Two-loop investigation of new physics effects on $M_{\rm w}$ from a doublet extension of the SM Higgs sector

Based on

Phys. Lett. B 833 (2022) 137295 (arXiv:2204.05269)

in collaboration with Henning Bahl and Georg Weiglein

Johannes Braathen

MWDays 2023, CERN | 20 April 2023

Outline

- Introduction
- Solving the W-boson mass discrepancy at loop level → case of the 2HDM
- Some words about the 2HDM and custodial symmetry
- Our results in the 2HDM
- Conclusions

Introduction: M_w and the CDF result

DESY. Page 3/25

M_w as an Electroweak Precision Observable (EWPO)

- Electroweak precision observables, including
 - W-boson mass M_w
 - Squared sine of) Effective leptonic weak mixing angle sin²θ_{eff} lep
 - \rightarrow Z-boson decay width Γ_7
 - Muon anomalous magnetic moment (g-2)_μ
 etc.

are **measured** very precisely, and can also be **computed** to high level of accuracy in terms of $\mathbf{G_{F}}$, $\mathbf{\alpha}$, $\mathbf{M_{Z}}$ (most precisely measured EW quantities) and $\mathbf{m_{h}}$, $\mathbf{m_{t}}$, $\mathbf{\alpha_{S}}$, $\Delta \mathbf{\alpha_{had}}$, $\Delta \mathbf{\alpha_{lept}}$, $\mathbf{m_{b}}$, etc.

- Allow testing the SM as well as BSM models
- Before April, experimental world average was [PDG 2020]
 M_w^{exp} = 80 379 ± 12 MeV
- > *SM prediction* (full 1L+2L, partial 3L and 4L, see [Awramik, Czakon, Freitas, Weiglein '03]) $M_w^{SM} = 80\ 353 \pm 6\ MeV$ ([Bagnaschi, Chakraborti, Heinemeyer, Saha, Weiglein '22])
 - → already a small discrepancy!

CDF M_w result (from the viewpoint of BSM phenomenologists)

April 7, 2022: CDF result [Science 376, 170 (2022)]

$$M_{W}^{CDF} = 80 \ 433.5 \pm 9.4 \ MeV$$

- ~7σ away from SM prediction
- Not for us (BSM pheno.) to say "this or that measurement is right/wrong"
- Possible issues remain to be discussed about the CDF measurement and its compatibility with previous results → central value could decrease and/or uncertainty could be augmented
- Even so, inclusion of CDF II into world average will most certainly increase the *already* existing pull from the SM prediction
- Strong motivation to investigate BSM contributions to W-boson mass!

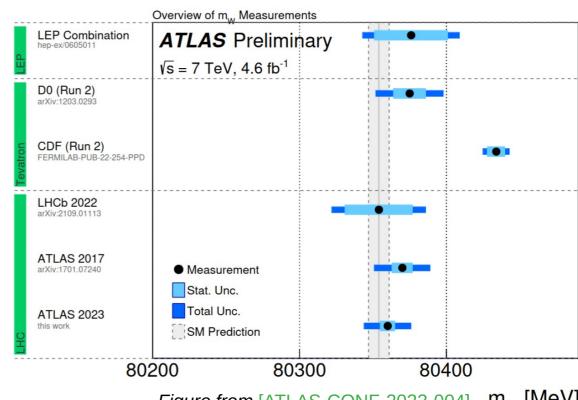


Figure from [ATLAS-CONF-2023-004]

M_w calculation in the SM and beyond

C.f. talk of W. Hollik yesterday

- Base for M_w calculation is the decay of the muon
 - Extract G_F from muon lifetime τ_μ by computing τ_μ in the Fermi theory
 - Relate M_W, M_Z, α, G_F by computing muon decay in full theory, and matching to Fermi theory result

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1+\Delta r) \quad \Leftrightarrow \quad M_W^2 \left(1-\frac{M_W^2}{M_Z^2}\right) = \frac{\pi\alpha}{\sqrt{2}G_F} (1+\Delta r) \qquad \textit{(in OS scheme)}$$

 $\Delta r \equiv \Delta r(M_w, M_z, m_h, m_t, ...)$ denotes corrections to muon decay (w/o finite QED effects)

 \rightarrow Previous relation used to determine M_w as solution, via iterations, of

$$M_W^2 = M_Z^2 \left[rac{1}{2} + \sqrt{rac{1}{4} - rac{\pi lpha}{\sqrt{2} G_F M_Z^2}} \left(1 + \Delta r(M_W^2, M_Z^2, m_h^2, m_t^2, \cdots)
ight)
ight]$$
 (in OS scheme)

- > Inclusion of known higher-order SM corrections crucial $\Delta r = \Delta r^{
 m SM} + \Delta r^{
 m BSM}$
- ΔrSM known to full 1L & 2L + leading 3L & 4L → see [Awramik, Czakon, Freitas, Weiglein '03]

Solving the M_w discrepancy at loop level

 $M_{W}^{CDF} = 80 \ 433.5 \pm 9.4 \ MeV$

Note 1: solutions at tree level are also possible (discussed in several talks yesterday & today, e.g. talks by K. Mimasu or C.W. Chiang)

Note 2: many models have been considered at loop level (large number of papers compute the S, T, U parameters at 1L and check if they can reproduce the preferred values obtained by a global fit including the CDF result, see e.g. [Strumia, 2204.04191] or talk by L. Silvestrini yesterday

Some models work, some don't

e.g. singlet extension, c.f. [Sakurai, Takahashi, Yin 2204.04770] which found that $\Delta M_w \le 5$ MeV

 \rightarrow in what follows, we will consider whether the **2HDM** can accommodate a value M_w as high as the CDF result (future world-average will certainly be lower, hence needed BSM deviation will be smaller, and easier to reproduce) employing a **2L calculation of M_w**

DESY. Page 7/25

The 2HDM and custodial symmetry

DESY. Page 8/25

The Two-Higgs-Doublet Model (2HDM)

 $> 2 SU(2)_1$ doublets Φ_{12} of hypercharge 1

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \left(m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}\right)$$

$$+ \frac{1}{2} \Lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2} + \frac{1}{2} \Lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2} + \Lambda_{3} \left(\Phi_{2}^{\dagger} \Phi_{2}\right) \left(\Phi_{1}^{\dagger} \Phi_{1}\right) + \Lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2}\right) \left(\Phi_{2}^{\dagger} \Phi_{1}\right)$$

$$+ \left[\frac{1}{2} \Lambda_{5} \left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2} + \left(\Lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \Lambda_{7} \Phi_{2}^{\dagger} \Phi_{2}\right) \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}\right]. \qquad v_{1}^{2} + v_{2}^{2} = v^{2} \simeq (246 \text{ GeV})^{2}$$

- **CP-conserving 2HDM**, with softly-broken Z_2 symmetry $\Phi_1 \rightarrow \Phi_1$, $\Phi_2 \rightarrow -\Phi_2$ to avoid tree-level FCNCs \rightarrow m₁₂² and Λ_5 real, $\Lambda_6 = \Lambda_7 = 0$
- Mass eigenstates:
 - h, H: CP-even Higgs bosons ($h \rightarrow 125$ -GeV SM-like state)
 - · A: CP-odd Higgs boson
 - H[±]: charged Higgs boson
- **BSM parameters**: 3 BSM masses m_H , m_A , $m_{H\pm}$, Z_2 soft breaking mass m_{12}^2 , angles α (CP-even Higgs mixing angle) and β (defined by $\tan\beta = v_2/v_1$)
- \rightarrow We take the **alignment limit** $\alpha = \beta \pi/2 \rightarrow \text{all Higgs couplings are SM-like at tree level$
 - → compatible with current experimental data + no mixing of CP-even scalars!

Custodial symmetry in the scalar sector of the 2HDM I

- > In SM (and at 0L) the Higgs potential is invariant under global transformations of SU(2)_LxSU(2)_R
- > After EWSB, this invariance group is broken by the Higgs VEV down to **SU(2)**_{L+R}
 - \rightarrow custodial symmetry, which ensures $\rho^{(0)}=1$
 - \rightarrow quark sector breaks the custodial symmetry $\rightarrow \Delta \rho_{th}^{SM} \neq 0$
- What about the 2HDM?
- \rightarrow Using the Higgs basis Φ_{SM} , Φ_{NS} (+ alignment), one can first rewrite the scalar potential as

$$\begin{split} V = & V_{\rm I} + V_{\rm II} + V_{\rm III} + V_{\rm IV}; \\ V_{\rm I} = & \frac{m_{h^0}^2}{2v^2} \left(\Phi_{\rm SM}^\dagger \Phi_{\rm SM} \right)^2 - \frac{1}{2} m_{h^0}^2 \left(\Phi_{\rm SM}^\dagger \Phi_{\rm SM} \right), \\ V_{\rm II} = & \left[\frac{1}{2v^2} \left(m_{h^0}^2 + \frac{4}{t_{2\beta}^2} \left(m_{H^0}^2 - \frac{m_{12}^2}{s_\beta c_\beta} \right) \right) + \frac{\Lambda_6 \left(2c_{2\beta} - 1 \right)}{4c_\beta s_\beta^3} - \frac{\Lambda_7 \left(2c_{2\beta} + 1 \right)}{4c_\beta^3 s_\beta} \right] \left(\Phi_{\rm NS}^\dagger \Phi_{\rm NS} \right)^2 \\ & + \left(\frac{m_{12}^2}{c_\beta s_\beta} - \frac{m_{h^0}^2}{2} \right) \left(\Phi_{\rm NS}^\dagger \Phi_{\rm NS} \right), \\ V_{\rm III} = & \left(\frac{m_{A^0}^2}{v^2} - \frac{2m_{H^\pm}^2}{v^2} + \frac{m_{H^0}^2}{v^2} \right) \left(\Phi_{\rm SM}^\dagger \Phi_{\rm NS} \right) \left(\Phi_{\rm NS}^\dagger \Phi_{\rm SM} \right) \\ & + \left(\frac{m_{H^0}^2}{2v^2} - \frac{m_{A^0}^2}{2v^2} \right) \left(\left(\Phi_{\rm NS}^\dagger \Phi_{\rm SM} \right)^2 + \left(\Phi_{\rm SM}^\dagger \Phi_{\rm NS} \right)^2 \right) \\ & + \left(\Phi_{\rm NS}^\dagger \Phi_{\rm NS} \right) \left(\Phi_{\rm SM}^\dagger \Phi_{\rm SM} \right) \left(\frac{2m_{H^\pm}^2}{v^2} + \frac{m_{h^0}^2}{v^2} - \frac{2m_{12}^2}{v^2 c_\beta s_\beta} \right), \\ V_{\rm IV} = & \left(\frac{2}{v^2 t_{2\beta}} \left(m_{H^0}^2 - \frac{m_{12}^2}{c_\beta s_\beta} \right) - \frac{\Lambda_7}{2c_\beta^2} + \frac{\Lambda_6}{2s_\beta^2} \right) \left(\Phi_{\rm NS}^\dagger \Phi_{\rm NS} \right) \left(\Phi_{\rm NS}^\dagger \Phi_{\rm SM} + \Phi_{\rm SM}^\dagger \Phi_{\rm NS} \right). \end{aligned} \quad \text{[Hessenberger '18]}$$

th
$$\Phi_{\mathrm{SM}} = \begin{pmatrix} \phi_{\mathrm{SM}}^+ \\ \phi_{\mathrm{SM}}^0 \end{pmatrix} = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h+iG) \end{pmatrix}$$

$$\Phi_{\mathrm{NS}} = \begin{pmatrix} \phi_{\mathrm{NS}}^+ \\ \phi_{\mathrm{NS}}^0 \end{pmatrix} = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(-H+iA) \end{pmatrix}$$

Custodial symmetry in the scalar sector of the 2HDM II

In Higgs basis, one can construct bidoublets

$$\mathcal{M}_{X} = \begin{pmatrix} i\sigma_{2}\Phi_{X}^{*}|\Phi_{X} \end{pmatrix} = \begin{pmatrix} \phi_{X}^{0} * & \phi_{X}^{+} \\ -\phi_{X}^{-} & \phi_{X}^{0} \end{pmatrix} \quad \text{with } X = SM \text{ or } NS$$

which transform under $SU(2)_{L} \times SU(2)_{R}$ as

$$\mathcal{M}_{\mathrm{SM}} \to L \mathcal{M}_{\mathrm{SM}} R^{\dagger}$$
 and $\mathcal{M}_{\mathrm{NS}} \to L \mathcal{M}_{\mathrm{NS}} R'^{\dagger}$ with $L \in SU(2)_L$, $R, R' \in SU(2)_R$

> 2 custodial symmetric (even $SU(2)_{l} \times SU(2)_{R}$) invariant quantities

$$\begin{array}{l} \rightarrow & \mathrm{tr} \left(\mathcal{M}_{\mathrm{X}}^{\dagger} \mathcal{M}_{\mathrm{X}} \right) = 2 \Phi_{\mathrm{X}}^{\dagger} \Phi_{\mathrm{X}}, \quad \mathrm{X} = \mathrm{SM} \ \mathrm{or} \ \mathrm{NS} \\ & V = V_{\mathrm{I}} + V_{\mathrm{II}} + V_{\mathrm{III}} + V_{\mathrm{IV}}; \\ & V_{\mathrm{I}} = \frac{m_{h^0}^2}{2 v^2} \left(\Phi_{\mathrm{SM}}^{\dagger} \Phi_{\mathrm{SM}} \right)^2 - \frac{1}{2} m_{h^0}^2 \left(\Phi_{\mathrm{SM}}^{\dagger} \Phi_{\mathrm{SM}} \right), \\ & V_{\mathrm{II}} = \left[\frac{1}{2 v^2} \left(m_{h^0}^2 + \frac{4}{t_{2\beta}^2} \left(m_{H^0}^2 - \frac{m_{12}^2}{s_{\beta} c_{\beta}} \right) \right) + \frac{\Lambda_6 \left(2 c_{2\beta} - 1 \right)}{4 c_{\beta} s_{\beta}^3} - \frac{\Lambda_7 \left(2 c_{2\beta} + 1 \right)}{4 c_{\beta}^3 s_{\beta}} \right] \left(\Phi_{\mathrm{NS}}^{\dagger} \Phi_{\mathrm{NS}} \right)^2 \\ & + \left(\frac{m_{12}^2}{c_{\beta} s_{\beta}} - \frac{m_{h^0}^2}{2} \right) \left(\Phi_{\mathrm{NS}}^{\dagger} \Phi_{\mathrm{NS}} \right), \end{array}$$

 \rightarrow V₁ and V₁₁ respect the custodial symmetry

Custodial symmetry in the scalar sector of the 2HDM III

$$\begin{split} V_{\rm III} &= \left(\frac{m_{A^0}^2}{v^2} - \frac{2m_{H^\pm}^2}{v^2} + \frac{m_{H^0}^2}{v^2}\right) \left(\Phi_{\rm SM}^{\dagger} \Phi_{\rm NS}\right) \left(\Phi_{\rm NS}^{\dagger} \Phi_{\rm SM}\right) \\ &+ \left(\frac{m_{H^0}^2}{2v^2} - \frac{m_{A^0}^2}{2v^2}\right) \left(\left(\Phi_{\rm NS}^{\dagger} \Phi_{\rm SM}\right)^2 + \left(\Phi_{\rm SM}^{\dagger} \Phi_{\rm NS}\right)^2\right) \\ &+ \left(\Phi_{\rm NS}^{\dagger} \Phi_{\rm NS}\right) \left(\Phi_{\rm SM}^{\dagger} \Phi_{\rm SM}\right) \left(\frac{2m_{H^\pm}^2}{v^2} + \frac{m_{h^0}^2}{v^2} - \frac{2m_{12}^2}{v^2 c_\beta s_\beta}\right), \end{split}$$

$$V_{\rm IV} = \left(\frac{2}{v^2 t_{2\beta}} \left(m_{H^0}^2 - \frac{m_{12}^2}{c_\beta s_\beta}\right) - \frac{\Lambda_7}{2c_\beta^2} + \frac{\Lambda_6}{2s_\beta^2}\right) \left(\Phi_{\rm NS}^\dagger \Phi_{\rm NS}\right) \left(\Phi_{\rm NS}^\dagger \Phi_{\rm SM} + \Phi_{\rm SM}^\dagger \Phi_{\rm NS}\right) \quad \rightarrow \; \mathsf{V}_{\rm IV} \; \mathsf{enters} \; \Delta \rho \; \mathsf{from} \; \mathsf{2L}$$

- > $V_{_{III}}$ and $V_{_{IV}}$ involve the non-invariant combinations $\Phi_{NS}^\dagger\Phi_{SM}\pm\Phi_{SM}^\dagger\Phi_{NS}$
 - → break custodial symmetry
 - \rightarrow enter scalar corrections to $\Delta \rho$ at 1L and 2L respectively \rightarrow potential contributions to $\Delta \rho$ and hence Δr and $M_w!$
- $\Phi_{\rm SM}$ and $\Phi_{\rm NS}$ have same hypercharge Y=1 \to R and R' are related, by a matrix X, as R=X-1R'X, and ${
 m tr} (\mathcal{M}_{\rm SM}^\dagger \mathcal{M}_{\rm NS} X)$ is invariant under SU(2)_L x SU(2)_R

→ V_{...} enters Δρ from 1L

Custodial symmetry in the scalar sector of the 2HDM IV

$$\begin{split} V_{\rm III} &= \left(\frac{m_{A^0}^2}{v^2} - \frac{2m_{H^\pm}^2}{v^2} + \frac{m_{H^0}^2}{v^2}\right) \left(\Phi_{\rm SM}^\dagger \Phi_{\rm NS}\right) \left(\Phi_{\rm NS}^\dagger \Phi_{\rm SM}\right) \\ &+ \left(\frac{m_{H^0}^2}{2v^2} - \frac{m_{A^0}^2}{2v^2}\right) \left(\left(\Phi_{\rm NS}^\dagger \Phi_{\rm SM}\right)^2 + \left(\Phi_{\rm SM}^\dagger \Phi_{\rm NS}\right)^2\right) \\ &+ \left(\Phi_{\rm NS}^\dagger \Phi_{\rm NS}\right) \left(\Phi_{\rm NS}^\dagger \Phi_{\rm SM}\right) \left(\frac{2m_{H^\pm}^2}{v^2} + \frac{m_{h^0}^2}{v^2} - \frac{2m_{12}^2}{v^2c_\beta s_\beta}\right), \end{split} \\ V_{\rm IV} &= \left(\frac{2}{v^2t_{2\beta}} \left(m_{H^0}^2 - \frac{m_{12}^2}{c_\beta s_\beta}\right) - \frac{\Lambda_7}{2c_\beta^2} + \frac{\Lambda_6}{2s_\beta^2}\right) \left(\Phi_{\rm NS}^\dagger \Phi_{\rm NS}\right) \left(\Phi_{\rm NS}^\dagger \Phi_{\rm SM} + \Phi_{\rm SM}^\dagger \Phi_{\rm NS}\right) \\ &+ \left(\Phi_{\rm NS}^\dagger \Phi_{\rm NS}\right) \left(\Phi_{\rm SM}^\dagger \Phi_{\rm SM}\right) \left(\frac{2m_{H^\pm}^2}{v^2} + \frac{m_{h^0}^2}{v^2} - \frac{2m_{12}^2}{v^2c_\beta s_\beta}\right), \end{split}$$

- From CP invariance in the Higgs sector, we have that X=Id or X=-iσ₃
 - $^{ riangle}$ X=Id $ightarrow {
 m tr}ig({\cal M}_{
 m SM}^\dagger {\cal M}_{
 m NS} Xig) = \Phi_{
 m NS}^\dagger \Phi_{
 m SM} + \Phi_{
 m SM}^\dagger \Phi_{
 m NS}$ is custodial invariant
 - \rightarrow V_{IV} invariant and V_{III} invariant if $m_A = m_{H\pm}$
 - ightarrow X=-i σ_3 ightarrow $\mathrm{tr} ig(\mathcal{M}_{\mathrm{SM}}^\dagger \mathcal{M}_{\mathrm{NS}} X ig) = -i \Phi_{\mathrm{NS}}^\dagger \Phi_{\mathrm{SM}} + i \Phi_{\mathrm{SM}}^\dagger \Phi_{\mathrm{NS}}$ is custodial invariant
 - $\rightarrow V_{\text{III}} \text{ invariant if } m_{\text{H}} = m_{\text{H}\pm} \text{ while } V_{\text{IV}} \text{ must vanish} \rightarrow \text{imposes either } m_{\text{H}}^2 = m_{12}^2/(s_{\beta}c_{\beta}) = M^2 \text{ or } t_{\beta} = 1$
- \rightarrow E.g. at 1L, where *only terms from V*_{III} enter, we have explicitly

$$\Delta \rho_{\text{non-SM}}^{(1)} = \frac{\alpha}{16\pi^2 s_W^2 M_W^2} \left\{ \frac{m_A^2 m_H^2}{m_A^2 - m_H^2} \ln \frac{m_A^2}{m_H^2} - \frac{m_A^2 m_{H^\pm}^2}{m_A^2 - m_{H^\pm}^2} \ln \frac{m_A^2}{m_{H^\pm}^2} - \frac{m_H^2 m_{H^\pm}^2}{m_H^2 - m_{H^\pm}^2} \ln \frac{m_H^2}{m_{H^\pm}^2} + m_{H^\pm}^2 \right\} \xrightarrow{m_H \pm \to m_H \text{ or } m_A \text{ o$$

M_w in the 2HDM

DESY. Page 14/25

Calculation of M_w including 2L BSM effects: THDM_EWPOS

- Code (public since 2022) based on [Hessenberger, Hollik '16] and [Hessenberger, Hollik '22]
- Computes $\Delta \rho$ and EWPOs in (aligned) 2HDM as well as IDM to full 1L + leading 2L BSM (+ higher SM)
- Specifically, the computed EWPOs are M_w and observables at Z pole, namely

• **Z-boson width**
$$\Gamma_{\rm Z} = \Sigma_{\rm f} \Gamma({\rm Z} \to {\rm f}\bar{\rm f})$$
 with $\Gamma({\rm Z} \to f\bar{\rm f}) = \frac{G_F M_Z^3}{6\sqrt{2}\pi} N_c^f \left[(g_V^f)^2 R_V^f + (g_A^f)^2 R_A^f \right]$

Effective leptonic weak mixing angle

$$\sin^2 \theta_{\text{eff}}^{\text{lep}} \equiv \frac{1}{4} \left(1 - \frac{g_V^{\text{lep}}}{g_A^{\text{lep}}} \right)$$

(assuming lepton universality)

N_s^f: colour factor g_{VA}^{f} : eff. vector/axial coup. of Z boson to fermion f R_{VA}^{f} : radiation factors (final state OCD & OED corr.)

- Corrections to $\Delta \rho$:
 - 1L: SM-like top quark piece + BSM scalar piece
 - 2L: (1L)^2 pieces + genuine pieces, i.e. {top+SM scalars}, {top+BSM scalars}, {BSM scalars only}, {SM+BSM scalars} – all computed in gaugeless limit
- \geq 2L BSM corrections to Δr , Γ_7 , $\sin^2\theta_{eff}$ can always be split between a **reducible part** (i.e. (1L)^2 terms) and an irreducible part, which is proportional to genuine 2L BSM corrections to Δρ
- Higher order SM corrections to Δr , Γ_7 , $\sin^2\theta_{eff}$ included via known parametrisations
 - → see details in [Hessenberger '18], [Hessenberger, Hollik '22]

imental

- Here: we consider an aligned 2HDM of type-I, but similar results expected for other 2HDM types
- Constraints in our parameter scan (all except the last are checked with ScannerS [Mühlleitner et al. 2007.02985])
 - SM-like Higgs measurements with HiggsSignals
 - Direct searches for BSM scalars with HiggsBounds
 - b-physics constraints, using results from [Gfitter group 1803.01853]
 - Vacuum stability
 - Boundedness-from-below of the potential
 - NLO perturbative unitarity, using results from [Grinstein et al. 1512.04567], [Cacchio et al. 1609.01290]
- For points passing these constraints, we compute M_W , $\sin^2\theta_{eff}^{lep}$ and Γ_Z using THDM_EWPOS
 - red points = parameter points that reproduce CDF value for M_W within 1σ , i.e.

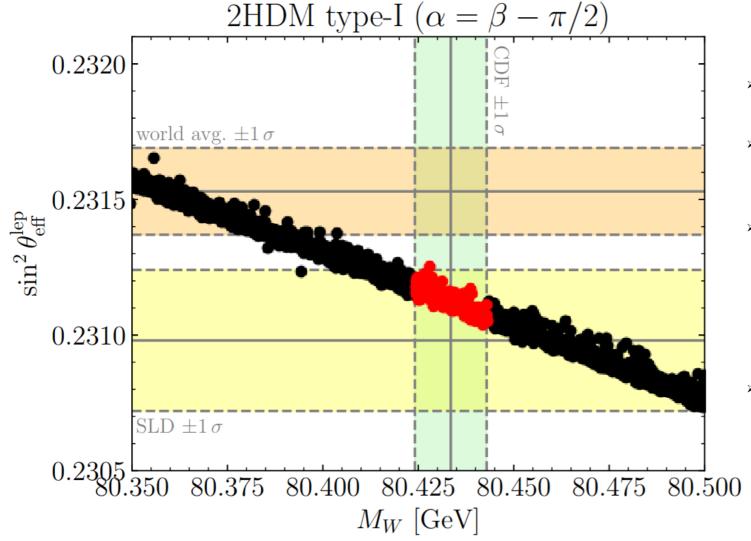
 $80 \ 424 \ \text{MeV} \le (M_W^{(2)})^{2\text{HDM}} \le 80 \ 442 \ \text{MeV}$

• black points ≡ all other points

Numerical results

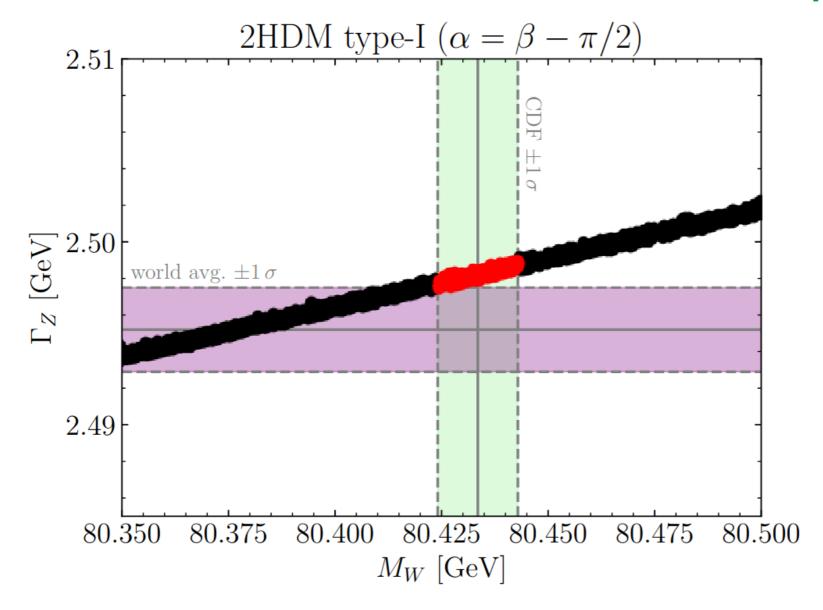
DESY. Page 17/25

Results: M_w vs $\sin^2\theta_{eff}^{lep}$

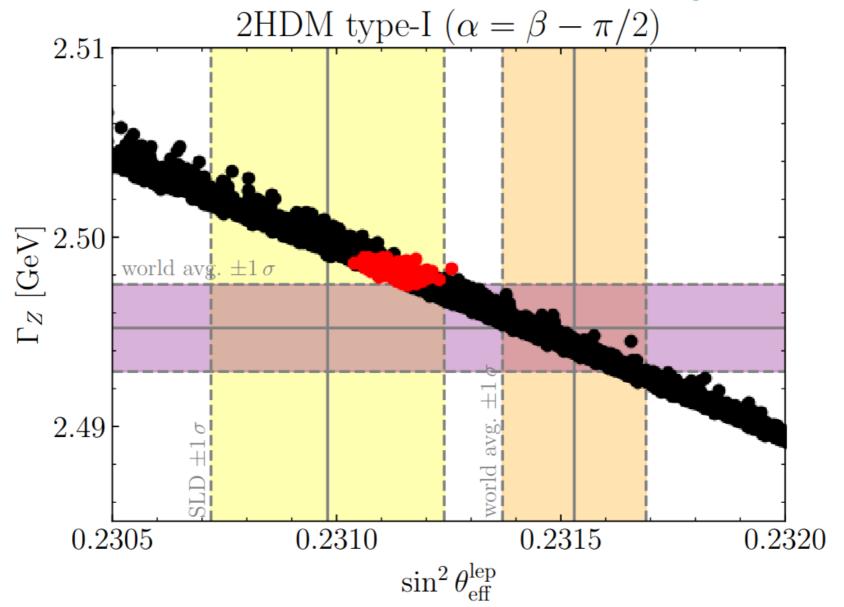


2HDM can explain the discrepancy in M_w!

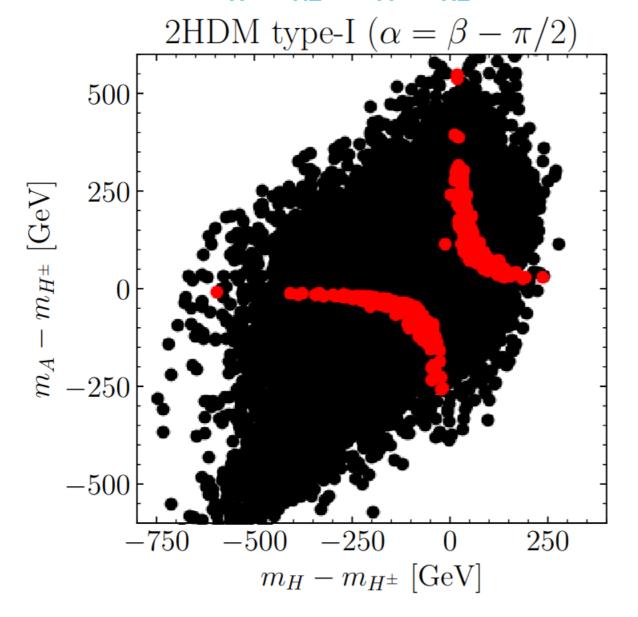
- > Light tension with world average for $\sin^2 \theta_{eff}^{-lep}$ but good agreement with SLD result
- World average: using both LEP result (based on forward-backward asymmetry of bottom quarks) + SLD result (based on leftright asymmetry) which show a 3σ discrepancy between each other
- SLD: most precise single measurement of sin²θ_{eff} and only depends on leptonic couplings



Result for Γ_z
 compatible within 1 – 1.5σ of world average



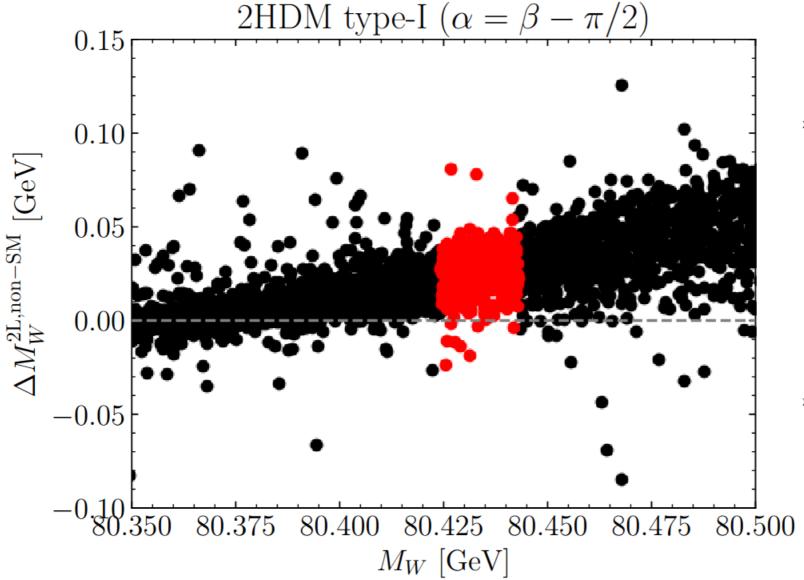
[Bahl, JB, Weiglein 2204.05269]



- Mass hierarchy where m_H=m_A=m_{H±} is no longer allowed because it cannot reproduce M_W!
- The reason is that in this limit, the custodial symmetry is restored in the 2HDM scalar sector
 - \rightarrow scalar contributions to $\Delta \rho$ *vanish*
 - \rightarrow no way of getting a large enough contribution to $M_w!$
- > Need m_{H} - $m_{H\pm}$ < 0 and m_{A} - $m_{H\pm}$ < 0 or m_{H} - $m_{H\pm}$ > 0 and m_{A} - $m_{H\pm}$ > 0 to have a **positive** contribution to $\Delta \rho$
- Needed mass splitting of ≥ 50 GeV translates into an upper bound on BSM scalar masses of O(few TeV) (see also [Heo, Jung, Lee '22])

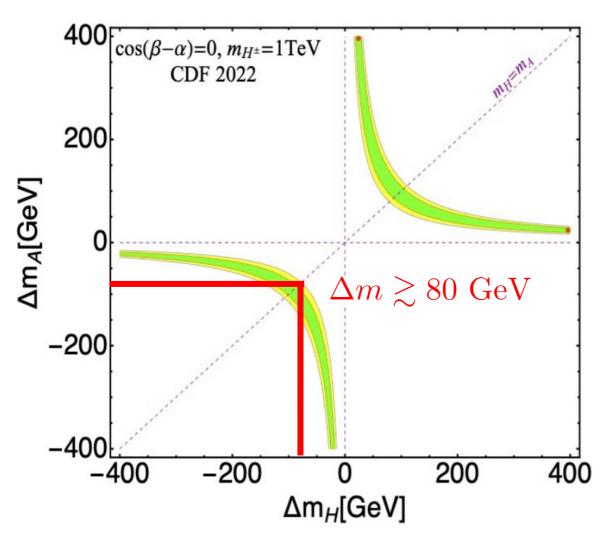
Impact of two-loop corrections to M_w

[Bahl, JB, Weiglein 2204.05269]



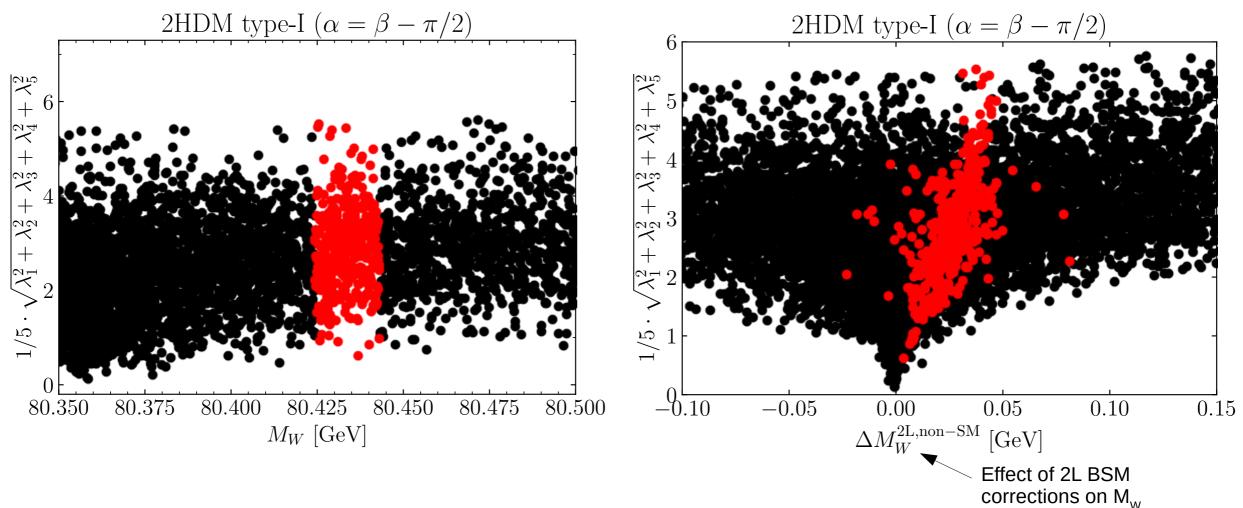
- > 2L corrections to M_w often significant, and can play an important role in reaching the values of M_w compatible with the CDF result (especially when custodial sym. is accidentally restored at 1L)
- Shows the importance of including 2L BSM effects!

Impact of two-loop corrections to M_w II



2HDM type-I ($\alpha = \beta - \pi/2$) 500 250 $m_{H^{\pm}} [\text{GeV}]$ -250 $\Delta m \gtrsim 50 \; {
m GeV}$ -500-500-250250 -750 $m_H - m_{H^{\pm}} [\text{GeV}]$

Plot from [Lu, Wu, Wu, Zhu 2204.03796] using 1L S, T, U



Large scalar couplings are **not necessary** to reproduce the CDF value for M_w
 (with or without large 2L effects)

Summary

- M_w is one of the best measured EWPO, and comparison of theory prediction and experimental results allow stringent tests of SM as well as BSM theories
- > Recent excitement related to CDF result, seemingly 7σ away from SM \rightarrow strong motivation to consider BSM contributions to M_w
- ▶ [Bahl, JB, Weiglein 2204.05269] investigated situation in 2HDM, with calculation of M_W including leading 2L BSM (+ h.o. SM) effects using THDM_EWPOS → 2HDM can accommodate M_W discrepancy while keeping satisfactory agreement for sin²θ_{eff} lep and Γ_Z (also possible in 2HDM extensions → c.f. talk of G. Arcadi with 2HDMa or [Biekötter, Heinemeyer, Weiglein '22] in N2HDM)
- CDF result is not compatible with degenerate mass hierarchies in 2HDM → upper bound on BSM scalar masses
- Impact of 2L (BSM) corrections to M_w can be significant (not necessarily related to large couplings)

Thank you for your attention!

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

Johannes Braathen

DESY Theory group

johannes.braathen@desy.de

M_w calculation in the SM I

See e.g. [Awramik, Czakon, Freitas, Weiglein '03], [Hessenberger TUM thesis '18]

- Base for M_w calculation is the decay of the muon

Relate M_w, M_z, α, G_F by computing muon decay in SM, and matching to Fermi theory result

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1+\Delta r) \quad \Rightarrow \quad M_W^2 \bigg(1-\frac{M_W^2}{M_Z^2}\bigg) = \frac{\pi\alpha}{\sqrt{2}G_F} (1+\Delta r) \qquad \text{OS scheme}$$

 $\Delta r \equiv \Delta r(M_{yy}, M_{z}, m_{h}, m_{t}, ...)$ denotes corrections to muon decay (w/o finite QED effects)

 \rightarrow Previous relation used to determine M_w as solution, via iterations, of

$$M_W^2 = M_Z^2 \left[\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\pi \alpha}{\sqrt{2} G_F M_Z^2}} \left(1 + \Delta r(M_W^2, M_Z^2, m_h^2, m_t^2, \cdots) \right) \right] \qquad \text{OS scheme}$$

M_w calculation in the SM II

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1 + \Delta r) \quad \Rightarrow \quad M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)$$

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1 + \Delta r) \quad \Rightarrow \quad M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)$$

$$M_W^2 = M_Z^2 \left[\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\pi \alpha}{\sqrt{2} G_F M_Z^2}} \left(1 + \Delta r (M_W^2, M_Z^2, m_h^2, m_t^2, \cdots) \right) \right]$$

At one loop

$$\Delta r^{(1)} = 2\delta^{(1)} Z_e + \frac{\Sigma_{WW}^{(1)}(p^2 = 0) - \delta^{(1)} M_W^2}{M_W^2} - \frac{\delta^{(1)} s_W^2}{s_W^2} + \{\text{vertex + box corrections}\}$$

 Σ_{ww} : transverse part of the W-boson self-energy, $\delta^{(1)}X$: 1L counterterm to quantity X

One can show that

$$\delta^{(1)} Z_e \simeq \frac{1}{2} \Delta \alpha + \cdots \quad \text{and} \quad \frac{\delta^{(1)} s_W^2}{s_W^2} \simeq \frac{c_W^2}{s_W^2} \Delta \rho^{(1)}$$
with
$$\Delta \alpha = \frac{\partial}{\partial p^2} \Sigma_{\gamma\gamma} \big|_{p^2 = 0} - \frac{\text{Re} \Sigma_{\gamma\gamma} (p^2 = M_Z^2)}{M_Z^2}$$

Leading terms can be rewritten as [Sirlin '80]

$$\Delta r^{\alpha} = \Delta \alpha - \frac{c_W^2}{s_W^2} \Delta \rho^{(1)} + \Delta r_{\text{remainder}}(m_h)$$

with $\Delta\alpha$: contribution from light fermion loops to photon vacuum polarisation $\Delta \rho$: corrections to the ρ parameter

$$\rho \equiv \frac{G_{\text{NC}}}{G_{\text{CC}}} \quad \Rightarrow \quad \rho^{(0)} = \frac{M_W^2}{c_W^2 M_Z^2} = 1 \text{ and } \Delta \rho^{(1)} = \frac{\Sigma_{ZZ}^{(1)}(p^2 = 0)}{M_Z^2} - \frac{\Sigma_{WW}^{(1)}(p^2 = 0)}{M_W^2}$$

M_w calculation in the SM III

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1 + \Delta r) \quad \Rightarrow \quad M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)$$

$$M_W^2 = M_Z^2 \left[\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\pi \alpha}{\sqrt{2} G_F M_Z^2} \left(1 + \Delta r(M_W^2, M_Z^2, m_h^2, m_t^2, \cdots) \right)} \right]$$

At higher orders

$$\Delta r = \Delta r^{\alpha} + \Delta r^{\alpha \alpha_s} + \Delta r^{\alpha \alpha_s^2} + \Delta r^{\alpha \alpha_s^3 m_t} + \Delta r_{\rm ferm}^{\alpha^2} + \Delta r_{\rm bos}^{\alpha^2} + \Delta r_{\rm ferm}^{G_F^2 \alpha_s m_t^4} + \Delta r_{\rm ferm}^{G_S^3 m_t^6} + \Delta r_{\rm bos}^{G_S^2 m_t^6} + \Delta r_{\rm bos}^{G_S^3 m_t^6} +$$

[Awramik, Czakon, Freitas, Weiglein '03] gives a parametrisation as

$$M_{W} = M_{W}^{0} - c_{1} dH - c_{2} dH^{2} + c_{3} dH^{4} + c_{4} (dh - 1) - c_{5} d\alpha + c_{6} dt - c_{7} dt^{2} - c_{8} dH dt + c_{9} dh dt - c_{10} d\alpha_{s} + c_{11} dZ,$$

$$dH = \ln\left(\frac{M_{\rm H}}{100~{\rm GeV}}\right), \quad dh = \left(\frac{M_{\rm H}}{100~{\rm GeV}}\right)^2, \quad dt = \left(\frac{m_{\rm t}}{174.3~{\rm GeV}}\right)^2 - 1,$$

$$dZ = \frac{M_{\rm Z}}{91.1875~{\rm GeV}} - 1, \quad d\alpha = \frac{\Delta\alpha}{0.05907} - 1, \quad d\alpha_{\rm s} = \frac{\alpha_{\rm s}(M_{\rm Z})}{0.119} - 1,$$

$$\frac{M}{dH} = \ln\left(\frac{M_{\rm H}}{100~{\rm GeV}}\right), \quad dh = \left(\frac{M_{\rm H}}{100~{\rm GeV}}\right)^2, \quad dt = \left(\frac{m_{\rm t}}{174.3~{\rm GeV}}\right)^2 - 1, \quad \frac{M_{\rm W}^0 = 80.3779~{\rm GeV}, \quad c_1 = 0.05263~{\rm GeV}, \quad c_2 = 0.010239~{\rm GeV}, \quad c_3 = 0.000954~{\rm GeV}, \quad c_4 = -0.000054~{\rm GeV}, \quad c_5 = 1.077~{\rm GeV}, \quad c_7 = 0.0700~{\rm GeV}, \quad c_8 = 0.004102~{\rm GeV}, \quad c_9 = 0.000111~{\rm GeV}, \quad c_{10} = 0.0774~{\rm GeV}, \quad c_{11} = 115.0~{\rm GeV}, \quad c_{11} = 115.0~{\rm GeV}, \quad c_{12} = 0.000111~{\rm GeV}, \quad c_{13} = 0.000111~{\rm GeV}, \quad c_{14} = 0.05263~{\rm GeV}, \quad c_{15} = 0.010239~{\rm GeV}, \quad c_{15} = 0.000111~{\rm GeV}, \quad c_{15} = 0.000111~{\rm GeV}, \quad c_{10} = 0.0774~{\rm GeV}, \quad c_{11} = 115.0~{\rm GeV}, \quad c_{11} = 0.000111~{\rm GeV}, \quad c_{10} = 0.0000111~{\rm GeV}, \quad c_{10} = 0.00000111~{\rm GeV}, \quad c_{10} = 0.0000111~{\rm GeV}, \quad c$$

Note: Δr also serves to extract the Higgs VEV from G₋

$$v^2 = \frac{1}{\sqrt{2}G_F}(1 + \Delta r)$$

M_w calculation beyond the SM

- Idea of the calculation remains the same, but full theory calculation (that is matched with the Fermi theory one) is now done in the BSM model
- > In BSM models, M_W (↔ muon decay) can receive contributions both at **tree level** and at **loop level**. Considering a model with both sources (and turning to \overline{MS} for simplicity just here), one can write at 1L [Athron et al. 1710.03760, 2204.05285] $M_W^2 \Big|^{\overline{\mathrm{MS}}} = (M_W^{\mathrm{SM}} |^{\overline{\mathrm{MS}}})^2 \left\{ 1 + \frac{s_W^2}{c_W^2 - s_W^2} \left[\frac{c_W^2}{s_W^2} (\Delta \rho_{\mathrm{tree}} + \Delta \rho_{\mathrm{loop}}^{\mathrm{BSM}}) - \Delta r_{\mathrm{remainder}}^{\mathrm{BSM}} - \Delta \alpha^{\mathrm{BSM}} \right] \right\}$

- In the following, we will only discuss models with $\rho^{(0)}=1$, and we stay in OS scheme
- Some 2L corrections to Δρ known in BSM models
 - \rightarrow O($\alpha\alpha_s$) SUSY corrections in [Djouadi et al. '96, '98]
 - \rightarrow O(α_{r}^{2} , α_{r}^{2} , α_{h}^{2}) in MSSM in [Heinemeyer, Weiglein '02], [Hastier, Heinemeyer, Stöckinger, Weiglein '05]
 - > BSM scalar + top quark corrections in (aligned) 2HDM and IDM [Hessenberger, Hollik '16]
- ightharpoonup Inclusion of known higher-order SM corrections crucial $\Delta r = \Delta r^{
 m SM} + \Delta r^{
 m BSM}$
- \rightarrow Calculations of M_w with Δ r to full BSM 1L + partial BSM 2L (from resummation and Δ p) + SM up to 4L
 - MSSM [Heinemeyer, Hollik, Weiglein, Zeune '13]
 - NMSSM [Stål, Weiglein, Zeune '15]
 - MRSSM [Diessner, Weiglein '19]
 - > **2HDM & IDM** [Hessenberger '18] (TUM thesis and code THDM EWPOS)

M_w calculation in the 2HDM

 $\Delta r = \Delta r_{\rm SM} + \Delta r_{\rm NS}$

$$\Delta r_{\rm NS}^{(2)} = \Delta r_{\rm NS,red}^{(2)} + \Delta r_{\rm NS,irr}^{(2)}.$$

where
$$\Delta r_{\rm NS,red}^{(2)} = -2 \frac{c_W^2}{s_W^2} \, \Delta \alpha \, \Delta \rho_{\rm NS}^{(1)} + 4 \frac{c_W^4}{s_W^4} \, \Delta \rho_{\rm NS}^{(1)} \, \Delta \rho_{\rm t}^{(1)} + 2 \frac{c_W^4}{s_W^4} \left(\Delta \rho_{\rm NS}^{(1)} \right)^2$$

$$\Delta r_{\rm irr}^{(2)} = -\frac{c_W^2}{s_W^2} \, \delta \rho^{(2)} \,, \quad \delta \rho^{(2)} = \delta \rho_{\rm t,SM}^{(2)} + \delta \rho_{\rm t,NS}^{(2)} + \delta \rho_{\rm H,NS}^{(2)} + \delta \rho_{\rm H,Mix}^{(2)},$$

NB: Δρ at 2L

$$\Delta \rho^{(2)} = -\frac{c_W^2}{s_W^2} \left(\Delta \rho^{(1)}\right)^2 + \delta \rho^{(2)}$$
 Genuine 2L piece

Effective leptonic weak mixing angle

$$s_l^2 = s_W^2 \, \kappa = s_W^2 \left(1 + \Delta \kappa \right).$$

$$\Delta \kappa^{(1)} = \frac{c_W^2}{s_W^2} \Delta \rho^{(1)} + \cdots \qquad \Delta \kappa^{(2)} = \Delta \alpha \, \frac{c_W^2}{s_W^2} \Delta \rho^{(1)} - \frac{c_W^4}{s_W^4} \left(\Delta \rho^{(1)} \right)^2 + \frac{c_W^2}{s_W^2} \, \delta \rho^{(2)}$$

Fixed vs running width

- OS renormalisation conditions: W- (and Z-) boson mass defined as real part of the complex pole of the propagator → gauge invariant definition
- Expanding propagator around complex pole → Breit-Wigner shape with a fixed width
- W- (and Z-) boson mass measured experimentally corresponds (usually) to a definition of the mass with a Breit-Wigner shape with running width
- Comparison of theory and experiment requires a conversion:

$$M_W^{\mathrm{run. \ width}} = M_W^{\mathrm{fix. \ width}} + \frac{\Gamma_W^2}{2M_W^{\mathrm{run. \ width}}}$$

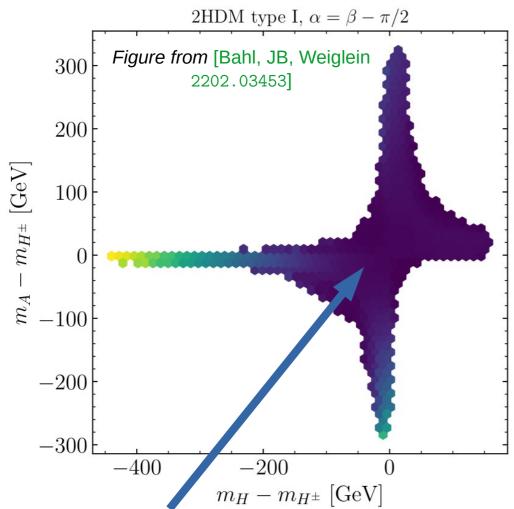
where for the W decay width one uses a result parametrised in terms of G_F and including 1L QCD corrections

$$\Gamma_W = \frac{3G_F(M_W^{\text{run. width}})^3}{2\sqrt{2}\pi} \left(1 + \frac{2\alpha_s}{3\pi}\right)$$

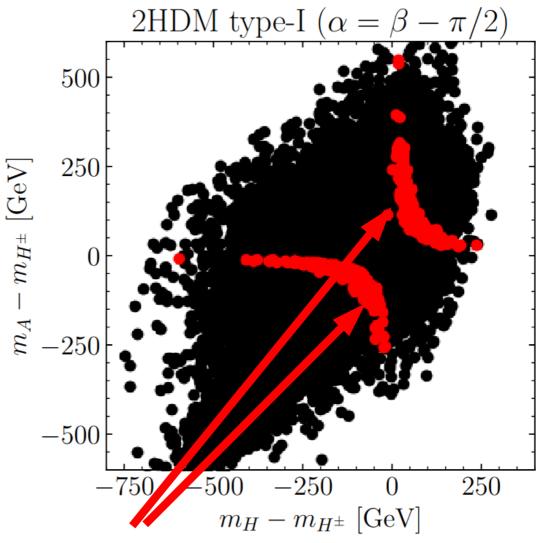
Resulting shift of ~27 MeV

Results in the $(M_H-M_{H\pm}, M_A-M_{H\pm})$ plane II

[Bahl, JB, Weiglein 2204.05269]

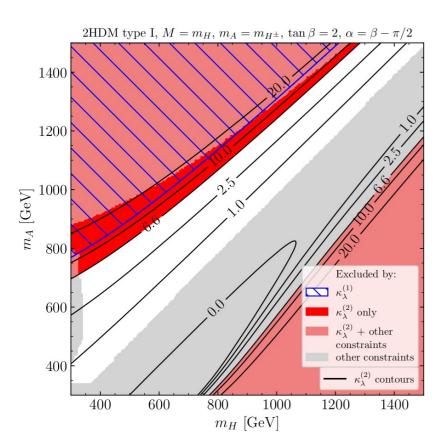


Reproducing the world average value for M_w (w/o CDF)

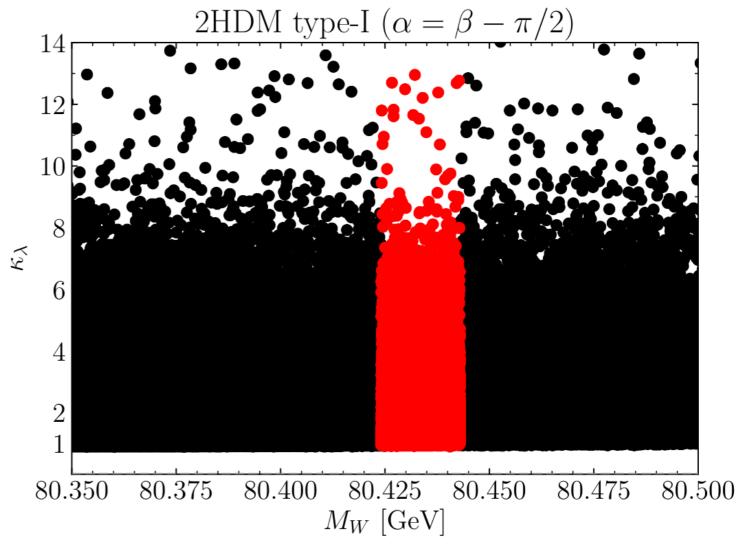


Reproducing the CDF result for $M_{\rm w}$

Correlation between M_w and κ_{λ}



[Bahl, JB, Weiglein 2202.03453]



- > No apparent correlation between M_w and κ_{λ}
- > Only few points excluded by -1.0 < κ_{λ} < 6.6 [ATLAS-CONF-2021-052]