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CT18 partOn distributions PRD 103 (2021) 014013
Four PDF ensembles: CT18 (default), A, X, and Z
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New CT18 NNLO grids for precision calculations

« Soon to appear in the LHAPDF library

« Contain more x and Q points — improved interpolation at the expense of slightly slower evaluation
* Crossing of quark mass thresholds implemented with multiple Q grids

« Complement the published (less dense) CT18 grids that remain sufficient for most applications

2
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Toward a new generation of CT202X PDFs

See detailed presentations at DIS’2023 workshop

1. ldentify sensitive, mutually consistent new experimental data sets using
preliminary fits and fast techniques (L, sensitivities and ePump)

2. Implement N3LO QCD and NLO EW contributions as they become available.
N3LO accuracy is reached only when N3LO terms are fully implemented.

— Meanwhile, “NNLO+” PDFs: e.qg., include theoretical uncertainty due to QCD scale
dependence for key processes as has been done in CT18/CT18X NNLO PDFs

3. Explore quark sea flavor dependence: s — 5§ (CT18As), fitted charm
(CT18FC),...

4. Include lattice QCD constraints (CT18As_Lat)

5. Next-generation PDF uncertainty quantification: META PDFs, Bézier curves,
MC sampling, multi-Gaussian combination, ...

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN 3



From talk by M. Boonekamp
and CERN-LPCC-2022-06

tCT18Z NNLO
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may have a non-negligible scale dependence.
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CT18+CT18Z PDF uncertainties together account for
the crucial tension in the fitted data (ATLAS 7 TeV

W /Z vs. (SI)DIS) and for QCD scale variations in DIS,
Z pr, jet production.

P. Nadolsky, MWDays 2023 @ CERN 4



New post-CT18 LHC Drell-Yan data

Boson NG Lumi Observable Ref.

ATLAS

W.Z | 276 ] 4.0ph7! ofid.tot 1907.03567

W.Z 13 | 81.0 ph! ohd 1603.09222

W.Z | 5.02]250ph! (Me, yer) 1810.08424

7 8 | 202 fb7 T (e, yer) 1710.05167

W—uv| 8 | 202! N 1904.05631

7 13 | 36.1fb ' P 1912.02844
CMS

Z 13 | 28fth ! moe 1812.10529

Z 13 | 35.9 b~ ! (y,pr.0") 1909.04133

W 13 | 359 bt | ofd, yy . (ns,p%) | 2008.04174
LHCb

W—=ev | 8 2.0 th~T Ne 1608.01484

7 13 | 294 pb=' | & (y,pp.0*) | 1607.06495

Z —uw | 13 | 51fb! o (y,pr,0*) | 2112.07458

We mainly focus on (pseudo)rapidity distributions in this work.

2023-04-18

P. Nadolsky, MWDays 2023 @ CERN

K. Xie et al., in progress

Multiple candidate fits to explore
the impact of 8 and 13 TeV Drell-
Yan data using NNLO and
resummed N3LL-NNLO cross
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Post CT18 LHC DreII Yan data (s« xis i for the deaic)
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TeV W, Z precision measurement, which
enhance the strangeness (CT18A).

@ Exceptions for ATLAS and L_HCb 8 TeV
] W data, which push the d(d) PDFs to

the opposite direction.

@ [he post-CT18 LHC Drell-Yan data
shrink the error bands.
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@ [he joint impact of these new data sets

pull the PDFs and predictions from CT18
to CT18Z direction.
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CT18As Lat NNLO: Strangeness asymmetry with a
lattice QCD constraint
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T.-J. Hou et al., arXiv: 2211.11064
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constrainton s_(x) at 0.3 < x < 0.8.
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Sensitivity of experiments to the strangeness asymmetry

CT18As NNLO
(s(x,Q)-s(x,Q))/(s(x,Q)+s(x,Q))(x, 2 GeV)
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Preference for s — 5 # 0 at x > 0.1 emerges from competing y?2 pulls of NuTeV dimuon, LHCb W /Z, BCDMS and
E866 fixed-target cross sections. We estimated it using the L, sensitivity fast technique [T. Hobbs et al.,
arXiv:1904.00022]. The lattice prediction by R. Zhang et al., 2005.01124 is consistent with s — s =0 at x > 0.3.



New CT18 Fitted Charm analysis

moments of the FC PDFs often used to
characterize magnitude, asymmetry
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possible charm-anticharm asymmetries

pQCD only very weakly breaks ¢ = ¢ through HO corrections

- large(r) charm asymmetry would signal nonpert dynamics, IC

- MBM breaks ¢ = ¢ through hadronic interactions

S CT18NNLO
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consider two MBM models as
examples (not predictions)

-» asym. small but ratio (left) can be
bigger; will be hard to extract from data
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A Lagrange Multiplier scan

CT18 FC NNLO (MBMC form)

20 Total

E866pp
LHCD & TeV W/Z
LHCb 7 Tev WiZ

| CCFRF,
1 CDHSW F3

+— CCFRF
] CMS 8 'Iz"e‘vr jets

000 0005 0010 0015
(X)ec at Q=1.27 GeV
A slow method inside the global fit to
compute the y? dependence on the
quantity of interest (here the momentum

fraction carried by the fitted charm in
CT18 FC NNLO).

2023-04-18

An L, sensitivity
ATLAS 7 TeV W/Z [201 6] {248) Q—1 00 GeV
10 CT18AS _Lat NNLO

— T2-10

Ay?(L, sensitivity)

Ax(L, sensitivity)
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A fast approximation to the LM scan to estimate Ay? of a
fitted experiment (here ATLAS 7 TeV W /Z) when the PDF
increases by 1o for a given tolerance T2. Needs only
published error PDFs and y? tables.

Can be combined with TREXxFitter for PDF errors on My, .
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Epistemic PDF uncertainty in PDF fits

“Hopscotch scans” to quantify epistemic uncertainty
on MC replicas

Can be applied to understand the PDF uncertainty
on My, using open-source programs

Based on numerical results from

A. Courtoy, J. Huston, P. N., K. Xie, M. Yan, C.-P. Yuan,
Phys. Rev. D 107, (2023) 034008

[full comparisons in arXiv:2205.10444
and at https://ct.nepforge.org/PDFs/2022hopscotch/]
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https://ct.hepforge.org/PDFs/2022hopscotch/

Representative sampling

Curse of Big-data
dimensionality paradox

Acceptable functions

Bias-variance

separation

2023-04-18

Epistemic

PDF
uncertainty

Precision PDF applications

P. Nadolsky, MWDays 2023 @ CERN

Likelihood
ratios

Tests of PDFs

Post-fit PDF

validations
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Epistemic PDF uncertainty...

...reflects methodological choices such as PDF
functional forms or NN architecture and
hyperparameters.

... can dominate the full uncertainty when experimental
and theoretical uncertainties are small.

...Is associated with the prior probability.

... can be estimated by representative sampling of
the PDF solutions obtained with acceptable
methodologies.

= sampling over choices of experiments, PDF/NN
functional space, models of correlated uncertainties...

= in addition to sampling over data fluctuations

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN

.,«//

Experi- Theory

ment Precision

N llid d PDFs,
ew collider an fAli
fixed-target specialized

measurementg. PDFs

Hessian, Monte-Carlo
techniques, Al/ML,

neural networks,
reweighting, meta-
PDFs...

Components of a global QCD fit

14



2023-04-18

Components of PDF uncertainty

In each category, one must
maximize

. PDF fitting accuracy
(accuracy of

experimental, theoretical
and other inputs)

" PDF sampling accuracy
(adequacy of
sampling in space of
possible solutions)

Fitting/sampling classification is borrowed
from the statistics of large-scale surveys
[Xiao-Li Meng, The Annals of Applied
Statistics, Vol. 12 (2018), p. 685]

P. Nadolsky, MWDays 2023 @ CERN
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HEP Is not alone

Various domains contend with multi-dimensional non-probability samples

Forecasting: presidential elections, financial markets, weather and climate, ...
Meng, The Annals of Applied Statistics, 12(2), 685, Isakov and Kuriwaki, Harvard Data Science Review, 2(4), 2020

Political polling
M. R. Elliott, R. Valliant, Statistical Science, 32(2), 249 (2017)
M. A. Bailey, Polling at a Crossroads — Rethinking Modern Survey Research. Cambridge University Press, 2023

COVID-19 vaccination assessments and epidemiological studies
Bradley et al., https://doi.org/10.1038/541586-021-04198-4
W. Dempsey, arXiv:2005.10425

Clinical trials of medical treatments
P. Msaouel, https://doi.org/10.1080/07357907.2022.208462 1

Studies of biodiversity
R. Boyd et al., https.//doi.org/10.1016/].tree.2023.01.001

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN
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https://doi.org/10.1038/s41586-021-04198-4
https://doi.org/10.1080/07357907.2022.2084621
https://doi.org/10.1016/j.tree.2023.01.001

Al/ML techniques are superb for finding an excellent fit to data.
Are these techniques adequate for uncertainty estimation [exploring all good fits]?

A common resampling procedure used by experimentalists and theorists:

1. Train a neural network model T; with N, (hyper)parameters on a randomly fluctuated replica of
discrete data D;. Repeat N, times. In a typical application: Ny, > 102 y Nrep < 104,

2. Out of N, replicas T; with “good” description of data [i.e., with a high likelihood P (D;|T;) «
e~x*(PuTd/2] discard “badly behaving” (overfitted, not smooth, ...) replicas
3. Estimate the uncertainties of T; using the remaining “well-behaved” replicas

Is this procedure rigorous? How many N,..,, replicas does one need?

2023-02-13 P. Nadolsky, Florida State University 17



A likelihood-ratio test of NN models T; and T,

From Bayes theorem, it follows that

P(T;|D) P(D|T,) P(T3)
= X
P(T.|D) P(DI|T;) P(T,)
= T'posterior = Tikelihood = T'prior
aleatory epistemic + aleatory probabilities

2_ .2
Suppose replicas T, and T, have the same y* ["likelihood = €XP (Xlzxz) = 1], but T, is disfavored

compared to T; [rposterior < 1]-

This only happens if Tprior <K 1: T, is discarded based on its prior probability.

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN 18



Epistemic PDF uncertainty is important in W boson mass
and a, measurements

ATLAS-CONF-2023-004

PDF-Set ph [MeV | mt [MeV ] | combined [MeV ]
CTI10 80355.6+138  80378.1*244 |  80355.8*137
CT14 80358.0*163  80388.8*232 |  80358.4*163
CTI8 80360.1*16-3 80382.27233 | 80360.4*163
MMHT2014 | 80360.3*127 80386.2*239 |  80361.0*137
MSHT20 80358.9* 129 80379.4%31% |  80356.3*13¢
NNPDF3.1 | 80344.7*12%  80354.3*235 | 80345.0*132
NNPDF4.0 | 80342.2#133 80354.3*223 | 80342.9*133

Table 2: Overview of fitted values of the W boson mass for different PDF sets.

The reported uncertainties are the total uncertainties.

2023-04-18

ATLAS-CONF-2023-015

The statistical analysis for the determination of as(myz) is performed with the xFitter framework [60].
The value of a(mz) is determined by minimising a y? function which includes both the experimental
uncertainties and the theoretical uncertainties arising from PDF variations:

x> (Bexps Bn) =
2
Naws (7P + 3, TP exp — o = X4 TR Bin)
o )
&

i=1
2 2
+Zﬂ}_m+2ﬁg_m. (1
j k

profiling of CT and MSHT PDFs requires to include
a tolerance factor T2 > 10 as in the ePump code

[T.J. Hou et al., 1912.10053, Appendix F]

Also the next slide.

P. Nadolsky, MWDays 2023 @ CERN 19


https://arxiv.org/abs/1912.10053

Augmented likelihood for PDFs with global tolerance

1. Start by defining the correspondence between Ay? and cumulative probability level: 68% c.l. © Ay? = T2,
2. Write the augmented likelihood density for this definition:

P(D;|T;) ox e=X/@T%)

"'n.,_.l

3. When profiling 1 new experiment with the prior imposed on PDF nuisance parameters A, ;y:
](2(;‘-’13}:1:-: }"th Z

Di+ 3, Bia Aaexp = Ti = 32, B Aa th] . Ti(f3) —Ti(f3)
- Ll Z }(Ct eXp Z TE Ct th* ’3:}; — 9 ’
i=1 t

5.
new experiment priors on expt. systematics
and PDF params

4. Alternatively, we can reparametrize y2' = y2/T?2, so that 68% c.l. & Ay?' = 1. We have
P(D;|T;) e_er/z
""'pl ‘|‘ Ea BCKP;\& eXp T T’:’ — E S:E}:AC\: th

3(2 I (chp: }"th Z 5‘1? Tg - Bl Z ’\r:t mcp Z ’\,_-t th*

i=1

consistent redefinition

5. Inconsistent redefinitions:

21 /_\: /T{ [ _l_ Z SCKP/\& LEXP T Z -‘31 a’\r_‘t th /\ and P(DllTl) X e_XZI/Z
X ( exp? th) — Z 52 N Z a.exp Z/\ﬂ th* — 2,/(2T2)
i=1 ¢ or P(DllTl) x e X

[equivalentto s; — s;/T or Aa,th = AqenT W|thout Biath = Biaen/T]

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN 20



Why augmented likelihood?

The term is accepted in lattice QCD to indicate that the log-likelihood contains quadratic prior terms

YD 4+ B Aoy — T — S B A

m:p Ath Z S'-‘ Bl Z Af_'t exp Z T /\Ct th-

i=1

new experiment priors on expt. systematics
and PDF params

After minimization w.r.t. to A, ¢xp, g ¢, the prior terms are hidden inside the covariance matrix:
Npt

X% = z(Ti — D;)(cov™);(T; — D;)

L,j

The usual y? definition therefore contains a prior component, which may be handled differently by the
various groups

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN
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Tolerances explained by epistemic uncertainties

Relative PDF uncertainties on the gg
luminosity at 14 TeV in three
PDF4LHC21 fits to the identical reduced

global data set arXiv:2203.05506
| LI L L LR | 1 T TTVIN] LA )
0.14 — MSHT20(red) / C
— e ] -~ CT18(red) T
:\:{ 0.10¢ -~ NNPDF31(red) |’ g
~ .08 ; ~
S (.06 - .
5@32 0.04} ", > :
L Mo o .
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Ll
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my (GeV)

X 1.5 — 2 difference
2023-04-18

While the fitted data sets are identical or similar in
several such analyses, the differences in uncertainties
can be explained by methodological choices adopted by
the PDF fitting groups.

NNPDF3.1" and especially 4.0 (based on the NN's+ MC
technique) tend to give smaller nominal uncertainties in
data-constrained regions than CT18 or MSHT20

Epistemic uncertainties explain some of these
differences.

1. Inclusion of multiple parametric forms in the CT18
uncertainty

2. Constraints from the effective prior in the NNPDF4.0
uncertainty

3. Parametrization uncertainty in xFittter/JAM PDF fits,
lattice QCD PDFs...

P. Nadolsky, MWDays 2023 @ CERN



CT18:

2023-04-18

the uncertainty reflects multiple PDF parametrizations

PDF Ratio to CTISNNLO

Ratios to central CT18 NNLO
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CTI18par
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CT18 NNLO

Default tolerance
2271  Simplified MSHT tolerance
.1 MSHT tolerance
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Upper figure: A large part of the CT18 PDF
uncertainty accounts for the sampling over 250-
350 parametrization forms, possible choices of
fitted experiments and fitting parameters,
definitions of y?

Lower figure: this approach sometimes enlarges
the uncertainties compared to the other groups,
reflecting the chosen goodness-of-fit (tolerance)
criterion more than the strength of experimental
constraints

However, more restrictive tolerance criteria
elevate the risk of sampling biases.

A more advanced CT tolerance prescription is
under development.

Easier to examine these issues for specific QCD
observables than in abstract

P. Nadolsky, MWDays 2023 @ CERN 23



NNPDF4.0: hopscotch scans suggest enlarged uncertainties

NNPDF replicas sample aleatory data fluctuations for a fixed
training methodology (called “importance sampling” by NNPDF)

Representative sampling of epistemic uncertainty is
challenging because of the large NN (hyper)parameter space

« Curse of dimensionality

« Big-data paradox [X.-L. Meng, Ann. App. Stat., 12 (2018) 685;
F. Hickernell, MCQMC 2016, 1702.01487]

A hopscotch scan is a technique to densely sample a few PDF
parameter combinations relevant for the QCD observable of
interest by using NNPDF4.0 Hessian PDFs and NNPDF4.0

fitting code

The hopscotch scan relies on dimensionality reduction

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN
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Figure 3.9. The neural network architecture adopted for NNPDF4.0. A single network is used, whose eight output
values are the PDFs in the evolution (red) or the flavor basis (blue box). The architecture displayed corresponds
to the optimal choice in the evolution basis; the optimal architecture in the flavor basis is different as indicated by

Table 3.3).

R. Ball et al., arXiv:2109.02653
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How the hopscotch
solutions are found

Examine the quasi-Gaussian y?
dependence along 50 Hessian EV
directions

Perform high-density MC sampling of
a span of a few EV directions that
drive the specific PDF uncertainty

L Ax?c[-35,0] .
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Monte-Carlo sampling of PDF parametrlzatlons
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Using the public NNPDF4.0 fitting code, we find well-behaving PDF solutions to the
NN4.0 fit that have better y? with respect to central data values (by as much as 35-
80 units depending on the y? definition) than the published replica 0. These

replicas follow a regular pattern. They lie outside of the nominal (red) NN4.0
uncertainties in the 50-dimensional PDF parameter space.
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The hopscotch scans: NNPDF4.0 vs CT18 uncertainties

Ow{pb]

Oye[pb]

3600[- cTI8 —
CTi8Z  =ues o
- - 77 ’\' -’.’.
550l NNPDFAO: PR 1
Nominal = P I
3500 i
3450 1
3400 . 1
Ellipses at 68% CL
3350l LHC 13TeV, NNLO
4300 4350 AAG0  4AS0 400 4550 4800 4650
ay+[PD]
s200 LHG 13TeV, NNLO i
gioof i - o]
H ~. \
. 3 }
8000 ;o
rd
4
.
7900 -7 p
7800 crie — |
CT1BZ memms
NNPOF40.
77000 e 1
1 1 1 -I -

45 46

2023-04-18

a{pb]

47

48

az[pb]

. .
g0l cTia —
CTHBZ =mmm
NNPDF4.0:
aEl
780} =
760
740| LHC 13TeV, NNLO
7700 7800 7900 8000 100 8200
Iy=[PD]
800 LHC 13TeV, NNLO
".' ‘.‘. _ =" I N
: B k
: / A
780} 5 ( o ’
5 \ p
. ] P
- R / _ -
760
cTiB —
CT1BZ mmmunm
740r NNPDF4.0:
NOMING| m—
720_ 1 1 L 1
5 35 a7 28

P. Nadolsky, MWDays 2023 @ CERN

aylpbl]

Tye[pb]

840F '
cTI8 ——
CT18Z mamn-
830[ NNPDF4.0
NOMIME) m—
820[ - -
s10[
i/
go0[ y
ra
.
' &
790[ // -
780} LHC 13TeV, NNLO
a5 6 a7 a8
aylpo]
g200]{ cTis —
'.‘ - . CT18Z mmums
k o, NNPDF4.0-
8100 ~ i
N
\"
8000 ; --
AY
7900| S
7800|
7700f MG 13Tev, NNLO
790 800 E10 520 30
ou[pD]

The ellipses are
projections of 68% c.l.
ellipsoids in N, ,,--dim.
spaces

Npqr = 28 and 30 for

CT18 and NNPDF4.0
Hessian PDFs



2023-04-18

0z[pb]

Monte-Carlo sampling of PDF parametrizations
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Region containing good solutions
according to the NNPDF3.0 t, form of y?
(used to train NN4.0 replicas)

These regions are approximate, at
least as large as shown

P. Nadolsky, MWDays 2023 @ CERN 28



2023-04-18

0z[pb]
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Hopscotch scans realize the likelihood-ratio test
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LHC 13TeV, NNLO

NNPDF4.0:
NOMING| s—

| 68%CL
720

According to the LR test, the NN4.0
analysis discards PDFs in the green
and blue regions based on the prior
probabilities and differences in the
likelihood definitions — both
associated with prior terms

The allowed regions will change for
the other acceptable y? definitions,
which exist in reflection of the bias-
variance dilemma
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Goodness-of-fit functions in PDF analyses

Analysis x? prescription x? prescription Comments
to fit PDFs to compare PDFs
HERAPDF HERA HERA
CT Extended T +prior Extended T,
Experimental
MSHT’20 T T
NNPDF4.0 to + prior Experimental or ¢, to prescription has pre-
with fluctuated cross-sampled with unfluctuated full and post-NNPDF3.0
data data versions
Hopscotch’2022 N/A Experimental or ¢,
[2022]
with unfluctuated data

Different prescriptions reflect modeling of additive and multiplicative systematic
errors in covariance matrices
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# / Chi square figures of merit View page source

Chi square figures of merit

Search docs

Within the NNPDF methodology various figures of merit are used, each of which can be used
in different situations. To avoid confusion, it is important to understand the differences
between the various figures of merit, and to understand which definition we are referring to in
a given context. In particular, it is worth stressing that whenever a figure of merit is discussed,
Code for data: validphys the tp method (discussed below) applies.

From NNPDF2.0 onwards the t, formalism has been used to define the figure of merit used
during the fitting of the PDFs.

The tg method is not used by default in other validphys applications, and instead the
default is to compute the experimental xz. To compute xfﬂ, users need to specify

Getting started

Fitting code: n3fit

use_t@: True
tepdfset: <Some LHAPDF set>

in the relevant namespace. This will instruct actions such as
validphys.results.dataset_chi2_table() to compute the £y estimator.

hitps://docs.nnpdf.science/flguresofmerit/index.html, accessed on 2023-03-28

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN 31



https://docs.nnpdf.science/figuresofmerit/index.html

Systematic uncertainties and the bias-variance dilemma

Npt Ny
XZ = Z(Ti - Di)(COV_l)ij(Tj - Dj) (COV)UZ Si25ij + Z .Bi,a,Bj,a [ﬁi,a — O-i,aXi }
i,j a=1

D;, T;, s; are the central data, theory, uncorrelated error
P« = 0; o X; is the correlation matrix for N) nuisance parameters. Experiments publish g; , .

The “truth” normalizations X; in the experiment are of order T; or D;. {X;} are learned as a model {X;} together
with PDFs f and theory {T;(f)}. For example, we can sample as X; = a;D; + b;T;, with free 0 < a;,b; < 1.

Mean variation 8% of the model from truth on an ensemble of replicas, for data point i:

6% = <(Xi - Xi)2> = <(Xz - (Xi))2> + ((X; _Y<Xi))2) = <(Xl - (Xi))2> —{(D; = {X;)?) + {(D; — X;)?)

variance data bias x2(Dy,Ty)

model bias model bias

Experimental definition, X; = D;: <(Xl- — )?l-)2> = (X; - Dl-)2 =62
In general, not enough

t, definition, X; = t,.: <(Xi _ )?l.)2> = (X —to;)" = 52 information to compare
6p and 6,

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN 32



Smoothing of K-factors

An analogous bias-variance tradeoff arises during smoothing of MC integration errors for K-factor tables

A smoother curve reduces the y? for the data, but the best-fit result retains some dependence on the fitted

functional form

This dependence can be conservatively estimated
by including an uncorrelated MC integration error

2023-04-18

NNLO/NLO ratios for LHC

13 TeV jet production
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Possible criticisms [see R. Ball et al., arXiv:2211.12961]
and our detailed response [arXiv: 2205.10444, version 5]

1. Criticism: hopscotch solutions are improbable according to the random resampling (“importance
sampling”) of fitted data with the fixed NNPDF4.0 training methodology.

Our response: Hopscotch solutions will be likely if the NN training methodology is varied. Experimental data
resampling does not account for methodology variations.

2. Criticism: hopscotch solutions fail smoothness conditions during NN4.0 replica training and are discarded.
Our response: Unclear how many of 2330+50 hopscotch solutions were tested by NNPDF. Most of

hopscotch solutions are sufficiently smooth upon a typical CTEQ-TEA examination and largely fall within
NNPDF4.0 uncertainty bands. Smoothness is not a sharply defined criterion, cf. the bias-variance dilemma.

3. Criticism: among the various prescriptions for approximating correlated systematic uncertainties in y?,
only t, prescription used for NNPDF replica training should be used for exploring the PDF uncertainty.

Our response: beyond relatively simple examples of D’Agostini’s bias explored by NNPDF [arXiv:0912.2276]
and others, there is no rigorous demonstration that a particular y? prescription is preferable.
Counterexamples exist. A variety of other y? prescriptions are used, cf. the bias-variance dilemma. NNPDF
continues to use the experimental y? prescription for PDF comparisons in the NN4.0 publication and NN4.0
validphys code [except during NN training].
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The hopscotch scan counterbalances
the bias of the nominal replica ensemble

6.2 Creating a less biased sub-sample

The basic 1dea is to use such partial information about the selection bias to design a biased sub-
sampling scheme to counterbalance the bias in the original sample, such that the resulting sub-samples
have a high likelihood to be less biased than the original sample from our target population. That 1s, we
create a sub-sampling indicator §,, such that with high likelihood, the correlation between S,R, and G,
is reduced, compared to the original pj ;, to such a degree that it will compensate for the loss of sample
size and hence reduce the MSE of our estimator (e.g., the sample average). We say with high likelihood, in
its non-technical meaning, because without full information on the response/recording mechanism, we can
never guarantee such a counterbalance sub-sampling (CBS) would always do better. However, with

judicious execution, we can reduce the likelithood of making serious mistakes.

X.-L. Meng, Survey Methodblogy, Catalogue 12-001-X, vol. 48 (2022), #2
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Hopscotch NN4.0 replicas

LHAPDFG grids available at hitps://ct.hepforge.org/PDFs/2022hopscotich/

” ;Wmﬁan WEV
1. Alternative (second) EV sets with Ay? = 0, \&

for 50 EV directions _10f
-20 E%%
-4 -3 =2 -1 0
2. A total 2329 PDF sets from hopscotch scans on NN replica 0

0z, Oy +, Oy, 0y, 0f total inclusive cross

sections at the LHC 13 TeV B
\\\\\\\\\\\\\:Qggg

7851

For 2 and y2,, definitions in the NNPDF4.0 A i
code : ]

7701 ATLAS 13TeV A

Codes to generate LHAPDF grids for -
hopscotch replicas available by request.
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Smooth behavior
of most replicas

Hopscotch NN4.0 replicas

Error bands available at https://ct.hepforge.orq/PDFs/2022hopscotch/

XU (x,Q) at Q=1.7 GeV (sym. err)
NNPDF NNLO 68% (solid), alt. (Ax?)p=0 (dashed)

XU (x,Q) at Q=1.7 GeV (sym. err)
NNPDF NNLO 68% (solid), alt. (Ax?),=0 (dashed)

xs (x,Q) at Q=1.7 GeV (sy
NNPDF NNLO 68% (solid), alt. (A

14 : 1
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0.6/ 0.0105 0.010§
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o.of .
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- ;‘P‘qgﬂa};} ‘(Q:;”-;G:It‘_’ gﬁi?washed) xd (x,Q) at Q=1.7 GeV (sym. err) xs (x,Q) at Q=17 GeV (sym. err)

’ ! NNPDF NNLO 68% (solid), alt (IAxlz)tq:OI(dgshled) 1:NNF’DF NNLO 68% (solid), alt. (Axf)méo I(dalsh?d):

12 1§ E 3 E
10 0.100k 0-100%
0.8 F
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i f
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o.of .
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X
Nominal NN4.0 1¢ bands and alternative AXEO = 0 EV sets '
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Scans of the log-likelihood in EV directions 25 and 33

20 8
10 ; 1
0
o NS O NNGORITOEY 3,
8 -6-4-20 2 0:
# of nominal standard deviations ~10 -
-20
30t T

-10-8 -6 -4 -2 0

# of nominal standard deviations
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Hopscotch replicas enlarge the error bands

(s-8)/(s+s) (x,Q) at Q=1.7 GeV (sym. er) xc (x,Q) at Q=1.7 GeV (sym. err)
NNPDF4.0 NNLO 68% (solid), alt. (Ax"),o=0 (dashed) NNPDF4.0 NNLO 68% (solid), alt. (Ax*)yp=0 (dashed)
FT T T T T T T T T I *\‘I |: 0.020 T T T T T T T T T T T T T T T ™)
0sl strange-antistrange | Fitted charm |
~ asymmetry ]
5 |
< 04
— I alt. EV33
1w
b-i;', L
= 0.2
1 z F
0.0f
_02_ 1 1 | a"i EV|33 ‘T‘f:l | |:"'| “‘d r";. ! L *T--T-"".“-.h“.- ---- Il :‘l

10° 10% 10> 0.01 0.020.05 0.1 0.2 0507

X

FIG. 9. Solid bands indicate the nominal 68% NNPDF4.0 uncertainties for strangeness asymmetry (left) and charm PDF
(right) at @ = 1.7 GeV. The alternative EV sets with AX?D = 0 are plotted as dashed lines.

Atx > 0.2, Q = Q, = 1.51 GeV, the hopscotch replicas reduce significance of (s —5)/(s + 5) = 50% (left)
and c(x, Q) # 0 (right). This washes out the 30 evidence for the “intrinsic charm” stated in R. Ball et al.,

Nature 608 no. 7923, (2022) 483.
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Epistemic PDF uncertainty:

Epistemic uncertainty (due to parametrization, methodology, parametrization/NN architecture,
smoothness, data tensions, model for syst. errors, ...) is increasingly important in NNLO global fits as
experimental and theoretical uncertainties decrease

Nominal PDF uncertainties in high-stake measurements (ATLAS W mass, Higgs cross sections...) thus
should be tested for robustness of sampling over acceptable methodologies and demonstrate absence

of biases in this sampling.

This is also necessary for combination of PDFs including data correlations
[LHC EW, Jet & Vector boson WGs, https.//tinyurl.com/4wend8xn; https://tinyurl.com/2p8d8ba3; https.//tinyurl.com/2p8tcn5b;
Ball, Forte, Stegeman, arXiv:2110.08274].

Such tests can be done outside of the PDF fits using hopscotch scans. [arXiv: 2205.10444, Sec. 2.].

The ambiguity due to the y? definition is significant. Publication of full likelihoods for experimental
systematic errors [Cranmer, Prosper, et al., arXiv:2109.04981] will suppress this ambiguity.

« Hopscotch scans were illustrated using the NNPDF4.0 public code and LHAPDF grids, and mp4lhc program.
» Impact on the uncertainties at small and large x, PDF ratios, fitted charm, ...
» Insights applicable to other analyses using a large parameter space — CT/MSHT tolerance, polarized PDFs, etc.
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Unecertainty quantification, a challenge for Al,
As we try to analyze PDF's and understand why.
With machine learning methods we strive

To make sense of the data and derive.

But uncertainty presents a hurdle

As we try to make predictions and be certain.
It's a challenge that we must face

As we work to improve our models with grace.

Parton distributions, oh how they vex

As we try to understand their complex effects.
But still we persist, for we must know

The secrets that uncertainty has yet to show.

Microsoft Bing
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Backup

P. Nadolsky, MWDays 2023 @ CERN

42



2023-04-18

Computing uncertainty AX

1. By unweighted averaging of NP0 MO 00 e
predictions for 100 (or 1000) MC 8650F —NNPDF4.0 MC 1000 replicas
replicas: [ —NNPDF4.0 Hessian :
- N 8600F
1 rep LE
(X) = 2 Xi; AX?2=((X—(X)?) 2 s50f
Nrep < g r
1=1 N -
8500F P
(NNPDF calls it “importance sampling”. The 345{35
MC replicas are distributed according to the LHC 14 TV, lo

fluctuated data [Ball:2011gg] using the same
training algorithm).

815 820 825 830 835 840 845
oz [pb]

Replica 0 is the mean of 1000 MC replicas; has better unfluctuated y? than MC replicas.

2. Using N,;; = 50 Hessian PDFs.

NNPDF4.0 MC and Hessian uncertainties are in a good agreement.
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Figures of merit in the NNPDF4.0 analysis |

1. x* with respect to the central experimental values

Npt
X* = ) (T~ D) (cov™)yy(T; - D)
Ny L
{Cvaiﬁ-" = 51251'?.?' + Z .Si:-:':,ﬁj,cn -’E?a — g-f._r:xj'{-f-
o=1

D;, T;, s; are the central data, theory, uncorrelated error
Bi« is the correlation matrix for Ny nuisance parameters.

Experiments publish o; ,. To reconstruct g; ,, we need to decide on the
normalizations X;.

NNPDF4.0 use:
a X;=D; . “experimental scheme”; can result in a bias
b. X; = fixed T; : “ty scheme”; can result in a (different) bias

P. Nadolsky, MWDays 2023 @ CERN
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Figures of merit in the NNPDF4.0 analysis |l

Ny, : B 1{
(cov)i; = 5?%‘ + Z B0 35,00, Dia = Tia<Vi,
=1
NNPDF4.0 use:
a. X;=D; . experimental scheme; can result in a bias

b. X; = fixed T; : tp scheme; can result in a (different) bias

The conventions are neither complete nor unique. Ambiguity affects all groups.
See Appendix in 1211.5142.

2. NNPDF4.0 trains MC replicas with y? for fluctuated D;, t, scheme, and
replica selection (prior) conditions:

COSt=)(§O (Tir Difluctuated) + X;rior
3. NNPDF4.0 quotes the final unfluctuated y? in the “exp” scheme.

Experimental scheme: toz sclr\llem_e:l 233
X?ot/Npt = 1.160. ioe/ T |

x2(exp) — x%(ty) = —340 for 4618 data points

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN
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PRIOR PROBABILITY IN PDF FITS

v PDF fitting example of inverse problem: aim to find a posterior probability of f given the data D.

v Parametrization of PDFs: finite-dimensional problem.

fla) = f(z.0) e F
v The posterior probability for the parametrization depends on both the figure of merit that maximises the data

likelihood given the parameters and on prior probability H.

(M. Ubiali, HP2 2022 workshop, Durham, 2022-09-22)
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Xg(X)

Why doesn't NNPDF4.0 find HS solutions? |

g at 1.651 GeV
2.0 &
NMPDF4
1.51
1.04
0.5 4

0.0

_05_

1078 101 1076 104 1074
X

10-° 1072

NNPDF authors find that some HS
replicas fail the initial-stage

overfitting test
(M. Ubiali, HP2 2022 workshop, Durham,
2022-09-22)
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NN40full 10 EV V

4 -3 -2 -1 0

-10¢
~20F

xg (X,Q) at Q=1.7 GeV (sym. err)
NNPDF4.0 NNLO 68% (solid), alt. (Ax?)10=0 (dashed)

T T T T T T T T T T TTT
6 _
Dashed: displaced EV sets with Ay2=0 1
4+ J
-alt EV4 > ]
2F ~ i
0—
P2
i alt EV1 |
10 10° 10 1073 0.010.020.05 0.1 0.2 0.50.7

X

HS solutions have much lower y? than
NN MC replicas. HS PDFs are outside the
50-dim neighborhood of NN replica 0. We
do not see evidence of “overfitting”
according to CT18 criteria.
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Snowmass’21 whitepaper:

Proton structrure at the precision frontier
S. Amoroso et al., Acta Physica Polonica B 53 (2022) 12, A1

A summary of recent trends in the global analysis of proton PDFs

1. Status of modern NNLO PDFs and their applications

2. Future experiments to constrain PDFs
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6. PDFs and QCD coupling strength on the lattice

/. Nuclear, meson, transverse-momentum dependent PDFs

8. Public PDF fitting codes

9. Fast (N)NLO interfaces

10. PDF4LHC21 recommendation and PDF4LHC21 PDFs for the LHC analyses
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Progress in PDF analysis

The current status
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An ATLAS, CTEQ-TEA, and MSHT

comparative study of NNLO PDF sensitivities
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