M_w in the Context of Global Fits in the SM and Beyond

> Luca Silvestrini INFN, Rome

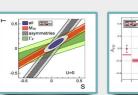
- Introduction
- HEPfit
- \bullet M_{W} and the fit to EWPO in the SM
- Mw and the fit to EWPO beyond the SM:
 - Oblique NP
 - SMEFT
- Summary and outlook

Based on J. de Blas, M. Pierini, L. Reina & L.S., arXiv:2204.04204

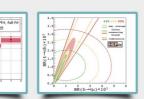
INTRODUCTION

- $SU(2)_L \times U(1)_y$ symmetry hidden at low energies, but restored in the UV
 - tree-level relations among weak couplings and masses corrected by finite and calculable loop corrections
- Accidental custodial symmetry of the SM Higgs potential ensures $\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$ at tree level, dominant corrections of $O(G_Fm_t^2)$
- precision measurements of masses and couplings
 - test the quantum structure of the SM
 - probe NP through its virtual effects

THE HEPfit FRAMEWORK



home developers physics documentation


HEPfit: a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models

Higgs Physics HEPfit can be used to study Higgs couplings and analyze data on signal strengths.

Precision Electroweak Flavour Physics Electroweak precision observables are included in HEPfit HEPfit includes both quark and lepton flavour dynamics.

BSM Physics Dynamics beyond the Standard Model can be studied by adding models in HEPfit.

Eur. Phys. J. C (2020) 80:456 https://doi.org/10.1140/epjc/s10052-020-7904-z The European Physical Journal C

Special Article - Tools for Experiment and Theory

HEPfit: a code for the combination of indirect and direct constraints on high energy physics models

J. de Blas^{1,2}, D. Chowdhury^{3,4}, M. Ciuchini⁵, A. M. Coutinho⁶, O. Eberhardt⁷, M. Fedele⁸, E. Franco⁹, G. Grilli di Cortona¹⁰, V. Miralles⁷, S. Mishima¹¹, A. Paul^{12,13,a}, A. Peñuelas⁷, M. Pierini¹⁴, L. Reina¹⁵, L. Silvestrini^{9,16}, M. Valli¹⁷, R. Watanabe⁵, N. Yokozaki¹⁸

- HEPfit web page
- HEPfit documentation
- GitHub repository

GENERAL STRUCTURE

- Basic building blocks:
 - Models, defined by a set of parameters (possibly correlated) and complemented by model-specific contributions to observables;
 - Observables, defined by a theoretical prediction and possibly by an experimental likelihood which can be binned, multi-dimensional w. correlation, numerical...
 - A parallel MCMC engine based on BAT and ROOT
 - Everything coded from scratch and validated against other public codes

Terminology

- Full Fit/Posterior: use all available information on both SM parameters and EWPOs. Gives our current best knowledge.
- Prediction/Indirect: remove experimental information on one EWPO (prediction) or on one SM parameter (indirect determination). Allows to compute pulls and local compatibility, using the output predictive pdf for the observable/parameter removed from the fit.

Terminology

- Full Prediction: use only exp info on SM parameters. Using the output pdf (including correlations) for EWPOs and the exp results allows to compute global p-value.
- Full Indirect: use only exp info on EWPO. Useful to identify tensions in data that cannot be relaxed in the SM irrespective of the values of SM parameters.

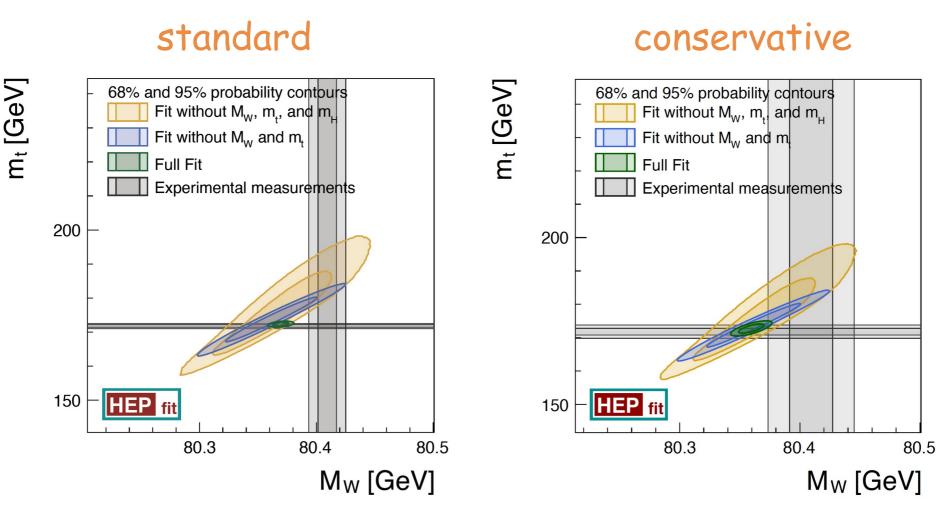
EXPERIMENTAL INPUTS

- SM input parameters:
 - G_{F} , α , M_{Z} , M_{H} , m_{t} , $\alpha_{s}(M_{Z})$, $\Delta \alpha_{had}^{(5)}$
- For $\Delta \alpha_{had}^{(5)}$ we use lattice QCD in the Euclidean + perturbative running
- For m_t, "standard" average completely dominated by very recent CMS l+jets measurement: m_t=171.77±0.38 GeV. However, there is a 3.5σ tension with the TeVatron average m_t=174.34±0.64 GeV, so consider also "conservative" average with error inflated to 1 GeV. Notice: PDG recipe would give a "ultra-conservative" 1.7 GeV error.

M_w: New Exp. Average

- Also for M_W , "standard" average completely dominated by recent CDF measurement.
- Updating the ATLAS measurement, and taking QED and PDF uncertainties fully correlated between TeVatron and LHC experiments, we obtain M_W=80409.3±7.9 MeV (previous average was M_W=80413.3±8.0 MeV.) Assuming no correlation moves the central value by half σ to M_W=80406.4±7.3 MeV; I will not present results for this choice.
- Also in this case there are tensions between LHC, TeVatron and LEP measurements, so consider also "conservative" average with error inflated à la PDG to 18 MeV

MWDays23


M_w: SM vs EXPERIMENT

Model	Pred. M_W [GeV]	Pull	Pred. M_W [GeV]	Pull	
	standard avera	ige	$conservative \ average$		
SM	80.3499 ± 0.0056	6.1σ	80.3505 ± 0.0077	3.0σ	

 The SM prediction is obtained omitting the experimental information on M_W. Before the CDF update, the tension was 1.8σ. Current theory error on M_W in the SM is 4 MeV.

Awramik et al, '03

INTERPLAY OF M_w WITH OTHER OBSERVABLES

Luca Silvestrini

INTERPLAY OF M_w WITH **OTHER OBSERVABLES**

standard

conservative

MWDays23

	Measurement	Posterior	Indirect/Prediction	Pull	Full Indirect	Pull	Full Prediction	Pull
$\alpha_s(M_Z)$	0.1177 ± 0.0010	0.11763 ± 0.00095	0.1170 ± 0.0028	0.2	0.1217 ± 0.0047	-0.8	0.1177 ± 0.0010	0.0
		$\left[0.11577, 0.11946 ight]$	[0.1116, 0.1225]	_	$\left[0.1126, 0.1310 ight]$		[0.1157, 0.1197]	
$\delta lpha_{ m had}^5$	0.02766 ± 0.00010	0.027541 ± 0.000096	0.02624 ± 0.00033	4.1	0.02793 ± 0.00068	-0.4	0.02766 ± 0.00010	0.0
		[0.027352, 0.027730]	[0.02559, 0.02689]		[0.02661, 0.02926]		[0.02746, 0.02786]	
$M_Z [{\rm GeV}]$	91.1875 ± 0.0021	91.1910 ± 0.0020	91.2287 ± 0.0068	-5.8	91.210 ± 0.039	-0.6	91.1875 ± 0.0021	0.0
		$\left[91.1870, 91.1949 ight]$	[91.2154, 91.2421]		[91.134, 91.287]		[91.1834, 91.1916]	
$m_t [{\rm GeV}]$	171.79 ± 0.38	172.34 ± 0.37	180.9 ± 1.5	-5.9	186.7 ± 9.5	-1.6	171.80 ± 0.38	0.0
		[171.61, 173.06]	[178.0, 183.8]		[168.0, 205.1]		[171.05, 172.54]	
$m_H [{ m GeV}]$	125.21 ± 0.12	125.21 ± 0.12	94.0 ± 5.0	4.1		-0.8		0.0
		[124.97, 125.44]	[83.3, 104.3]		[100.8, 626.8]		[124.97, 125.45]	
M_W [GeV]	80.4093 ± 0.0079	80.3696 ± 0.0045	80.3499 ± 0.0056	6.1		0.0	80.3496 ± 0.0057	6.1
		[80.3608, 80.3786]	[80.3390, 80.3609]		[80.3934, 80.4241]		[80.3386, 80.3608]	
$\Gamma_W [{\rm GeV}]$	2.085 ± 0.042	2.08896 ± 0.00052	2.08896 ± 0.00052	-0.1	2.0940 ± 0.0023	-0.2		0.0
		[2.08793, 2.08999]	[2.08793, 2.08998]		[2.0896, 2.0984]		[2.08627, 2.08859]	
$\sin^2 \theta_{\rm eff}^{ m lept}(Q_{\rm FB}^{ m had})$	0.2324 ± 0.0012	0.231474 ± 0.000055	0.231473 ± 0.000055	0.8	0.23146 ± 0.00014	0.8	0.231558 ± 0.000062	0.7
		[0.231366, 0.231583]	[0.231364, 0.231581]		[0.23119, 0.23173]		[0.231436, 0.231679]	
$P_{\tau}^{\rm pol} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.14739 ± 0.00044	0.14741 ± 0.00044	-0.3	0.1475 ± 0.0011	-0.3	0.14675 ± 0.00049	-0.1
		[0.14654, 0.14825]	[0.14655, 0.14827]		[0.1454, 0.1496]		[0.14580, 0.14770]	
$\Gamma_Z [\text{GeV}]$	2.4955 ± 0.0023	2.49454 ± 0.00064	2.49434 ± 0.00068	0.5	2.4953 ± 0.0020	0.1	2.49397 ± 0.00068	0.6
		[2.49328, 2.49580]	[2.49300, 2.49567]		[2.4912, 2.4993]		[2.49262, 2.49531]	
σ_h^0 [nb]	41.480 ± 0.033	41.4892 ± 0.0077	41.4914 ± 0.0080	-0.3	41.462 ± 0.030	0.4	41.4923 ± 0.0080	-0.4
		[41.4742, 41.5042]	[41.4758, 41.5072]		[41.403, 41.522]		[41.4766, 41.5081]	
R^0_ℓ	20.767 ± 0.025	20.7487 ± 0.0080	20.7451 ± 0.0086	0.8	20.760 ± 0.022	0.2	20.7468 ± 0.0087	0.7
		[20.7329, 20.7645]	[20.7281, 20.7621]		[20.717, 20.802]		[20.7298, 20.7637]	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.016293 ± 0.000096	0.016284 ± 0.000096	0.8	0.01631 ± 0.00024	0.8	0.01615 ± 0.00011	1.0
12		[0.016106, 0.016482]	[0.016097, 0.016476]		$\left[0.01585, 0.01679 ight]$		[0.01594, 0.01636]	
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.14739 ± 0.00044	0.14742 ± 0.00045	1.8	0.1475 ± 0.0011	1.6	0.14675 ± 0.00049	2.1
		[0.14654, 0.14825]	[0.14654, 0.14832]		$\left[0.1454, 0.1496 ight]$		[0.14580, 0.14770]	
R_b^0	0.21629 ± 0.00066	0.215894 ± 0.000100	0.21589 ± 0.00010	0.6	0.21543 ± 0.00036	1.1	0.21591 ± 0.00010	0.6
		[0.215697, 0.216090]	[0.21569, 0.21609]		[0.21472, 0.21614]		$\left[0.21571, 0.21611 ight]$	
R_c^0	0.1721 ± 0.0030	0.172198 ± 0.000054	0.172199 ± 0.000054	-0.1	0.17240 ± 0.00018	-0.1	0.172189 ± 0.000054	-0.1
		[0.172093, 0.172302]	[0.172094, 0.172304]		[0.17205, 0.17277]		[0.172084, 0.172295]	
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	0.10334 ± 0.00031	0.10335 ± 0.00032	-2.3	0.10338 ± 0.00077	-2.1	0.10288 ± 0.00034	-2.0
		[0.10273, 0.10393]	[0.10273, 0.10398]		[0.10189, 0.10489]		[0.10220, 0.10354]	
$A^{0,c}_{ m FB}$	0.0707 ± 0.0035	0.07384 ± 0.00023	0.07385 ± 0.00024	-0.9	0.07391 ± 0.00059	-0.9	0.07348 ± 0.00025	-0.8
ГD		[0.07339, 0.07428]	[0.07339, 0.07432]		[0.07275, 0.07507]		[0.07298, 0.07398]	
\mathcal{A}_b	0.923 ± 0.020	0.934768 ± 0.000040	0.934769 ± 0.000040	-0.6	0.93460 ± 0.00016	-0.6	0.934721 ± 0.000041	-0.6
		[0.934690, 0.934845]	[0.934691, 0.934846]		[0.93428, 0.93492]		[0.934642, 0.934801]	
\mathcal{A}_{c}	0.670 ± 0.027	0.66795 ± 0.00021	0.66795 ± 0.00022	0.1	0.66817 ± 0.00054	0.1	0.66766 ± 0.00022	0.1
		[0.66753, 0.66837]	$\left[0.66753, 0.66838 ight]$		$\left[0.66711, 0.66921 ight]$		[0.66722, 0.66810]	
\mathcal{A}_s	0.895 ± 0.091		0.935674 ± 0.000040	-0.4		-0.5	0.935621 ± 0.000041	-0.5
		[0.935597, 0.935752]	[0.935597, 0.935752]		$\left[0.935523, 0.935907 ight]$		[0.935541, 0.935702]	
$\mathrm{BR}_{W\ell\bar{ u}_\ell}$	0.10860 ± 0.00090	0.108388 ± 0.000022	0.108388 ± 0.000022	0.2	0.10829 ± 0.00011	0.3	0.108386 ± 0.000023	0.2
		[0.108345, 0.108431]	[0.108344, 0.108431]		$\left[0.10807, 0.10850 ight]$		[0.108340, 0.108432]	
$\sin^2 \theta_{\text{eff}}^{ll}$ (HC)	0.23143 ± 0.00025	0.231474 ± 0.000055	0.231477 ± 0.000056	-0.2	0.23146 ± 0.00014	-0.1	0.231558 ± 0.000062	-0.5
		[0.231366, 0.231583]	[0.231366, 0.231588]		$\left[0.23119, 0.23173 ight]$		[0.231436, 0.231679]	
R_{uc}	0.1660 ± 0.0090		0.172220 ± 0.000031	-0.7	0.17242 ± 0.00018	-0.7	0.172212 ± 0.000032	-0.7
		[0.172158, 0.172282]	[0.172158, 0.172281]		[0.17208, 0.17278]		[0.172149, 0.172275]	

MWDays23

Luca Silvestrini

"standard" scenario

	Measurement	Posterior	Indirect/Prediction	Pull		Pull	Full Prediction	Pull
$\alpha_s(M_Z)$	0.1177 ± 0.0010	0.11791 ± 0.00094	0.1197 ± 0.0028	-0.7	0.1218 ± 0.0047	-0.8	0.1177 ± 0.0010	0.0
-		[0.11606, 0.11976]	[0.1142, 0.1253]		[0.1126, 0.1310]		[0.1157, 0.1197]	
$\delta lpha_{ m had}^5$	0.02766 ± 0.00010	0.027624 ± 0.000097	0.02703 ± 0.00040	1.5	0.02792 ± 0.00071	-0.4	0.02766 ± 0.00010	-0.1
		[0.027432, 0.027814]	[0.02624, 0.02781]		[0.02653, 0.02932]		[0.02747, 0.02786]	
$M_Z \; [\text{GeV}]$	91.1875 ± 0.0021	91.1883 ± 0.0021	91.218 ± 0.011	-2.7	91.209 ± 0.039	-0.5	91.1875 ± 0.0021	-0.1
		[91.1843, 91.1924]	[91.196, 91.240]		[91.134, 91.287]		[91.1834, 91.1916]	
$m_t [{\rm GeV}]$	171.8 ± 1.0	172.75 ± 0.93	179.1 ± 2.5	-2.6		-1.4	171.8 ± 1.0	0.0
		[170.92, 174.59]	[174.0, 184.0]		[166.7, 205.8]		[169.8, 173.8]	
$m_H [{ m GeV}]$	125.21 ± 0.12	125.21 ± 0.12	105.0 ± 11.3	1.5	238.4 ± 121.3	-0.8	125.21 ± 0.12	0.1
		[124.97, 125.44]	[87.7, 134.1]		[98.1, 629.5]		[124.97, 125.45]	
M_W [GeV]	80.409 ± 0.018	80.3595 ± 0.0070	80.3505 ± 0.0077	3.0	80.407 ± 0.017	0.1	80.3497 ± 0.0079	3.1
		[80.3456, 80.3733]	[80.3355, 80.3656]		[80.373, 80.441]		[80.3342, 80.3653]	
$\Gamma_W [\text{GeV}]$	2.085 ± 0.042	2.08831 ± 0.00067	2.08830 ± 0.00067	-0.1	2.0939 ± 0.0026	-0.2		0.0
~ 1		[2.08700, 2.08963]	[2.08700, 2.08961]		[2.0888, 2.0989]		[2.08601, 2.08889]	
$\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm FB}^{\rm had})$	0.2324 ± 0.0012	0.231507 ± 0.000060	0.231505 ± 0.000059	0.7	0.23146 ± 0.00014	0.8	0.231558 ± 0.000068	0.7
		[0.231389, 0.231623]	[0.231388, 0.231622]		[0.23119, 0.23173]		[0.231426, 0.231691]	
$P_{\tau}^{\mathrm{pol}} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.14713 ± 0.00047	0.14716 ± 0.00047	-0.2	0.1475 ± 0.0011	-0.3	0.14674 ± 0.00053	-0.1
		[0.14622, 0.14806]	[0.14622, 0.14808]		[0.1454, 0.1496]		[0.14570, 0.14779]	
$\Gamma_Z [\text{GeV}]$	2.4955 ± 0.0023	2.49444 ± 0.00067	2.49423 ± 0.00071	0.5	2.4952 ± 0.0021	0.1	2.49396 ± 0.00072	0.6
		[2.49313, 2.49574]	[2.49285, 2.49562]		[2.4911, 2.4993]		[2.49257, 2.49538]	
σ_h^0 [nb]	41.480 ± 0.033	41.4907 ± 0.0076	41.4928 ± 0.0080	-0.4	41.462 ± 0.030	0.4	41.4924 ± 0.0080	-0.4
		[41.4756, 41.5057]	[41.4771, 41.5086]		[41.403, 41.522]		[41.4767, 41.5083]	
R^0_ℓ	20.767 ± 0.025	20.7495 ± 0.0080	20.7460 ± 0.0087	0.8	20.760 ± 0.022	0.2	20.7470 ± 0.0087	0.8
		[20.7337, 20.7652]	$\left[20.7291, 20.7630 ight]$		[20.717, 20.803]		[20.7297, 20.7638]	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.01624 ± 0.00010	0.01623 ± 0.00010	0.9	0.01631 ± 0.00024	0.8	0.01615 ± 0.00012	1.0
I D		[0.01604, 0.01644]	[0.01602, 0.01643]		[0.01585, 0.01679]		[0.01592, 0.01638]	
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.14713 ± 0.00047	0.14715 ± 0.00049	1.9	0.1475 ± 0.0011	1.6	0.14674 ± 0.00053	2.1
		[0.14622, 0.14806]	[0.14619, 0.14811]		[0.1454, 0.1496]		[0.14570, 0.14779]	
R_b^0	0.21629 ± 0.00066	0.21588 ± 0.00010	0.21587 ± 0.00011	0.6	0.21545 ± 0.00038	1.1	0.21591 ± 0.00011	0.6
0		[0.21567, 0.21608]	[0.21566, 0.21608]		[0.21470, 0.21617]		[0.21570, 0.21611]	
R_c^0	0.1721 ± 0.0030	0.172206 ± 0.000054		0.0		-0.1	0.172190 ± 0.000055	-0.1
0		[0.172100, 0.172313]	[0.172099, 0.172312]		[0.17204, 0.17277]		[0.172082, 0.172297]	
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	0.10315 ± 0.00033	0.10316 ± 0.00034	-2.2	0.10338 ± 0.00076	-2.1	0.10287 ± 0.00037	-2.0
гD		[0.10250, 0.10380]	[0.10248, 0.10384]		[0.10187, 0.10488]		[0.10214, 0.10361]	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	0.07370 ± 0.00025	0.07370 ± 0.00026	-0.9	0.07391 ± 0.00059	-0.9	0.07348 ± 0.00028	-0.8
W EB		[0.07321, 0.07418]	[0.07319, 0.07421]	0.0	[0.07275, 0.07507]	0.0	[0.07293, 0.07403]	0.0
\mathcal{A}_b	0.923 ± 0.020	0.934739 ± 0.000040		-0.6		-0.6	0.934721 ± 0.000041	-0.6
• ••	0.020 2 0.020	[0.934661, 0.934819]	[0.934661, 0.934820]		[0.93427, 0.93494]		[0.934640, 0.934802]	0.0
\mathcal{A}_{c}	0.670 ± 0.027	0.66783 ± 0.00023	0.66783 ± 0.00023	0.1		0.1	0.66766 ± 0.00024	0.1
		[0.66737, 0.66828]	[0.66737, 0.66829]		[0.66711, 0.66922]		[0.66718, 0.66814]	
\mathcal{A}_s	0.895 ± 0.091		0.935653 ± 0.000043	-0.4		-0.5	0.935622 ± 0.000045	-0.5
• • • •		[0.935568, 0.935736]			[0.935518, 0.935906]		[0.935533, 0.935709]	
$\mathrm{BR}_{W\ell\bar{ u}_\ell}$	0.10860 ± 0.00090	0.108381 ± 0.000022		0.2			0.108386 ± 0.000023	0.2
vv eve	1.10000 ± 0.00000		[0.108338, 0.108424]	5.2	[0.10808, 0.10851]	0.0	[0.108340, 0.108432]	5.1
$\sin^2 \theta_{\rm eff}^{ll}$ (HC)	0.23143 ± 0.00025	0.231507 ± 0.000060		-0.3		-0.1	0.231558 ± 0.000068	-0.5
our veff (110)	0.20140 ± 0.00020	[0.231389, 0.231623]	[0.231392, 0.231632]	0.0	$[0.23140 \pm 0.00014]$ [0.23119, 0.23173]	0.1	[0.231426, 0.231691]	0.0
Ruc	0.1660 ± 0.0090		0.172227 ± 0.000033	_07	0.17242 ± 0.00018	_07	0.172211 ± 0.000034	_07
Luc	0.1000 ± 0.0090		$[0.172227 \pm 0.000033]$ [0.172164, 0.172292]	-0.7	$[0.17242 \pm 0.00018]$ [0.17207, 0.17278]	-0.7	[0.172145, 0.172277]	-0.7
		[0.172103, 0.172292]	[0.172104, 0.172292]		[0.11201, 0.11210]		[[0.112140, 0.112211]	

MWDays23

Luca Silvestrini

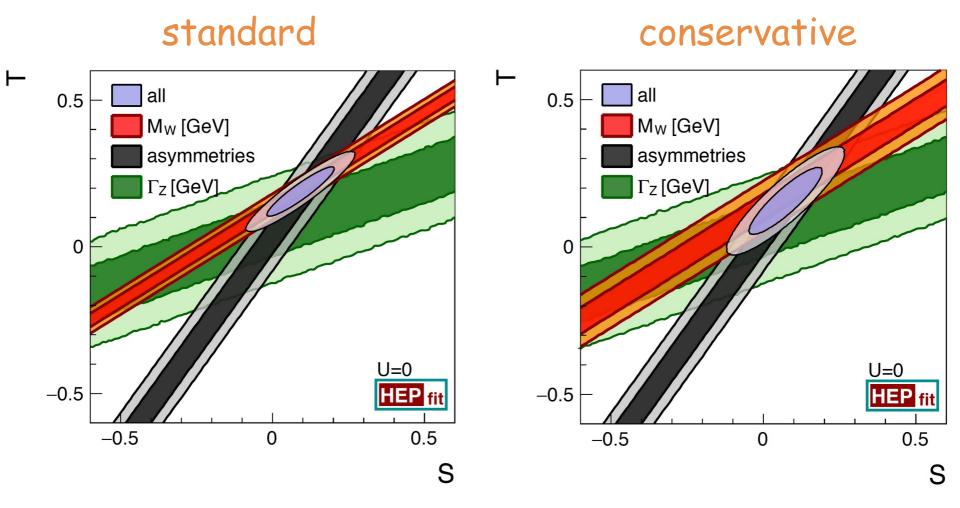
LOCAL vs GLOBAL SIGNIFICANCE

- Considering the whole set of EWPO, what is the global agreement with the SM?
- Compute global p-value of the "full prediction", taking into account experimental and theoretical correlations:
 - $p=1.2 \ 10^{-4}$, i.e. 3.9σ (standard scenario)
 - p=0.27, i.e. 1.1σ (conservative scenario)

M_w BEYOND THE SM

- Add heavy NP that decouples, leaving its virtual footprints:
 - dominantly in gauge Boson propagators: "oblique"
 NP
 - in the complete set of gauge-invariant dimension six operators (SMEFT)
- For explicit models (Z', composite Higgs, etc.) see e.g. Strumia '22

OBLIQUE NP


• Assume NP dominant contribution is in gauge Boson propagators:

$$S = -16\pi \Pi_{30}^{\text{NP}'}(0) = 16\pi \left[\Pi_{33}^{\text{NP}'}(0) - \Pi_{3Q}^{\text{NP}'}(0)\right],$$
$$T = \frac{4\pi}{s_W^2 c_W^2 M_Z^2} \left[\Pi_{11}^{\text{NP}}(0) - \Pi_{33}^{\text{NP}}(0)\right],$$
$$U = 16\pi \left[\Pi_{11}^{\text{NP}'}(0) - \Pi_{33}^{\text{NP}'}(0)\right]$$

- EWPO are modified as follows:
 - $\delta \Gamma_{\mathsf{Z}} \propto -10(3 8s_W^2) S + (63 126s_W^2 40s_W^4) T$
 - $\delta M_W, \, \delta \Gamma_W \propto S 2c_W^2 T \frac{(c_W^2 s_W^2) U}{2s_W^2}$
 - all other observables: $S 4c_W^2 s_W^2 T$

MWDays23

OBLIQUE NP: U=0

MWDays23

Luca Silvestrini

OBLIQUE NP: RESULTS

• Compare models using the Information Criterion:

$$IC \equiv -2\overline{\log \mathcal{L}} + 4\sigma_{\log \mathcal{L}}^2$$

	Result	Correlation	Result	Correlation
	$(IC_{ST}/IC_{SM} =$, ,	(IC_{STU}/IC)	$_{\rm SM} = 25.3/73.9)$
S	0.092 ± 0.073	1.00	0.004 ± 0.096	1.00
T	0.188 ± 0.056	0.93 1.00	0.04 ± 0.12	0.91 1.00
U	_		0.122 ± 0.087	-0.65 -0.88 1.00

• No significant gain in IC for $U \neq 0$

Model	Pred. M_W [GeV]	Pull	Pred. M_W [GeV]	Pull
	standard avera	ige	$conservative \ ave$	rage
SM	80.3499 ± 0.0056	6.1σ	80.3505 ± 0.0077	3.0σ
ST	80.366 ± 0.029	1.4σ	80.367 ± 0.029	1.2σ
STU	80.32 ± 0.54	0.2σ	80.32 ± 0.54	0.2σ

Luca Silvestrini

THE SMEFT

- Most general gauge-invariant Lagrangian built with SM fields up to dimension d (here d=6)
- Some relevant operators in the "Warsaw basis": $\mathcal{O}_{\phi l}^{(1)} = (\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\overline{l}_{L}\gamma^{\mu}l_{L}),$

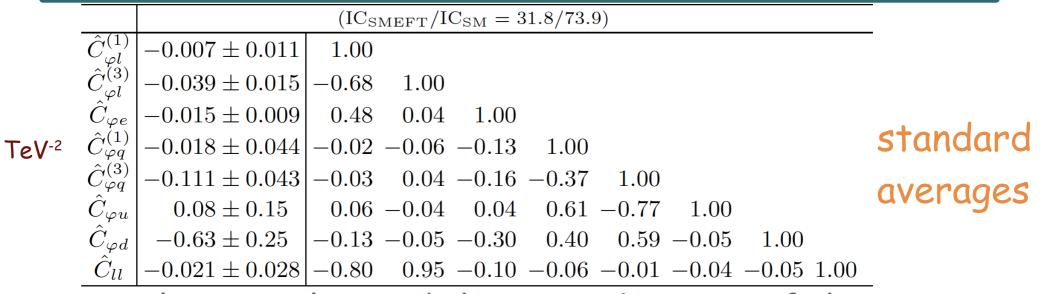
$$\mathcal{O}_{\phi WB} = (\phi^{\dagger} \sigma_{i} \phi) W^{i}_{\mu\nu} B^{\mu\nu} , \quad \longrightarrow \mathsf{S}$$
$$\mathcal{O}_{\phi D} = (\phi^{\dagger} D^{\mu} \phi)^{*} (\phi^{\dagger} D_{\mu} \phi) , \quad \longrightarrow \mathsf{T}$$
$$\mathcal{O}_{ll} = (\overline{l_{L}} \gamma^{\mu} l_{L}) (\overline{l_{L}} \gamma^{\mu} l_{L})$$

$$\begin{aligned} \mathcal{O}_{\phi l}^{(1)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{l}_{L} \gamma^{\mu} l_{L}) , \\ \mathcal{O}_{\phi l}^{(3)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{i} \phi) (\bar{l}_{L} \sigma_{i} \gamma^{\mu} l_{L}) , \\ \mathcal{O}_{\phi e} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{e}_{R} \gamma^{\mu} e_{R}) , \\ \mathcal{O}_{\phi q}^{(1)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{q}_{L} \gamma^{\mu} q_{L}) , \\ \mathcal{O}_{\phi q}^{(3)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{i} \phi) (\bar{q}_{L} \sigma_{i} \gamma^{\mu} q_{L}) , \\ \mathcal{O}_{\phi u} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{u}_{R} \gamma^{\mu} u_{R}) , \\ \mathcal{O}_{\phi d} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{d}_{R} \gamma^{\mu} d_{R}) , \end{aligned}$$

Luca Silvestrini

M_w IN THE SMEFT

• Eight independent combinations of dim. 6 operators contribute to EWPO. In the Warsaw basis: $\hat{C}_{\varphi f}^{(1)} = C_{\varphi f}^{(1)} - \frac{Y_f}{2}C_{\varphi D}, \quad f = l, q, e, u, d,$ (6)


$$\hat{C}_{\varphi f}^{(3)} = C_{\varphi f}^{(3)} + \frac{c_w^2}{4s_w^2}C_{\varphi D} + \frac{c_w}{s_w}C_{\varphi WB}, \quad f = l, q, \quad (7)$$

$$\hat{C}_{ll} = \frac{1}{2}((C_{ll})_{1221} + (C_{ll})_{2112}) = (C_{ll})_{1221}, \quad (8)$$

• Again, one independent combination enters only M_W and Γ_w , namely: $\hat{C}_{\varphi l}^{(3)} - \hat{C}_{ll}/2$; very loose prediction for M_W from Γ_w

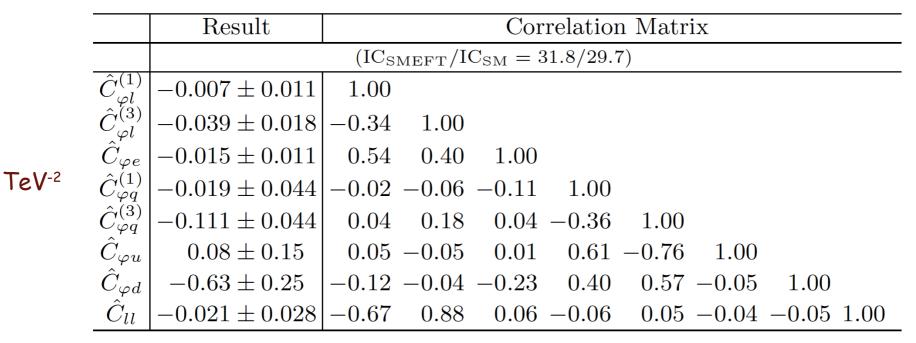
Model	Pred. M_W [GeV] Pull	Pred. M_W [GeV] Pull	
	standard ave	erage	$conservative \ average$		
SMEFT	80.66 ± 1.68	-0.1σ	80.66 ± 1.68	-0.1σ	

SMEFT: FIT RESULTS

Cirigliano et al. noted that a combination of these operators also contributes to first-row CKM unitarity violation. This effect can be compensated by C⁽³⁾_{Iq} which does not enter EWPO. However, C⁽³⁾_{Iq} can be constrained by LHC e.g. in pp→II.

EWPO BEYOND THE SM

	Measurement	ST	STU	SMEFT
$M_W [\text{GeV}]$	80.4093 ± 0.0079	80.4065 ± 0.0075	80.4090 ± 0.0080	80.4090 ± 0.0080
$\Gamma_W [{ m GeV}]$	2.085 ± 0.042	2.09190 ± 0.00070	2.09215 ± 0.00075	2.0779 ± 0.0070
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.2324 ± 0.0012	0.23143 ± 0.00014	0.23147 ± 0.00014	
$P_{ au}^{\mathrm{pol}} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.1478 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0015
$\Gamma_Z [{ m GeV}]$	2.4955 ± 0.0023	2.4979 ± 0.0011	2.4951 ± 0.0022	2.4955 ± 0.0023
σ_h^0 [nb]	41.480 ± 0.033	41.4910 ± 0.0080	41.4905 ± 0.0075	41.482 ± 0.033
R^0_ℓ	20.767 ± 0.025	20.7505 ± 0.0085	20.7510 ± 0.0080	20.769 ± 0.025
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.01638 ± 0.00023	0.01631 ± 0.00024	0.01660 ± 0.00032
$\mathcal{A}_\ell~(\mathrm{ar{SLD}})$	0.1513 ± 0.0021	0.1478 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0015
R_b^0	0.21629 ± 0.00066	0.21591 ± 0.00011	0.21591 ± 0.00011	0.21632 ± 0.00066
R_c^0	0.1721 ± 0.0030	0.172195 ± 0.000055	0.172200 ± 0.000050	0.17159 ± 0.00099
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	0.10361 ± 0.00076	0.10337 ± 0.00078	0.1009 ± 0.0014
$A_{ m FB}^{0, \widetilde{c}}$	0.0707 ± 0.0035	0.07405 ± 0.00058	0.07387 ± 0.00060	0.0734 ± 0.0023
\mathcal{A}_b	0.923 ± 0.020	0.934810 ± 0.000100	0.93478 ± 0.00010	0.903 ± 0.013
\mathcal{A}_{c}	0.670 ± 0.027	0.66813 ± 0.00053	0.66797 ± 0.00054	0.658 ± 0.020
\mathcal{A}_s	0.895 ± 0.091	0.935705 ± 0.000095	0.935680 ± 0.000100	0.905 ± 0.013
${ m BR}_{W\ellar{ u}_\ell}$	0.10860 ± 0.00090	0.108385 ± 0.000025	0.108380 ± 0.000020	0.10900 ± 0.00039
$\sin^2 \theta_{\rm eff}^{ll}$ (HC)	0.23143 ± 0.00025	0.23143 ± 0.00014	0.23147 ± 0.00014	
R_{uc}	0.1660 ± 0.0090	0.172220 ± 0.000030	0.172220 ± 0.000030	0.17162 ± 0.00099
			standard av	verages


Conclusions

- Remarkable experimental progress in m_t and M_w, but tensions among measurements present in both cases: outcome of M_w and m_t averaging group badly needed!
- Taken at face value, M_W implies a local (global) discrepancy at the 6.1 σ (3.9 σ) level, calling for NP
- Oblique/decoupling NP can accommodate the tension for scales close to the EW scale if loop-mediated, or at the TeV scale if tree-level/strongly interacting.
- If a more conservative averaging procedure is followed, the tension becomes much milder and the implications on NP much softer.
- More measurements of M_W (and m_t) crucial! MWDays23 Luca Silvestrini

NP fits in the conservative scenario

	Result	Correlation	Result	Correlation
	$(IC_{ST}/IC_{SM} =$	= 24.0/29.7)	(IC_{STU}/IC)	$_{\rm SM} = 25.3/29.7)$
	0.073 ± 0.079		0.004 ± 0.096	1.00
T	0.156 ± 0.075	0.88 1.00	0.04 ± 0.12	0.90 1.00
U	—		0.122 ± 0.098	-0.57 -0.77 1.00

MWDays23

NP fits in the conservative scenario

	Measurement	ST	STU	SMEFT
$M_W [\text{GeV}]$	80.409 ± 0.018	80.398 ± 0.016	80.409 ± 0.018	80.409 ± 0.018
$\Gamma_W \; [\text{GeV}]$	2.085 ± 0.042	2.0912 ± 0.0012	2.0922 ± 0.0015	2.0778 ± 0.0070
$\sin^2 heta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$	0.2324 ± 0.0012	0.23144 ± 0.00014	0.23147 ± 0.00014	
$P_{ au}^{\mathrm{pol}} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.1477 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0015
$\Gamma_Z [{\rm GeV}]$	2.4955 ± 0.0023	2.4973 ± 0.0014	2.4951 ± 0.0022	2.4955 ± 0.0023
σ_h^0 [nb]	41.480 ± 0.033	41.4910 ± 0.0080	41.4905 ± 0.0075	41.482 ± 0.033
R^0_ℓ	20.767 ± 0.025	20.7505 ± 0.0085	20.7515 ± 0.0085	20.769 ± 0.025
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.01636 ± 0.00024	0.01630 ± 0.00024	0.01660 ± 0.00032
$\mathcal{A}_\ell~(\mathrm{ar{SLD}})$	0.1513 ± 0.0021	0.1477 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0015
R_b^0	0.21629 ± 0.00066	0.21591 ± 0.00011	0.21591 ± 0.00011	0.21633 ± 0.00066
R_c^0	0.1721 ± 0.0030	0.172195 ± 0.000055	0.172195 ± 0.000055	0.17160 ± 0.00100
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	0.10355 ± 0.00076	0.10336 ± 0.00078	0.1009 ± 0.0014
$A_{ m FB}^{ar 0, ar c}$	0.0707 ± 0.0035	0.07400 ± 0.00059	0.07387 ± 0.00060	0.0735 ± 0.0023
$ar{\mathcal{A}}_b^-$	0.923 ± 0.020	0.934800 ± 0.000100	0.93478 ± 0.00010	0.903 ± 0.013
\mathcal{A}_{c}	0.670 ± 0.027	0.66810 ± 0.00053	0.66797 ± 0.00053	0.658 ± 0.020
\mathcal{A}_s	0.895 ± 0.091	0.935700 ± 0.000100	0.935680 ± 0.000100	0.905 ± 0.013
${ m BR}_{W\ellar u_\ell}$	0.10860 ± 0.00090	0.108385 ± 0.000025	0.108380 ± 0.000020	0.10900 ± 0.00039
$\sin^2 \theta_{\rm eff}^{ll}$ (HC)	0.23143 ± 0.00025	0.23144 ± 0.00014	0.23147 ± 0.00014	
R_{uc}	0.1660 ± 0.0090	0.172220 ± 0.000030	0.172220 ± 0.000030	0.17161 ± 0.00099

Theory Errors in the Fit

 $\delta_{\rm th} M_W = 4 \,{\rm MeV}, \quad \delta_{\rm th} \sin^2 \theta_W = 5 \times 10^{-5},$ $\delta_{\rm th} \Gamma_Z = 0.4 \,{\rm MeV}, \quad \delta_{\rm th} \sigma_{\rm had}^0 = 6 \,{\rm pb},$ $\delta_{\rm th} R_\ell^0 = 0.006, \quad \delta_{\rm th} R_c^0 = 0.00005, \quad \delta_{\rm th} R_b^0 = 0.0001.$

SYMMETRIES OF THE SM HIGGS SECTOR

In the SM, one Higgs doublet φ w. potential $V(\varphi) = -\frac{\mu^2}{2} |\varphi|^2 + \frac{\lambda}{4} |\varphi|^4 = -\frac{\mu^2}{2} \operatorname{Tr}(\Phi^{\dagger} \Phi) + \frac{\lambda}{4} \operatorname{Tr}(\Phi^{\dagger} \Phi)^2$ with $\Phi \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi_0^* & \varphi_+ \\ -\varphi_\perp^* & \varphi_0 \end{pmatrix}$, invariant under $\Phi \to U_L \Phi U_R^{\dagger}$ where $SU(2)_L$ coincides with gauge SU(2), while Y with the third component of $SU(2)_R$. The charge-conserving $\langle \Phi \rangle \equiv \frac{1}{2} \begin{pmatrix} v & 0 \\ 0 & v \end{pmatrix}$ leaves the diagonal SU(2)_v unbroken, ensuring $M_{W_1} = M_{W_2} = M_{W_3}$ and $\rho \equiv \frac{M_W^2}{M_{\pi}^2 \cos^2 \theta_W} = 1$

SYMMETRIES OF THE SM HIGGS SECTOR

• Promoting right-handed quarks to $SU(2)_R$ doublets, one can write Yukawa couplings in the form

$$\bar{Q}_L \Phi \begin{pmatrix} Y_u & 0\\ 0 & Y_d \end{pmatrix} Q_R$$

which would be $SU(2)_R$ -invariant for $Y_u=Y_d$. Therefore, the tree-level prediction $\rho=1$ gets loop corrections proportional to $G_Fm_t^2$.