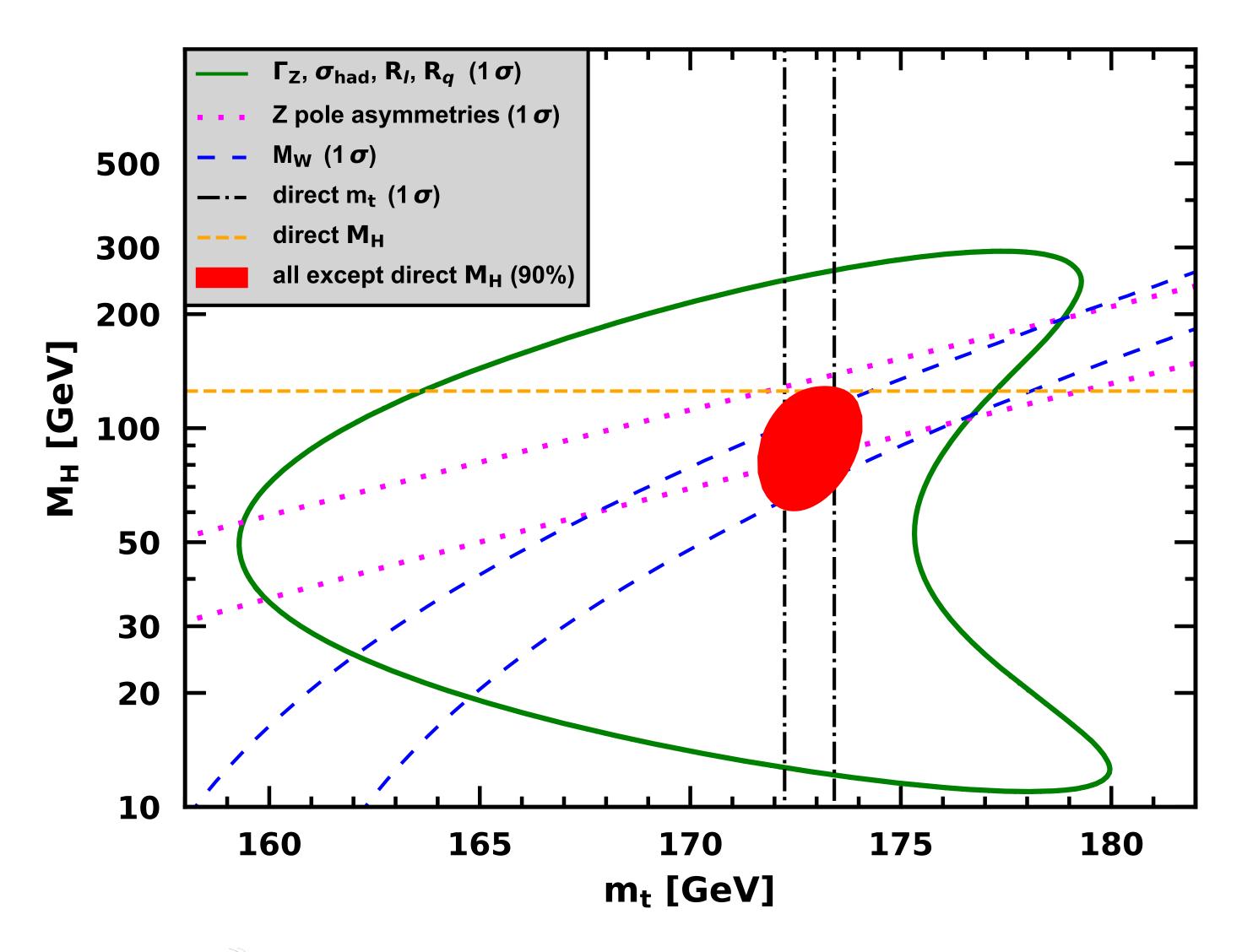
Considerations on the combination procedure of correlated errors

MWDays23 CERN, April 19, 2023

> JOHANNES GUTENBERG UNIVERSITÄT MAINZ

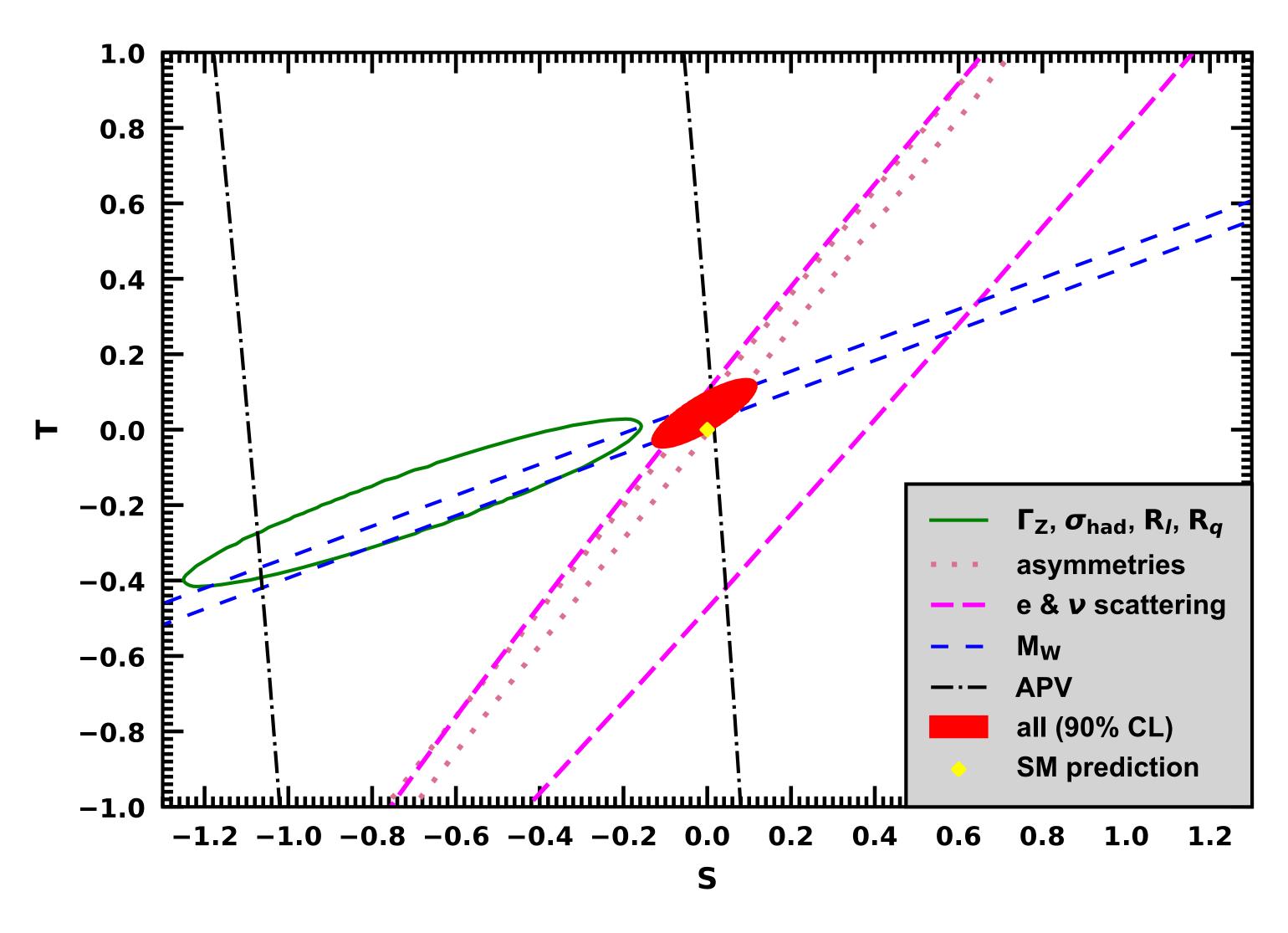
Jens Erler



- Classes of uncertainties
- Correlations
- Simplified approach
- PDG scale factors
- Alternative to PDG scale factors
- Conclusions

Content

$M_H - m_t today$


M_W and $sin^2\theta_W$ at the heart of electroweak fits

 χ^2 /d.o.f. = 46.7/43 (before g_{μ} –2 update)

including correlated theory errors

Freitas & JE (PDG 2022)

S and T

M_w & sin²θ_w provide oblique parameters

(for STU fits need extra constraint such as Γ_z)

> Freitas & JE (PDG 2022)

 $\rho = 1.00087 \pm 0.00016$ → 60 GeV splitting of an extra color triplet

<u>experimental</u>

- statistical (rigorous, even if highly non-Gaussian or from small data samples)
- systematic (sometimes determined by auxiliary measurements which may themselves) be statistics dominated)

theoretical

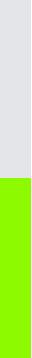
- parametric (rigorous, even if highly non-Gaussian)
- genuine theory errors (difficult to assess; usually non-Gaussian)
 - from systematically improvable approximations such as perturbative expansions
- Solution with a second seco
 - Image from parametrizations to fundamental limits of the model applicability
- <u>unknown unknowns</u> (just because something is unknown, doesn't mean it's 0)

- Of course, at the same level of approximation one also needs to assess correlations.
- In principle, the same issues apply to the off-diagonal entries of the covariance matrix as for the diagonal. However, in practice this is much harder. Last resort measures:
 - ignore correlations even when non-negligible (e.g. PDG m_t combination is a simple weighted average)
 - Image and hoc assumptions such as a common correlation coefficient (can be adjusted so that reduced $\chi^2 = I$)

 - wait until the appropriate working group has produced the proper combination (so as to ignore the most recent and often most precise measurements)

- left where the second s
- left where the same of the same set the same
- left where the same experiment from different collider runs is a second second
 - e.g. changes in energy, luminosity or polarization and their measurements
 - Solution changes in detectors (deterioration, upgrades, ...)
 - Solution changes in analysis (triggers, cuts, new outside inputs, ...)
 - Solution with a collaboration but is not always done
- left where the second s
- low to combine extractions from different observables (often no correlations)
- still, not all hope is lost...

Quick but not that dirty averages with correlations

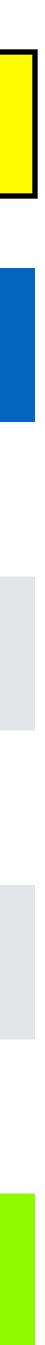

- Many measurements are statistics dominated
- Solution Section 2017 Section 2
- If leading systematic is only partially correlated, it is usually conservative to assume 100% correlation (but interesting anti-correlations may be missed)
- Sefinements:
 - iteration: sub-combination of most correlated measurements first (e.g. analysis method \rightarrow channels \rightarrow data periods \rightarrow collider \rightarrow collider type \rightarrow all)
 - sophistication: define finer sub-categories of uncertainty
- \bigcirc For PDG 2004 no recent m_t average by the Tevatron EWWG was available, but was needed for the EW fits. This method gave $m_t = 177.9 \pm 4.4 \text{ GeV}$ (December 2003) while hep-ex/ 0404010 (Tevatron EWWG) found 178.0 ± 4.3 GeV.
- Further simplification: only one (fully) correlated error source taking the smallest

M_W @ LEP [arXiv:1302.3415]

Mw [MeV]	central value	statistical	systematic	total
LEP (threshold scan)	80420	200	30	202
OPAL (leptonic)	80410	410	130	430
LEP (semi-leptonic)	80372	30	2 I	36
LEP (all hadronic)	80387	40	44	59
LEP	80376	25	22	33

M_W @ Tevatron [arXiv:1307.7627]

Mw [MeV]	central value	statistical	systematic	correlation	total
UA2	80360				370
CDF (4.4 pb ⁻¹)	79927.7				390
CDF (18.2 pb ⁻¹)	80377.3				181
CDF (84 pb ⁻¹)	80470.5			Ι6 (e/μ)	89
DØ (95 pb-1)	80478.5				84
DØ (1.0 fb ⁻¹)	80401.8	21	38	(e only)	43
CDF (2.2 fb ⁻¹)	80387.3	12	15		19
DØ (4.3 fb ⁻¹)	80368.6	13	22	(e only)	26
Tevatron	80386.7 ∓ 0.I			10 ± 1	16.0 ± 0.4


M_W @ Tevatron [arXiv:1307.7627]

Mw [MeV]	central value	statistical	systematic	correlation	total
UA2	80360				370
CDF (4.4 pb ⁻¹)	79927.7				390
CDF (18.2 pb ⁻¹)	80377.3				181
CDF (84 pb ⁻¹)		error of co		l6 (e/μ)	89
DØ (95 pb ⁻¹)			al correlatione average		84
DØ (I.0 fb ^{-I})	80401.8	21	38	(e only)	43
CDF (2.2 fb ⁻¹)	80387.3	12	15		19
DØ (4.3 fb ⁻¹)	80368.6	13	22	(e only)	26
Tevatron	80386.7 ∓ 0. I			10 ± 1	16.0 ± 0.4

Simplified combination of M_W (PDG 2022)

Mw [MeV]	central value	statistical	systematic	correlation	total
ATLAS	80369.5	6.8	17.2	9 ± 2	18.5
LHCb	80354	23	22	9* ± 2	32
LHC	80366.1 +0.3_0.2			7 ± 2	16.9 ± 0.4
Tevatron	80387			7 ± 2	16
LEP	80376	25	22		33
World	80377.1 ± 0.1				II.8 +0.5 _{-0.4}

Simplified combination of M_W (MWDays23 update)

Mw [MeV]	central value	statistical	systematic	correlation	total
ATLAS (PT)	80360.I	4.9	15.5	8* ± 2	16.3
LHCb (µ)	80354	23	22	8 ± 2	32
LHC	80359.0 ^{+0.2} _0.1			4 ± 1	15.2 ± 0.3
CDF Run II	80433.5	6.4	6.9	4* ± 1	9.4
DØ Run II	80375			4 ± 1	23
UA2 + Run I	8045 I			4 ± 1	57
LEP	80376	25	22		33
World	80409.6+1.1 _{-0.8}				7.8 ± 0.2

Simplified combination of M_W (MWDays23 update)

Mw [MeV]	central value	e statistical	systematic	correlation	total
ATLAS (PT)	80360.I	4.9	I 5.5	8* ± 2	16.3
LHCb (µ)	80354	23	22	8 ± 2	32
LHC	80359.0 +0.2_0).		4 ± 1	15.2 ± 0.3
CDF Run II	80433.5	6.4	6.9	4* ± 1	9.4
DØ Run II	80375	ew CDF / DØ	combinatio	4 ± 1	23
UA2 + Run I	80451	corresponds			57
LEP	80376	25	22		33
World	80409.6+1.1_0	.8			7.8 ± 0.2

Comments

- correlations such as from radiative corrections
- Solution of the OPAL purely leptonic channel was merged with their semi-leptonic result.
- \bigcirc global fit except M_W and Γ_W : M_W = 80356 ± 6 MeV
- \Rightarrow 1.6 σ (5.4 σ) below 2022 (updated) average: M_W = 80377 ± 12 MeV

Use of PDF error as correlation estimate: the PDF error should be expected to be only partially correlated, but this should be partly compensated by further sources of

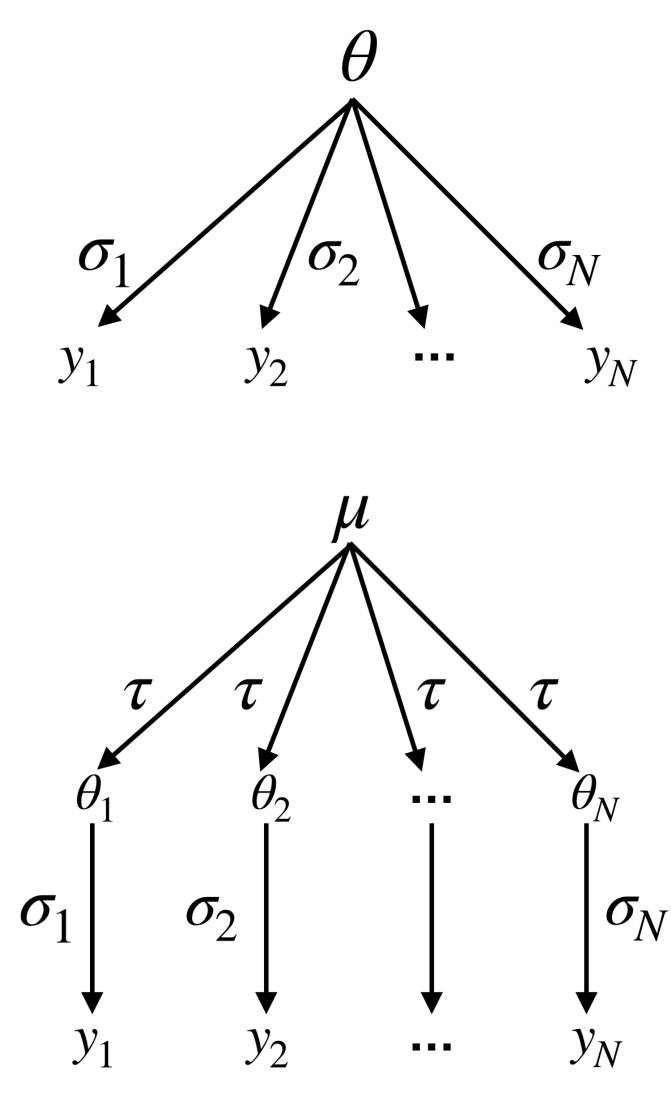
<u>Rules</u>

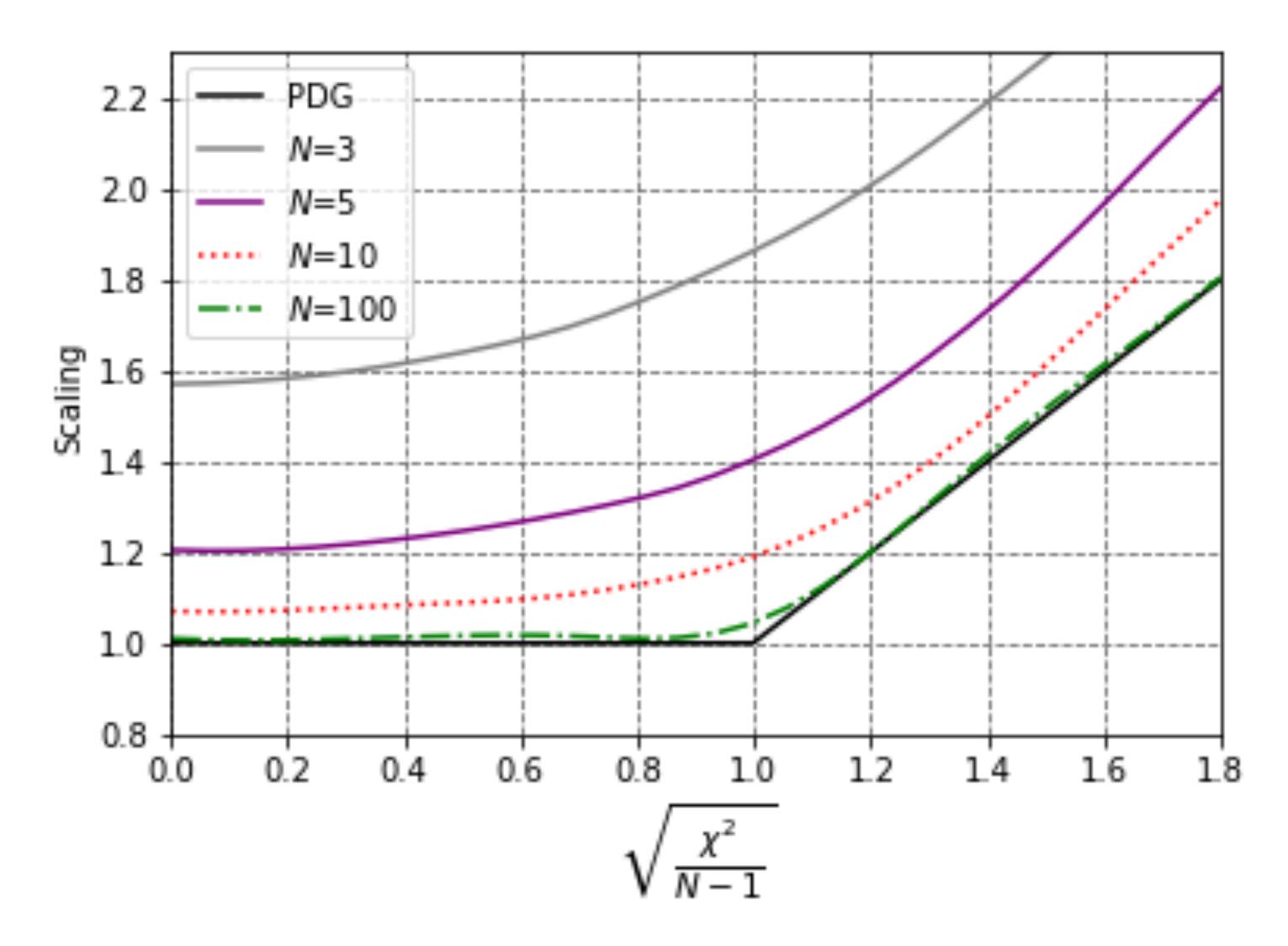
otherwise do nothing

if some errors are much larger than some others, throw them out

le do not change central values

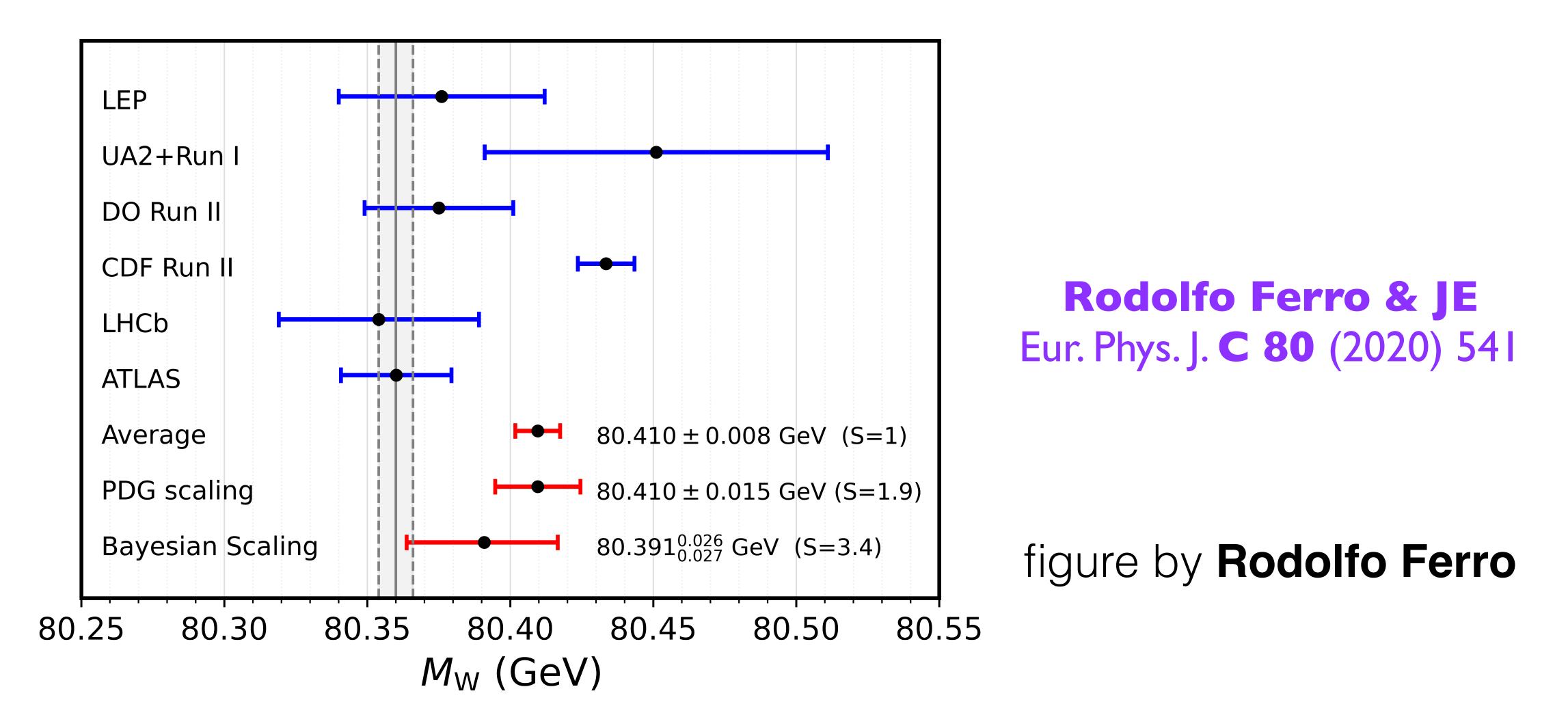
Problems


- This is for conservatism ... but in the most vulnerable case of only I measurement (no control measurement) there will never be $S \neq I$
- set of individual data points not well-defined (e.g. pre-averages)
- if some data have already undergone PDG scaling, the iteration does change the central value
- unscientific: result depends on the order in which information is added


- Hierarchical Bayesian model
- Idea: individual data points not independently and identically distributed (*iid*), but independently and similarly distributed
- *i.e.* parent distributions are permitted to vary somewhat to allow for unknown effects that could be different from one data point (measurement) to another
- We propose a hierarchical model where each measurement is assumed to determine a different parameter θ_i , each considered as having arisen as a random draw from a common parent distribution with hyper-parameters (μ, τ)

 \odot The μ distribution is obtained by marginalizing over τ

Alternative to PDG scale factors



Alternative to PDG scale factors

$\lim_{N\to\infty} S(N) = S_{PDG}$

Multivariate Gaussians

Conclusions

- Second Strain Strai
- in the meantime, averages with simplifying assumptions about correlations work well (better than one would probably expect)
- \bigcirc I3 months ago this gave: $M_W = 80377 \pm 12 \text{ MeV}$
- \bigcirc MWDays23 update: $M_W = 80410 \pm 8 MeV$
- PDG scale factors is an ad hoc procedure and have some problems
- some (not all) of these problems mitigated by hierarchical Bayesian model which in the limit of an infinite number of data points approaches PDG scale factor

