - University of Milano

m_W determination at hadron colliders

- In charged-current DY, it is NOT possible to reconstruct the lepton-neutrino invariant mass Full reconstruction is possible (but not easy) only in the transverse plane
- A generic observable has a linear response to an m_W variation With a goal for the relative error of 10^{-4} , the problem seems to be unsolvable
- m_W extracted from the study of the shape of the p_{\perp}^l , M_{\perp} and E_{\perp}^{miss} distributions in CC-DY thanks to the jacobian peak that enhances the sensitivity to m_W

$$\frac{d}{dp_{\perp}^2} \rightarrow \frac{2}{s} \frac{1}{\sqrt{1 - 4p_{\perp}^2/s}} \frac{d}{d\cos\theta} \sim \frac{d}{dp_{\perp}^2} \rightarrow \frac{2}{s} \frac{1}{\sqrt{1 - 4p_{\perp}^2/m_W^2}} \frac{d}{d\cos\theta}$$

 \rightarrow enhanced sensitivity at the 10⁻³ level (p_{\perp}^{l} distribution) or even at the 10⁻² level (M_{\perp} distribution)

m_W determination at hadron colliders

problems are due to \cdot the smearing of the distributions due to difficult neutrino reconstruction

sensitivity to the modelling of initial state QCD effects

m_W determination at hadron colliders: template fitting

Given one experimental kinematical distribution

- we look for the minimum of the χ^2 distribution

The m_W value associated to the position of the minimum is the experimental result

A determination at the 10^{-4} level requires a control over the shape of the distributions at the per mille level $_{\sim}$

The theoretical uncertainties of the templates contribute to the theoretical systematic error on m_W

• we compute the corresponding theoretical distribution for several hypotheses of one Lagrangian input parameters (e.g. m_W) • we compute, for each $m_W^{(k)}$ hypothesis, a χ_k^2 defined in a certain interval around the jacobian peak (fitting window)

Template fitting: description of the single lepton transverse momentum distribution

The template fitting procedure is acceptable if the data are described by the theoretical distribution with high quality

Scale variation of the N3LO+N3LL prediction for ptlep provides a set of equally good templates but the width of the uncertainty band is at the few percent level a factor 10 larger than the naive estimate would require !

 \rightarrow data driven approach a Monte Carlo event generator is tuned to the data in NCDY (p_{\perp}^{Z}) the same parameters are then used to prepare the CCDY templates

Template fitting: description of the single lepton transverse momentum distribution

The template fitting procedure is acceptable if the data are described by the theoretical distribution with high quality

Eur.Phys.J.C 78 (2018) 2, 110, *Eur.Phys.J.C* 78 (2018) 11, 898 (erratum)

Alessandro Vicini - University of Milano

Template fitting: description of the single lepton transverse momentum distribution

The template fitting procedure is acceptable if the data are described by the theoretical distribution with high quality

Scale variation of the N3LO+N3LL prediction for ptlep provides a set of equally good templates but the width of the uncertainty band is at the few percent level a factor 10 larger than the naive estimate would require !

 \rightarrow data driven approach a Monte Carlo event generator is tuned to the data in NCDY (p_{\perp}^{Z}) the same parameters are then used to prepare the CCDY templates

What are the limitations of the transfer of information from NCDY to CCDY ?

Comments on the data driven approach

- The Monte Carlo event generators typically have NLO+(N)LL QCD perturbative accuracy \rightarrow to match the data they might require a reweighing factor larger than a code N3LO+N3LL
- The tuning to the data should be done in association to QCD scale variations
 - with different reweighing functions but

we should check how the different alternatives behave when applied to CCDY

• The tuning assumes that the missing factor taken from the data is universal, i.e. identical for NCDY and CCDY but

several elements of difference:

- masses and phase-space factors, acceptances
- different electric charges (QED corrections)
- different initial states (\rightarrow PDFs, heavy quarks effects)
- The tuning assumes that the reweighing factor derived from p_{\perp}^{Z}
- It is possible that BSM physics is reabsorbed in the tuning

• The interpretation of the fitted value is not necessarily the SM lagrangian parameter

 \rightarrow starting from different pQCD scale choices, we can achieve by construction the same description of NCDY

applies equally well to the p_{\perp}^{W} and to the lepton transverse momentum in CCDY

Interplay of QCD and QED corrections

- very large impact of initial-state QCD radiation on the ptlep distribution
- large radiative corrections due to QED final state radiation at the jacobian peak
- very large interplay of QCD and QED corrections redefining the precise shape of the jacobian peak

C.Carloni Calame, M.Chiesa, H.Martinez, G.Montagna, O.Nicrosini, F.Piccinini, AV, arXiv:1612.02841

Interplay of QCD and QED corrections

- very large impact of initial-state QCD radiation on the ptlep distribution
- large radiative corrections due to QED final state radiation at the jacobian peak
- very large interplay of QCD and QED corrections redefining the precise shape of the jacobian peak

NLO-QCD + QCDPS + QEDPS is the lowest order meaningful approximation of this observable

the precise size of the mixed QCDxQED corrections (and uncertainties) depends on the choice for the QCD modelling

C.Carloni Calame, M.Chiesa, H.Martinez, G.Montagna, O.Nicrosini, F.Piccinini, AV, arXiv:1612.02841

Comments on the χ^2 minimisation in the template fit

$$\chi^2 = (\vec{d} - \vec{t})^T \cdot C^{-1} \cdot (\vec{d} - \vec{t}) \qquad C = \Sigma_{stat} + \Sigma_{syst,exp} + \Sigma_{MC} + \Sigma_{PDF} + \Sigma_{syst,th}$$

The χ^2 minimisation leads to sensible and stable results when the deviation of the data from the templates is comparable to the size of the eigenvalues of the covariance matrix but the lepton transverse momentum distribution receives very large corrections in QCD, much larger than 0.1%; the absence of $\sum_{syst,th}$ makes it impossible to assign a "sensible" contribution to the χ^2 , e.g. when applying scale variations (instability of the χ^2 minimisation)

 \rightarrow the data driven approach remains the only way to pursue a template fit approach at the price of losing the possibility to study the theoretical uncertainties on the modelling

The $\sum_{syst,th}$ contribution to the covariance matrix is never included, because of the non-statistical nature of theory uncertainties

Alessandro Vicini - University of Milano

L.Rolloli, P.Torrielli, AV, arXiv:2301.04059

The lepton transverse momentum distribution in charged-current Drell-Yan

In the p_{\perp}^{ℓ} spectrum the sensitivity to m_{W} and important QCD features are closely intertwined

The lepton transverse momentum distribution has a jacobian peak induced by the factor $1/\sqrt{1-\frac{1}{4p_{\perp}^2}}$.

When studying the W resonance region, the peak appears at $p_{\perp} \sim \frac{m_W}{2}$

matical end point at
$$\frac{m_W}{2}$$
 at LO

The decay width allows to populate the upper tail of the distribution

Sensitivity to soft radiation \rightarrow double peak at NLO-QCD

The QCD-ISR next-to-leading-log resummation broadens the distribution and cures the sensitivity to soft radiation at the jacobian peak.

The lepton transverse momentum distribution in charged-current Drell-Yan

Impressive progress in QCD calculations

X.Chen, T.Gehrmann, N.Glover, A.Huss, P.Monni, E.Re, L.Rottoli, P.Torrielli, arXiv:2203.01565 X.Chen, T.Gehrmann, N.Glover, A.Huss, T.yang, H.Zhu, arXiv: 2205.11426 J.Campbell, T.Neumann, arXiv:2207.07056 S.Camarda, L.Cieri, G.Ferrera, arXiv:2303.12781

Uncertainty band based on canonical scale variations $\mu_{R,F} = \xi_{R,F} \sqrt{(M^{\ell\nu})^2 + (p_{\perp}^{\ell\nu})^2}, \quad \mu_Q = \xi_Q M^{\ell\nu}$ $\xi_{R,F} \in (1/2,1,2)$ excluding ratios=4 (7 variations) $(\xi_R, \xi_F) = (1,1)$ and $\xi_O = (1/4,1)$ (2 variations) At NNLO+N3LL, residual ±2% uncertainty

The peak of the distribution is located at $p_{\perp} \sim 38.5$ GeV

The point of maximal sensitivity is shifted by :

- $\Gamma_W/2$ compared to the nominal value $m_W/2$
- the effect of resummed QCD radiation

Sensitivity to the W boson mass: independence from QCD approximation

Where is the sensitivity to m_W ? Which bins are the most relevant? The study of the covariance matrix for m_W variations shows that one specific combination of bins carries the bulk of the sensitivity to m_W

The determination of m_W requires the possibility to appreciate the distortion of the distribution induced by 2 different mass hypotheses

A shift by $\Delta m_W = 20$ MeV distorts the distribution at few per mille level

In pure QCD,

the distortion is independent of the QCD approximation or scale choice

The process can be factorized in production (with QCD effects) times propagation and decay of the W boson. The sensitivity to m_W stems from the propagation and decay part

The sensitivity to m_W is independent of the QCD approximation The central value and the uncertainty on m_W instead do depend on the QCD approximation

```
\rightarrow following this indication, we design a new observable
                    15
```


Sensitivity to the W boson mass: covariance with respect to m_W variations

- The p_{\perp}^{ℓ} spectrum includes N bins.
- After the rotation which diagonalises the m_W covariance, we have N linear combinations of the primary bins.
- The combination associated to the (by far) largest eigenvalue exhibits a very clear and simple pattern
- The point where the coefficients change sign is very stable at different orders in QCD and with different bin ranges and it is found at $p_{\perp}^{\ell} \sim 37 \text{ GeV}$

The jacobian asymmetry $\mathscr{A}_{p^{\ell}}$

The asymmetry is an observable (i.e. it is measurable via counting): its value is one single scalar number It depends only on the edges of the two defining bins

Increasing m_W shifts the position of the peak to the right \rightarrow Events migrate from the blue to the orange bin \rightarrow The asymmetry decreases

$$p_{\perp}^{\ell} \equiv \int_{p_{\perp}^{\ell, \min}}^{p_{\perp}^{\ell, \min}} dp_{\perp}^{\ell} \frac{d\sigma}{dp_{\perp}^{\ell}}, \quad U_{p_{\perp}^{\ell}} \equiv \int_{p_{\perp}^{\ell, \max}}^{p_{\perp}^{\ell, \max}} dp_{\perp}^{\ell} \frac{d\sigma}{dp_{\perp}^{\ell}}$$

$$\mathcal{A}_{p_{\perp}^{\ell}}(p_{\perp}^{\ell,\min}, p_{\perp}^{\ell,\min}, p_{\perp}^{\ell,\max}) \equiv \frac{L_{p_{\perp}^{\ell}} - U_{p_{\perp}^{\ell}}}{L_{p_{\perp}^{\ell}} + U_{p_{\perp}^{\ell}}}$$

The jacobian asymmetry $\mathscr{A}_{p_1^\ell}$ as a function of m_W

The experimental value and the theoretical predictions can be directly compared (m_W from the intersection of two lines)

The main systematics on the two fiducial cross sections is related to the lepton momentum scale resolution A determination at the ± 15 MeV level from the experimental side seems possible

The asymmetry $\mathscr{A}_{p_{\perp}}$ has a linear dependence on m_W , stemming from the linear dependence on the end-point position

- The slope of the asymmetry expresses the sensitivity to m_W , in a given setup $(p_{\perp}^{\ell,min}, p_{\perp}^{\ell,mid}, p_{\perp}^{\ell,max})$
- The slope is the same with every QCD approximation (factorization of QCD effects, perturbative and non-perturbative)
- The "large" size of the two bins $\mathcal{O}(5-10)$ GeV leads to
 - small statistical errors
 - excellent stability of the QCD results (inclusive quantity)
 - ease to unfold the data to particle level $(m_W \text{ combination})$

Reading the uncertainties on m_W

$$\Delta m_W^{th}$$

m_W determination at the LHC as a function of the $\mathscr{A}_{p_1^\ell}$ parameters

as pseudo-experimental value we choose the NNLO+N3LL result with $m_W = 80.379$ L.Rottoli, P.Torrielli, AV; arXiv:2301.04059

Each QCD scale-variations band determines an m_W interval (intersection with the central experimental line)

Important role of the N3LL corrections

We first check the convergence order-by-order. If we observe it, then we take the size of the m_W interval as estimator of the residual pQCD uncertainty

We do not trust the scale variations alone \rightarrow cfr the choice with $p_{\perp}^{\ell,mid} = 38 \text{ GeV}$

A pQCD uncertainty at the ± 5 MeV level is achievable based on CCDY data alone

The choice of the midpoint is important to identify two regions with excellent QCD convergence

What's missing?

Two items of central relevance are

Alessandro Vicini - University of Milano

The excellent convergence in pQCD of the asymmetry $\mathscr{A}_{p_{\perp}}$ is the best possible starting point to discuss

- the impact on the central m_W value of
 - missing perturbative corrections (QED, QCDxEW)
 - non-perturbative effects
 - \rightarrow each effect yields a vertical offset of $\mathscr{A}_{p_1^{\ell}} \rightarrow m_W$ shift QED corrections might also change the slope
 - \rightarrow the non-perturbative effects are a refinement of the study - impact on top of NNLO+N3LL is expected moderate - not a necessary element as in the template fit case
- the propagation of the uncertainties
 - \rightarrow the linearity of the dependence on m_W allows an easy propagation of each uncertainty source

the intrinsic k_{\perp} of the initial state partons (non-perturbative effects) the proton collinear PDFs

Loss of information ?

Alessandro Vicini - University of Milano

- The p_{\perp}^{ℓ} spectrum includes N bins.
- After the rotation which diagonalises the m_W covariance, we have N linear combinations of the primary bins. • We keep only one combination, the asymmetry, out of N. Are we losing information ?
- The amount of information available depends: -on the sensitivity of each observable to m_W -on the uncertainties affecting the observable
- the jacobian asymmetry has the largest sensitivity to m_W among the N combinations a very low pQCD uncertainty
- the remaining N-I combinations have quite low sensitivity to m_W (cfr. the eigenvalues) possibly large QCD uncertainties (in progress)
- If the amount of information is related to "signal/noise", the asymmetry has very low pQCD noise.
- The remaining N-I combinations describe the QCD features of the p_{\perp}^{ℓ} spectrum \rightarrow disentangling m_{W} from pQCD \rightarrow possible increase of the total QCD uncertainty 22

Information transfer from NCDY to CCDY : a validation exercise

- NNLO+N3LL with central scales $\mu_R = \mu_F = \mu_Q = 1$ is our MC truth = pseudodata both for NCDY and CCDY
- we take NNLO+NNLL as theory model
- for different scale choices we compute the reweighing functions from NNLO+NNLL to the p_{\perp}^{Z} pseudodata

 $\mathscr{R}(\mu_R, \mu_F, \mu_Q; p_\perp^Z) = \left(\frac{d\sigma^{NNLO+1}}{\sigma}\right)$

- we then use the appropriate reweighing function in CCDY at NNLO+NNLL for each different scale choice

$$\frac{d\sigma^{NNLO+NNLL-rwg}(\mu_R,\mu_F,\mu_Q)}{dp_{\perp}^W} = \mathcal{R}(\mu_R,\mu_F,\mu_Q;p_{\perp}^W) \frac{d\sigma^{NNLO+NNLL}(\mu_R,\mu_F,\mu_Q)}{dp_{\perp}^W}$$

- we compare the reweighed results and the CCDY pseudodata and study the residual scale dependence

$$\frac{d\sigma^{NNLO+NNLL-rwg}(\mu_R,\mu_F,\mu_Q)}{dp_{\perp}^W}$$

- naive expectation: since by construction all the scale choices match the p_{\perp}^{Z} pseudodata, then also in CC-DY we should find the same (i.e. no scale dependence)

Alessandro Vicini - University of Milano

$$\frac{+N3LL}{dp_{\perp}^{Z}}\left(1,1,1\right)\left(\frac{d\sigma^{NNLO+NNLL}(\mu_{R},\mu_{F},\mu_{Q})}{dp_{\perp}^{Z}}\right)^{-1}$$

$$\Rightarrow \frac{d\sigma^{NNLO+N3LL}(1,1,1)}{dp_{\perp}^{W}}$$

23

Reweighed results vs pseudodata for CC-DY : scale uncertainty of the shapes NNLO+NNLL NNLO+NNLL reweighed

 p_{\perp}^{W}

 p_{\perp}^{ℓ}

Information transfer from NCDY to CCDY : a validation exercise

L.Rottoli, P.Torrielli, AV; arXiv:2301.04059

- we determine m_W using the three sets of distributions:
 - plain NNLO+NNLL
 - reweighed NNLO+NNLL
 - NNLO+N3LL
- the pQCD uncertainty on m_W estimated with or without reweighing is of similar size (in our case the NNLO+NNLL QCD uncertainty)

- \rightarrow the usage of the p_{\perp}^{Z} information improves the accuracy of the data description does not improve the precision of the templates (beyond that of the model)
- \rightarrow usage of the highest available perturbative order is recommended to minimize the pQCD systematics in the transfer from Z to W

as pseudo-experimental value we choose the NNLO+N3LL result with $m_W = 80.379$ L.Rottoli, P.Torrielli, AV; arXiv:2301.04059

 m_W determination at the Tevatron as a function of the $\mathscr{A}_{p_\perp^\ell}$ parameters (no p_\perp^Z reweighing)

- we compute \mathscr{A}_{p^ℓ} at the Tevatron, from CC-DY, as a function of m_W we vary the QCD scales in the canonical ranges
- in the most optimistic configuration, at NLO+NNLL, a range of values $\Delta m_W \sim \pm 30$ MeV is found
- NLO+NNLL is the same perturbative accuracy available in ResBos

- it is difficult to expect a very significant uncertainty reduction thanks to the p_{\perp}^{Z} data information only (cfr. previous slides)
- \rightarrow usage of the highest available perturbative order is recommended to minimize the pQCD systematics in the transfer from Z to W

as pseudo-experimental value we choose the NNLO+N3LL result with $m_W = 80.379$ L.Rottoli, P.Torrielli, AV; arXiv:2301.04059

 m_W determination at the Tevatron as a function of the $\mathscr{A}_{M^{\ell_
u}}$ parameters (no p_\perp^Z reweighing)

- we compute $\mathscr{A}_{M^{\ell}\nu}$ at the Tevatron, from CC-DY, as a function of m_W we vary the QCD scales in the canonical ranges
- NLO+NNLL is the same perturbative accuracy available in ResBos
- we neglect important detector simulation effects \rightarrow optimistic estimates for the uncertainty
- in the most optimistic configuration, at NLO+NNLL, a range of values $\Delta m_W \sim \pm 10 \text{ MeV}$ is found

PDF uncertainties

L.Rottoli, P.Torrielli, AV; arXiv:2301.04059

Alessandro Vicini - University of Milano

• the PDF uncertainties on m_W are evaluated in a conservative way using the 100 replicae of the NNPDF4.0 - NLO set $\rightarrow \delta m_W^{PDF} = \pm 11 \text{ MeV}$

 the spread of the central values of CT18NNLO, MSHTnnlo, NNPDF4.0 if of $\sim 30 \text{ MeV}$

• this size of the uncertainty is expected:

 $\mathscr{A}_{p_{1}^{\ell}}$ is one single observable, particularly sensitive to PDF variations

 \rightarrow more information is needed to mitigate this problem

-) in situ profiling (e.g. use additional bins of the p_{\perp}^{ℓ} distribution)
- 2) combination of results in different rapidity acceptance regions (e.g. LHCb combined with ATLAS/CMS)
- 3) combination of results for W^+ and W^-

PDF uncertainty on MW: exploiting the theoretical constraints E.Bagnaschi, AV, Phys.Rev.Lett. 126 (2021) 4, 041801

all PDF replicas are correlated because the parton densities are developed in the same QCD framework 1) obey sum rules, 2) satisfy DGLAP equations, 3) are based on the same data set

the "unitarity constraint" of each parton density affects the parton-parton luminosities, which, convoluted with the partonic xsec, in turn affect the hadron-level xsec

Alessandro Vicini - University of Milano

PDF uncertainty on MW: exploiting the theoretical constraints E.Bagnaschi, AV, Phys.Rev.Lett. 126 (2021) 4, 041801

all PDF replicas are correlated because the parton densities are developed in the same QCD framework 1) obey sum rules, 2) satisfy DGLAP equations, 3) are based on the same data set

the "unitarity constraint" of each parton density affects the parton-parton luminosities, which, convoluted with the partonic xsec, in turn affect the hadron-level xsec

Alessandro Vicini - University of Milano

$$\chi_{k,\min}^{2} = \sum_{r,s\in bins} \left(\mathscr{T}_{0,k} - \mathscr{D}^{exp} \right)_{r} C_{rs}^{-1} \left(\mathscr{T}_{0,k} - \mathscr{D}^{exp} \right)_{s}$$
$$= \sum_{PDF} + \sum_{stat} + \sum_{MC} + \sum_{exp \ syst} \text{ total covariance}$$

Inserting the information about PDFs in the covariance matrix leads to a profiling action "in situ", given by the data themselves

the PDF uncertainty can be reduced to the few MeV level thanks to the strong anti correlated behaviour of the two tails of $p_{\perp}^{\mathcal{E}}$

PDF rapidity correlations

The anticorrelation w.r.t. PDFs of the LHCb results helps reducing the total PDF uncertainty

CT18

NNPDF31

Detailed study in the <u>Tevatron-LHC W-boson mass Combination Working Group</u>

MSHT20

NNPDF40

plot from Jan Kretschmar's talk at the EWWG general meeting (November 16th 2022)

Conclusions

- \rightarrow disentangling QCD from m_W is the problem under discussion
- \rightarrow scale variations in the preparation of the templates are a necessary step to properly estimate the pQCD uncertainty
- - \rightarrow the asymmetries $\mathscr{A}_{p_1^{\ell}}$, $\mathscr{A}_{M_1^{\ell}\nu}$ might help the discussion, with a simpler procedure of assessment of the pQCD uncertainty and of all higher-order effects
 - \rightarrow with such observables it is easy to profit of the impressive progress in pQCD calculations
- A useful tuning of non-perturbative parameters should be done on top of the NNLO+N3LL predictions Can such a study replace a PYTHIA tune ?

• The shape of the CC-DY kinematical distributions depends on a non-trivial combination of QCD effects and the m_W value

• The templates used to fit the data are prepared relying on specific choices in pQCD (i.e. perturbative order and μ_R , μ_F , μ_O)

• The study of the pQCD uncertainties is problematic within a template fit procedure (very precise data vs large pQCD unc.) \rightarrow the usage of data improves the accuracy of the data description, it does not improves the precision of the model

Alessandro Vicini - University of Milano

Alessandro Vicini - University of Milano

Uncertainty estimates by the CDF collaboration, Science 376, 170-176 (2022)

Source of systematic	m_T fit			p_T^ℓ fit			p_T^{ν} fit		
uncertainty	Electrons	Muons	Common	Electrons	Muons	Common	Electrons	Muons	Common
Lepton energy scale	5.8	2.1	1.8	5.8	2.1	1.8	5.8	2.1	1.8
Lepton energy resolution	0.9	0.3	-0.3	0.9	0.3	-0.3	0.9	0.3	-0.3
Recoil energy scale	1.8	1.8	1.8	3.5	3.5	3.5	0.7	0.7	0.7
Recoil energy resolution	1.8	1.8	1.8	3.6	3.6	3.6	5.2	5.2	5.2
Lepton $u_{ }$ efficiency	0.5	0.5	0	1.3	1.0	0	2.6	2.1	0
Lepton removal	1.0	1.7	0	0	0	0	2.0	3.4	0
Backgrounds	2.6	3.9	0	6.6	6.4	0	6.4	6.8	0
$p_T^Z \text{ model}$	0.7	0.7	0.7	2.3	2.3	2.3	0.9	0.9	0.9
$p_T^W/p_T^Z \mathrm{model}$	0.8	0.8	0.8	2.3	2.3	2.3	0.9	0.9	0.9
Parton distributions	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
QED radiation	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Statistical	10.3	9.2	0	10.7	9.6	0	14.5	13.1	0
Total	13.5	11.8	5.8	16.0	14.1	7.9	18.8	17.1	7.4

TABLE S8: Uncertainties on M_W (in MeV) as resulting from the transverse-mass, charged-lepton p_T and neutrino p_T fits in the $W \to \mu\nu$ and $W \to e\nu$ samples. The third column for each fit reports the portion of the uncertainty that is common in the $\mu\nu$ and $e\nu$ results. The muon and electron energy resolutions are anti-correlated because the track p_T resolution and the electron cluster E_T resolution both contribute to the width of the E/p peak, which is used to constrain the electron cluster E_T resolution.

We investigate the systematic uncertainty due to missing higher-order QCD effects by the standard method of varying the factorization and renormalization scales in RESBOS, and by comparing two event generators with different resummation and non-perturbative schemes. Both methods estimate that the effect of missing higher-order QCD effects is ≈ 0.4 MeV, which we take as negligible.

Impact of EW and mixed QCDxEW corrections on MW

C.Carloni Calame, M.Chiesa, H.Martinez, G.Montagna, O.Nicrosini, F.Piccinini, AV, arXiv:1612.02841

	$pp \to W^+, \sqrt{s} = 14 \text{ TeV}$	M_W shifts (MeV)				
	Templates accuracy: LO	W^+ -	$\rightarrow \mu^+ \nu$	$W^+ \to e^+$		
	Pseudo–data accuracy	M_T	p_T^ℓ	M_T	Į	
1	HORACE only FSR-LL at $\mathcal{O}(\alpha)$	-94±1	-104 ± 1	-204 ± 1	-23	
2	HORACE FSR-LL	-89 ± 1	-97 ± 1	-179 ± 1	-19	
3	HORACE NLO-EW with QED shower	-90 ± 1	-94 ± 1	-177 ± 1	-19	
4	HORACE $FSR-LL + Pairs$	-94 ± 1	-102 ± 1	-182 ± 2	-19	
5	Photos FSR-LL	-92 ± 1	-100 ± 2	-182 ± 1	-19	

- 30 ± 2 95 ± 1
- 90 ± 2
- $99{\pm}1$
- $99{\pm}2$
- QED FSR plays the major role
- subleading QED and weak induce further O(4 MeV) shifts

Impact of EW and mixed QCDxEW corrections on MW

C.Carloni Calame, M.Chiesa, H.Martinez, G.Montagna, O.Nicrosini, F.Piccinini, AV, arXiv:1612.02841

	$pp \to W^+, \sqrt{s} = 14 \text{ TeV}$)		
	Templates accuracy: LO		$\rightarrow \mu^+ \nu$	$ W^+ -$	$\rightarrow e^+ \nu$
	Pseudo-data accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ
1	HORACE only FSR-LL at $\mathcal{O}(\alpha)$	-94±1	-104±1	-204 ± 1	-230±2
2	HORACE FSR-LL	-89 ± 1	-97 ± 1	-179 ± 1	-195 ± 1
3	HORACE NLO-EW with QED shower	-90 ± 1	$-94{\pm}1$	-177 ± 1	-190 ± 2
4	HORACE $FSR-LL + Pairs$	-94+1	-102+1	-182 ± 2	-199 ± 1
5	Рнотоs FSR-LL	-92±1	-100 ± 2	-182 ± 1	-199 ± 2
					•

the impact on MW of the mixed QCD QED-FSR corrections strongly depends on the underlying QCD shape/model

							_	
	$pp \to W^+, \sqrt{s} = 14 \text{ TeV}$			M_W shifts (MeV)				
	Templates accuracy: NLO-QCD+QC	$\mathrm{CD}_{\mathrm{PS}}$	$W^+ \rightarrow$	$\mu^+ u$	$ W^+ \to e^+$	$\nu(dres)$		
	Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ		
1	$NLO-QCD+(QCD+QED)_{PS}$	Pythia	-95.2±0.6	-400 ± 3	-38.0 ± 0.6	-149 ± 2	1	
2	$NLO-QCD+(QCD+QED)_{PS}$	Рнотоз	-88.0 ± 0.6	-368 ± 2	-38.4 ± 0.6	-150 ± 3		
3	$NLO-(QCD+EW)+(QCD+QED)_{PS}$ two-rad	Pythia	-89.0 ± 0.6	-371 ± 3	-38.8 ± 0.6	-157 ± 3		
4	$\rm NLO-(QCD+EW)+(QCD+QED)_{PS}{\tt two-rad}$	Рнотоз	-88.6 ± 0.6	-370 ± 3	-39.2 ± 0.6	-159 ± 2		

- QED FSR plays the major role
- subleading QED and weak induce further O(4 MeV) shifts

the bulk of the corrections is included in the analyses

- what is the associated uncertainty ?
- what happens if
- we change the underlying QCD model ?

Impact of EW and mixed QCDxEW corrections on MW

C.Carloni Calame, M.Chiesa, H.Martinez, G.Montagna, O.Nicrosini, F.Piccinini, AV, arXiv:1612.02841

$pp \to W^+, \sqrt{s} = 14 \text{ TeV}$	M_W shifts (MeV)				
Templates accuracy: LO	W^+ -	$ ightarrow \mu^+ u$	$W^+ \to e^+ \nu$		
Pseudo-data accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ	
1 HORACE only FSR-LL at $\mathcal{O}(\alpha)$	-94±1	-104 ± 1	-204 ± 1	-230 ± 2	
2 HORACE FSR-LL	-89 ± 1	-97 ± 1	-179 ± 1	-195 ± 1	
3 HORACE NLO-EW with QED shower	-90 ± 1	-94 ± 1	-177 ± 1	-190 ± 2	
4 HORACE FSR-LL + Pairs	-94+1	-102+1	-182±2	-199 ± 1	
5 Photos FSR-LL	-92±1	-100 ± 2	-182 ± 1	-199 ± 2	
the impact on MW of the mixed QCD) QED)-FSR d	correct	tions s	

	$pp \to W^+, \sqrt{s} = 14 \text{ TeV}$	M_W shifts (MeV)					
Templates accuracy: NLO-QCD+QCD _{PS}			$ W^+ \to \mu^+ \nu \qquad W^+ \to e^+ \nu ($			$\nu(dres)$	
	Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ	
1	$NLO-QCD+(QCD+QED)_{PS}$	Pythia	-95.2±0.6	-400 ± 3	-38.0 ± 0.6	-149 ± 2	1
2	$NLO-QCD+(QCD+QED)_{PS}$	Рнотоз	-88.0 ± 0.6	-368 ± 2	-38.4 ± 0.6	-150 ± 3	
3	$\rm NLO\text{-}(\rm QCD\text{+}\rm EW)\text{+}(\rm QCD\text{+}\rm QED)_{\rm PS}\texttt{two-rad}$	Pythia	-89.0 ± 0.6	-371 ± 3	-38.8 ± 0.6	-157 ± 3	
4	$\rm NLO\text{-}(\rm QCD\text{+}\rm EW)\text{+}(\rm QCD\text{+}\rm QED)_{\rm PS}\texttt{two-rad}$	Рнотоз	-88.6 ± 0.6	-370 ± 3	-39.2 ± 0.6	-159 ± 2	

can we constrain the formulation, for the $\alpha \alpha_s$ contribution ? very stable behaviour of the M_{\perp} distribution in contrast to th

- QED FSR plays the major role
- subleading QED and weak induce further O(4 MeV) shifts

is strongly depends on the underlying QCD shape/model

the bulk of the corrections is included in the analyses

- what is the associated uncertainty ?
- what happens if
- we change the underlying QCD model ?

he
$$p_{\perp}^l$$
 case

Sensitivity to the W boson mass: covariance w.r.t. MW variations

The sensitivity to m_W can be quantified by means of a matrix of covariance w.r.t. m_W variations $\mathscr{C}_{ij} \equiv \langle \sigma_i \sigma_j \rangle - \langle \sigma_i \rangle \langle \sigma_j \rangle \quad \text{with} \quad \langle \sigma \rangle \equiv \frac{1}{N_W} \sum_{k=1}^{N_W} \sum_{k=1}^{N_W} \sigma_i \text{ represents the i-th bin of the } p_{\perp}^{\mathscr{C}} \text{ distribution}$

The diagonalization of the covariance matrix yields N_{bins} linear combinations of the σ_i transforming independently of each other under m_W variations

The eigenvalues express the sensitivity for a given Δm_W shift, and help classifying the different combinations

The first eigenvalue is 560 times the second one (in size) The associated linear combination has a peculiar structur all coefficients are positive (negative) for $p_{\perp}^{\ell} < 37$ Explicit check that the value $p_{\perp}^{\ell} \sim 37$ is very stable change

This value can be appreciated also in the plot of the ratio \rightarrow indication for the definition of a new observable

$$\int_{-1}^{W} \sigma(m_W = m_W^{(k)})$$

re:

$$(p_{\perp}^{\ell} > 37)$$
 GeV
ging QCD approximation or bin range

Rapidity acceptance and the relevant partonic-x range

