W Boson Mass and Grand Unification

Jason L Evans Tsung-Dao Lee Institute

W-Boson Anomaly

• Best fit for the M_W (LEP-2, Tevatron, LHC, LHCb data)

 $M_{W_{fit}} = 80.4093 \pm 0.0079 {
m GeV}$ 2204.04204

SM prediction for M_W
 (Fit all date except M_W and predict M_W)

 $M_{W_{pred}} = 80.3499 \pm 0.0056 \text{GeV}$ (Pull 6.5 σ) 2204.04204

• Even without CDF, some maybe some pull <

- Fermi Constant determined from muon decay
 - Very precisely measured

 $\Gamma_{\mu} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} \qquad \frac{1}{\Gamma_{\mu}} = \tau_{\mu} = 2.1969811(22) \times 10^{-6} \text{ s}$ $G_F = 1.1663787(6) \times 10^{-5} \text{ GeV}^{-1}$

- Fermi constant determined from muon decay
- Fermi constant input, M_W predicted

 $\frac{G_F}{\sqrt{2}} = \frac{\pi\alpha}{2M_W^2 s_W^2} \left(1 + \Delta r\right)$

• This constrains way to changes M_W

 $\frac{\Delta M_W}{M_W} = \frac{1}{2} \frac{\delta \alpha}{\alpha} - \frac{c_W}{s_W} \delta \theta - \frac{1}{2} \frac{\delta G_F}{G_F}$

• In terms of SMEFT this is

 $\mathcal{O}_{HWB} = H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$ $\mathcal{O}_{HD} = \left(H^{\dagger} D_{\mu} H\right) \left(H^{\dagger} D_{\mu} H\right)$ $\mathcal{O}_{\ell\ell} = \left(\bar{\ell}_{p} \gamma_{\mu} \ell_{r}\right) \left(\bar{\ell}_{s} \gamma^{\mu} \ell_{t}\right)$ $\mathcal{O}_{H\ell}^{(3)} = \left(H^{\dagger} \overleftarrow{D}^{I}_{\mu} H\right) \left(\bar{\ell}_{s} \tau^{I} \gamma^{\mu} \ell_{t}\right)$

$$\frac{\Delta M_W}{M_W} = -\frac{s_{2W}}{c_{2W}} \frac{v^2}{4\Lambda^2} \left(\frac{c_W}{s_W} C_{HD} + \frac{s_W}{c_W} \left(4C_{H\ell}^{(3)} - 2C_{\ell\ell} \right) + 4C_{HWB} \right)$$

- Fermi Constant determined from muon decay
- Fermi constant input, M_W predicted

$$\frac{G_F}{\sqrt{2}} = \frac{\pi\alpha}{2M_W^2 s_W^2} \left(1 + \Delta r\right)$$

• This constrains way theory can changes M_W

 $\frac{\Delta M_W}{M_W} = \frac{1}{2} \frac{\delta \alpha}{\alpha} - \frac{c_W}{s_W} \delta \theta - \frac{1}{2} \frac{\delta G_F}{G_F}$

• In terms of SMEFT this is

 $\mathcal{O}_{HWB} = H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$ $\mathcal{O}_{HD} = \left(H^{\dagger} D_{\mu} H\right) \left(H^{\dagger} D_{\mu} H\right)$ $\mathcal{O}_{\ell\ell} = \left(\bar{\ell}_{p} \gamma_{\mu} \ell_{r}\right) \left(\bar{\ell}_{s} \gamma^{\mu} \ell_{t}\right)$ $\mathcal{O}_{H\ell}^{(3)} = \left(H^{\dagger} \overleftarrow{D}^{I}_{\mu} H\right) \left(\bar{\ell}_{s} \tau^{I} \gamma^{\mu} \ell_{t}\right)$

$$\frac{\Delta M_W}{M_W} = -\frac{s_{2W}}{c_{2W}} \frac{v^2}{4\Lambda^2} \left(\frac{c_W}{s_W} C_{HD} + \frac{s_W}{c_W} \left(4C_{H\ell}^{(3)} - 2C_{\ell\ell} \right) + 4C_{HWB} \right) \qquad \text{Give } \delta\theta_W$$

$$\propto T \qquad \text{Give } \delta G_F \qquad \propto S$$

 δM_W

 M_W

- Fermi Constant determined from muon decay
- Fermi constant generally taken as input
- Example: Supersymmetry
 - Correction now in terms of S,T

$$M_W = (M_W)_{SM} \left(1 + \frac{1}{2} \frac{c_W^2}{c_W^2 - s_W^2} \left(-\frac{1}{2}S + c_W^2 T \right) \right)$$

- Light degenerate charged Higgsino and Wino

$$T = \frac{3\alpha_2}{16\pi} \frac{M_W^2}{M_2^2} \left(\frac{1-\tan^2\beta}{1+\tan^2\beta}\right)^2 \qquad \frac{\delta M_W}{M_W} = \frac{1}{2} \frac{c_W^2}{c_W^2 - s_W^2} T$$

$M_2 \mathrm{GeV}$	100	150	200	250
$\delta M_W/M_W$	0.09%	0.04%	0.02%	0.01%

Bagnaschi, Ellis, Madigan, Mimasu, Sanze, You

Possible Tree-Level Solutions

W

5

• Possible single field extensions which explain deviation

Model	Spin	SU(3)	SU(2)	U(1)	Parameters
S_1	0	1	1	1	(M_S, κ_S)
Σ	$\frac{1}{2}$	1	3	0	$(M_{\Sigma}, \lambda_{\Sigma})$
Σ_1	$\frac{1}{2}$	1	3	-1	$(M_{\Sigma_1}, \lambda_{\Sigma_1})$
N	$\frac{1}{2}$	1	1	0	(M_N, λ_N)
E	$\frac{1}{2}$	1	1	-1	(M_E, λ_E)
В	1	1	1	0	(M_B, \hat{g}_H^B)
B_1	1	1	1	1	(M_{B_1}, λ_{B_1})
Ξ	0	1	3	0	(M_{Ξ}, κ_{Ξ})
$-W_1$	1	1	3	1	$(M_{W_1}, \hat{g}_{W_1}^{\varphi})$
W	1	1	3	0	(M_W, \hat{g}_W^H)

Bagnaschi, Ellis, Madigan, Mimasu, Sanz, You

$$\mathcal{O}_{HD} = \left(H^{\dagger}D_{\mu}H\right)\left(H^{\dagger}D_{\mu}H\right)$$

Model	Pull	Best-fit mas	s 1	$1-\sigma$ mass	2-	σ mass	$1-\sigma$ couple	ing^2
		(TeV)	ra	nge (TeV)	ran	ge (TeV)	range	
W_1	6.4	3.0		[2.8, 3.6]	[2	2.6, 3.8]	[0.09, 0.1	13]
B	6.4	8.6		[8.0, 9.4]	[7.	.4, 10.6]	[0.011, 0.0]	016]
Ξ	6.4	2.9		[2.8, 3.1]	[2	2.7, 3.2]	[0.011, 0.0]	016]
\overline{N}	5.1	4.4		[4.1, 5.0]	3	8.8, 5.8	[0.040, 0.0]	060
E	3.5	5.8		[5.1, 6.8]	[4	.6, 8.5]	[0.022, 0.0]	039]
				1		1	T	
Model	C_{HD}	$C_{ll} \mid C_{Hl}^{(3)}$	$C_{Hl}^{(1)}$	C_{He} C_{He}	Π□	$C_{\tau H}$	C_{tH}	C_{bH}
S_1		-1						
Σ		$\frac{1}{16}$	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
Σ_1		$\frac{1}{16}$	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$		
N		$-\frac{1}{4}$	$\frac{1}{4}$					
E		$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{\tau}}{2}$		
B_1	1			_	$\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
B	-2					$-y_{\tau}$	$-y_t$	$-y_b$
Ξ	$-2\left(\frac{1}{M_{\Xi}}\right)$	$)^2$		$\frac{1}{2}\left(\overline{N}\right)$	$\left(\frac{1}{I_{\Xi}}\right)^2$	$y_{\tau} \left(\frac{1}{M_{\Xi}}\right)^2$	$y_t \left(\frac{1}{M_{\Xi}}\right)^2$	$y_b\left(\frac{1}{M_{\Xi}}\right)$
W_1	$-\frac{1}{4}$				$\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$

 $-y_{\tau}$

 $-y_t$

 $\sqrt{2}$

 $-y_b$

Electroweak Symmetry Breaking with Triplet

• Triplet can contribute to Electroweak symmetry breaking $Generates \Sigma_3$ vev

$$V(H, \Sigma_3) \supset -\mu_H^2 |H|^2 + \lambda_H |H|^4 + A_{3H} H^{\dagger} \Sigma_3 H + h.c. + 2\mu_3^2 \operatorname{Tr}(\Sigma_3^{\dagger} \Sigma_3) \sim \operatorname{TeV}$$

• If Y = 0, then only contributes to W mass

$$\langle H \rangle = (0, v)^T \qquad \langle \Sigma_3 \rangle = \frac{1}{2} \begin{pmatrix} v_T & 0 \\ 0 & -v_T \end{pmatrix} \qquad \propto \sigma_3$$
$${}_{\iota}, \langle \Sigma_3 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -v_T W_{\mu}^+ \\ v_T W_{\mu}^+ & 0 \end{pmatrix} \qquad \qquad \delta M_W^2 = 2g_2^2 v_T^2$$

Only contributes to the W boson

[W]

• If we take hypercharge non-zero would also contribute to Z

Triple Higgs Boson and the Fermi Constant

• This mass correction alters weak mixing angle

• Correction to W boson mass allowed by fits

$$M_W \simeq (M_W)_{SM} \left(1 + \frac{1}{2} \frac{c_W^2}{c_W^2 - s_W^2} \frac{4v_T^2}{v^2} \right)$$

Is there motivation for this new field?

 $v_T \sim 3 \text{ GeV} \rightarrow \delta M_W \sim 60 \text{ MeV}$ $v_T = \frac{A_{3H}v^2}{2\mu_3^2} \quad v^2 = \left(\mu_H^2 + A_{3H}v_T\right)/(2\lambda_H)$ $\mu_3 \sim \text{ TeV}, \quad A_{3H} \sim 200 \text{ GeV}$

 \tilde{s}_W^2

Triple Higgs Boson Signatures

- The neutral Higgs bosons small mixing
- Couplings to SM fermions quite suppressed

$$\theta_{H,H^{\pm}} \simeq \frac{A_{3H}v}{\mu_3^2} \simeq 0.03$$

• Dominant signature from decays to SM massive bosons

Couplings $\propto v_T$ so suppressed

Mass relatively heavy

"Who Order That" (Issac Rabi)

- Like the discovery of the muon, why would nature have a triplet?
 - Science is about correlating observables

"Who Order That" (Issac Rabi)

- Like the discovery of the muon, why would nature have a triplet?
 - Science is about correlating observables
 - At face value triplet does nothing but give mass to W^{\pm}

Even though good Explanation, sits on the sideline

"Who Order That" (Issac Rabi)

- Like the discovery of the muon, Who order a triplet?
- SU(5) Grand unification?

 $\Sigma_{24} \supset \Sigma_3 = (1, 3, 0) [SU(3), SU(2), U(1)]$

• Gauge coupling unification

Dotted: SM $\Delta b_2 = 0$ Dashed: Real triplet $\Delta b_2 = \frac{1}{3}$ Solid: Complex Triplet $\Delta b_2 = \frac{2}{3}$

 $M_{GUT} \sim 10^{14} \text{ GeV}$

Proton Decay?

SU(5) Grand Unification

- Matter fields embedded into larger representation
 - Leads to charge quantization
 - Simplest group which fits the SM, $SU(5) \supset SU(3) \times SU(2) \times U(1)$

Grand Unification

- Matter fields embedded into larger representation
- SU(5) Breaking with single real 24 Rep

Can we use this Y=0 Triplet?

$$24_H = \begin{pmatrix} \Sigma_3 & X/\sqrt{2} \\ X^{\dagger}/\sqrt{2} & \Sigma_8 \end{pmatrix} + \text{Singlet}$$

• For generic renormalizable interaction

$$\frac{m_{\Sigma_3}^2}{m_{\Sigma_8}^2} = 4$$

- Light triplet alone from SU(5) breaking is difficult
- Furthermore, only on real field needed

Grand Unification

- Matter fields embedded into larger representation
- SU(5) Breaking with single real 24 Rep
- If we include an additional 24, can get a light complex triplet
 - Lots of freedom from many couplings (So, assume Approx. U(1) symmetry)
 - $V \quad \ni \quad 2\mu_{24}^2 \operatorname{Tr}(\Sigma_{24}^{\dagger}\Sigma_{24}) + 2A_1 \operatorname{Tr}(\Sigma_{24H}\Sigma_{24}^{\dagger}\Sigma_{24}) + 2A_2 \operatorname{Tr}(\Sigma_{24}^{\dagger}\Sigma_{24H}\Sigma_{24}) \\ + \quad \lambda_1 \operatorname{Tr}(\Sigma_{24H}^2) \operatorname{Tr}(\Sigma_{24}^{\dagger}\Sigma_{24}) + 2\lambda_2 \operatorname{Tr}(\Sigma_{24H}^2\Sigma_{24}^{\dagger}\Sigma_{24}) + 2\lambda_3 \operatorname{Tr}(\Sigma_{24H}\Sigma_{24}^{\dagger}\Sigma_{24H}\Sigma_{24})$
 - Relevant masses

$$m_{\Sigma_8}^2 = \mu_{24}^2 + 2A_1 v_{\text{GUT}} + 4(\lambda_2 + \lambda_3) v_{\text{GUT}}^2 \simeq 5A_1 v_{\text{GUt}},$$

$$m_{\Sigma_3}^2 = \mu_{24}^2 - 3A_1 v_{\text{GUT}} + 9(\lambda_2 + \lambda_3) v_{\text{GUT}}^2 \simeq 0$$

 $\lambda_3 \simeq -\lambda_2$ $A_1 v_{\rm GUT} \simeq \mu_{24}^2$

Grand Unification

- Matter fields embedded into larger representation
- SU(5) Breaking with single real 24 Rep
- If we include an additional 24, can get a light complex triplet
 - Lots of freedom from many couplings (So, assume Approx. U(1) symmetry)
 - $V \ni 2\mu_{24}^{2} \operatorname{Tr}(\Sigma_{24}^{\dagger}\Sigma_{24}) + 2A_{1} \operatorname{Tr}(\Sigma_{24H}\Sigma_{24}^{\dagger}\Sigma_{24}) + 2A_{2} \operatorname{Tr}(\Sigma_{24}^{\dagger}\Sigma_{24H}\Sigma_{24}) + \lambda_{1} \operatorname{Tr}(\Sigma_{24H}^{2}) \operatorname{Tr}(\Sigma_{24H}^{\dagger}\Sigma_{24}) + 2\lambda_{2} \operatorname{Tr}(\Sigma_{24H}^{2}\Sigma_{24}) + 2\lambda_{3} \operatorname{Tr}(\Sigma_{24H}\Sigma_{24}^{\dagger}\Sigma_{24H}\Sigma_{24}) + \lambda_{1} \operatorname{Tr}(\Sigma_{24H}^{\dagger}\Sigma_{24}) + 2\lambda_{2} \operatorname{Tr}(\Sigma_{24H}^{\dagger}\Sigma_{24}) + 2\lambda_{3} \operatorname{Tr}(\Sigma_{24H}\Sigma_{24}^{\dagger}\Sigma_{24H}\Sigma_{24}) + \lambda_{2} \operatorname{Tr}(\Sigma_{24H}^{\dagger}\Sigma_{24}) + 2\lambda_{3} \operatorname{Tr}(\Sigma_{24H}\Sigma_{24}) + \lambda_{4} \operatorname{Tr}(\Sigma_{24}) + \lambda_{4} \operatorname{Tr}(\Sigma_{24})$

Essentially two real fields

Assume $A_2 = 0$

Gives Mass shift only

• Relevant masses

$$m_{\Sigma_8}^2 = \mu_{24}^2 + 2A_1 v_{\text{GUT}} + 4(\lambda_2 + \lambda_3) v_{\text{GUT}}^2 \simeq 5A_1 v_{\text{GUt}},$$

$$m_{\Sigma_3}^2 = \mu_{24}^2 - 3A_1 v_{\text{GUT}} + 9(\lambda_2 + \lambda_3) v_{\text{GUT}}^2 \simeq 0$$

 $\lambda_3 \simeq -\lambda_2$ $A_1 v_{\rm GUT} \simeq \mu_{24}^2$

- Proton decay
 - Minimal SU(5) ruled out by proton decay

 10^{33} yrs $\tau_p = 9.4 \times 10^{41} \text{yrs} \left(\frac{m_{H_C}}{6 \times 10^{13} \text{GeV}}\right)^{4}$ Decay Mode Current (90% CL) Future (Discovery) Future (90% CL) $p \rightarrow K^+ \bar{\nu}$ 6.6 [6] JUNO: 12 (20) [3] JUNO: 19 (40) [1] DUNE: 30 (50) [3] DUNE: 33 (65) [2] Hyper-K: 20 (30) [3] Hyper-K: 32 (50) [3] 0.39 [29] $p \rightarrow \pi^+ \bar{\nu}$ Approximate size in minimal $p \rightarrow e^+ \pi^0$ DUNE: 15 (25) [3] DUNE: 20 (40) [3] 16 [40] SU(5), unchanged by light triplet Hyper-K: 63 (100) [3] Hyper-K: 78 (130) [3] $p \rightarrow \mu^+ \pi^0$ 7.7 [40] Hyper-K: 69 [3] Hyper-K: 77 [3] $n \to K^0_S \bar{\nu}$ 0.26 [25] $n \rightarrow \pi^0 \bar{\nu}$ 1.1 [29] $au_p \simeq 3.3 \times 10^{27} \text{ yrs } \left(\frac{M_X}{10^{14} \text{ CeV}}\right)^4$ $n \rightarrow e^+ \pi^-$ Hyper-K: 13 [3] Hyper-K: 20 [3] 5.3 [48] $n \rightarrow \mu^+ \pi^-$ 3.5 [48] Hyper-K: 11 [3] Hyper-K: 18 [3]

- Heavy gauge boson mediated proton decay
- The decay proceeds via the heavy gauge boson

SU(3)XSU(2)XU(1): (3,2,5/6)

- Heavy gauge boson mediated proton decay
- The decay proceeds via the heavy gauge boson

Same Vertex: Can we suppress it?

- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing and suppression of proton decay

 $\mathcal{L} \supset (M_{10}\mathbf{10} + M_{\psi}\psi_{\mathbf{10}})\,\bar{\psi}_{\mathbf{10}}$

This linear combination massless : SM field

- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing SU(5) reps and suppression of proton decay

SM field interaction combination of these

- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing SU(5) reps and suppression of proton decay

SM field interaction combination of these

- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing SU(5) reps and suppression of proton decay
- Mixing incomplete SU(5) reps to suppress proton decay

 $\mathcal{L} \supset \bar{\psi}_{\mathbf{10}} \psi_{\mathbf{10}} \left(M_{10} + \lambda_{\psi} \langle \Sigma_{24H} \rangle \right) + \underline{\bar{\psi}}_{\mathbf{10}} \mathbf{10} \left(M + \lambda_{\psi}' \langle \Sigma_{24H} \rangle \right)$

 $\langle \Sigma_{24} \rangle = V \text{Diag}(2, 2, 2, -3, -3)$

Creates independent mass matrices for EACH SM rep

- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing SU(5) reps and suppression of proton decay
- Mixing incomplete SU(5) reps to suppress proton decay
 - Each SM rep has a different mixing angle

- Dimension-6 proton decay
- The decay proceeds via the heavy gauge boson
- Mixing SU(5) reps and suppression of proton decay
- Mixing incomplete SU(5) reps to suppress proton decay
 - Each SM rep has a different mixing angle
 - With a proton lifetime of

$$\tau(p \to e^+ \pi^0) \approx 3.3 \times 10^{27} \text{yrs} A_{\text{mix}}^{-1} (i=1) \left(\frac{M_X}{10^{14} \text{GeV}}\right)^4 \left(\frac{g_5}{0.55}\right)^{-4},$$

 $A_{\min}(i) \simeq (\cos \theta_Q \cos \theta_U + \sin \theta_Q \sin \theta_U)^2$

• Lifetime constraints requirements

(a) $\sin \theta_U \sim 10^{-4}$ and $\cos \theta_Q \sim 10^{-4}$ (b) $\sin \theta_Q \sim 10^{-4}$ and $\cos \theta_U \sim 10^{-4}$

Proton Decay: Colored Higgs

• SM Yukawa Couplings

$$-\mathcal{L} \quad \ni \quad \frac{1}{4} Y_{10,i} \delta_{ij} \mathbf{10}_i \mathbf{10}_j H_5 + h.c$$

 $(Y_{10})_1 \sin \theta_Q \sin \theta_U Q_i \cdot H\bar{U}_i = y_u Q_i \cdot H\bar{U}_i$ $(Y_{10})_1 = \frac{y_u}{\sin \theta_U \sin \theta_Q}$

• Colored Higgs Yukawa couplings

$$-\mathcal{L} \quad \ni \quad \frac{1}{2} (Y_{10})_1 H_C \left(Q_1 \cdot Q_1 \right) = \frac{1}{2} \frac{y_u}{\sin \theta_U \sin \theta_Q} H_C \left(Q_1 \cdot Q_1 \right)$$

• Proton Decay greatly enhanced since

 $\sin \theta_Q \sim 1$, $\sin \theta_U \sim 10^{-4}$ Or $\sin \theta_Q \sim 10^{-4}$, $\sin \theta_U \sim 1$

Proton Decay: Colored Higgs

• SM Yukawa Couplings

$$(Y_{10})_1 = \frac{y_u}{\sin \theta_U \sin \theta_Q}$$

• Colored Higgs Yukawa couplings

$$-\mathcal{L} \quad \ni \quad \frac{1}{2} (Y_{10})_1 H_C \left(Q_1 \cdot Q_1 \right) = \frac{1}{2} \frac{y_u}{\sin \theta_U \sin \theta_Q} H_C \left(Q_1 \cdot Q_1 \right)$$
 Enhancement a larger of Dimensional equation of the second second

• Proton Decay greatly enhanced since $\sin \theta_Q \sim 1$, $\sin \theta_U \sim 10^{-4}$

Enhancement gets larger as Dim-6 constraint do

• The breaking of SU(5) splits some masses

 $\Sigma_{3H}, \Sigma_{8H}, H_C, X_{1,2}, \Sigma_8$

• These masses are constrained by gauge coupling unification

• The breaking of SU(5) splits some masses

 $\Sigma_{3H}, \Sigma_{8H}, H_C, X_{1,2}, \Sigma_8$

- These masses are constrained by gauge coupling unification
 - Four equations, 7 unknown leads to continuum of solutions

 $M_{X} \sim 10^{14}$

GeV

$$\begin{split} \tilde{\alpha}_{1}^{-1}(M_{X}) &= \alpha_{1}^{-1}(M_{X}) - \frac{b_{1,H_{C}}}{2\pi} \ln \frac{M_{X}}{m_{H_{C}}} - \frac{b_{1,X_{1}}}{2\pi} \ln \frac{M_{X}}{m_{X_{1}}} - \frac{b_{1,X_{2}}}{2\pi} \ln \frac{M_{X}}{m_{X_{2}}}, \\ \tilde{\alpha}_{2}^{-1}(M_{X}) &= \alpha_{2}^{-1}(M_{X}) - \frac{b_{2,X_{1}}}{2\pi} \ln \frac{M_{X}}{m_{X_{1}}} - \frac{b_{2,X_{2}}}{2\pi} \ln \frac{M_{X}}{m_{X_{2}}} - \frac{b_{2,\Sigma_{3H}}}{2\pi} \ln \frac{M_{X}}{2m_{\Sigma_{8H}}}, \\ \tilde{\alpha}_{3}^{-1}(M_{X}) &= \alpha_{3}^{-1}(M_{X}) - \frac{b_{3,H_{C}}}{2\pi} \ln \frac{M_{X}}{m_{H_{C}}} - \frac{b_{3,X_{1}}}{2\pi} \ln \frac{M_{X}}{m_{X_{1}}} - \frac{b_{3,X_{2}}}{2\pi} \ln \frac{M_{X}}{m_{X_{2}}}, \\ &- \frac{b_{3,\Sigma_{8H}}}{2\pi} \ln \frac{M_{X}}{m_{\Sigma_{8H}}} - \frac{b_{3,\Sigma_{8}}}{2\pi} \ln \frac{M_{X}}{m_{\Sigma_{8}}} \end{split}$$

The breaking of SU(5) splits some masses •

 $\Sigma_{3H}, \Sigma_{8H}, H_C, X_{1,2}, \Sigma_8$

- These masses are constrained by gauge coupling unification •
 - Four equations, 7 unknown leads to continuum of solutions •

GeV

couples

$$\begin{split} \tilde{\alpha}_{1}^{-1}(M_{X}) &= \alpha_{1}^{-1}(M_{X}) - \frac{b_{1,H_{C}}}{2\pi} \ln \frac{M_{X}}{m_{H_{C}}} - \frac{b_{1,X_{1}}}{2\pi} \ln \frac{M_{X}}{m_{X_{1}}} - \frac{b_{1,X_{2}}}{2\pi} \ln \frac{M_{X}}{m_{X_{2}}}, \\ \tilde{\alpha}_{2}^{-1}(M_{X}) &= \alpha_{2}^{-1}(M_{X}) - \frac{b_{2,X_{1}}}{2\pi} \ln \frac{M_{X}}{m_{X_{1}}} - \frac{b_{2,X_{2}}}{2\pi} \ln \frac{M_{X}}{m_{X_{2}}} - \frac{b_{2,\Sigma_{3H}}}{2\pi} \ln \frac{M_{X}}{2m_{\Sigma_{8H}}}, \end{split}$$
 Deviation in coupled determines ratio $\tilde{\alpha}_{3}^{-1}(M_{X}) = \alpha_{3}^{-1}(M_{X}) - \frac{b_{3,H_{C}}}{2\pi} \ln \frac{M_{X}}{m_{H_{C}}} - \frac{b_{3,X_{1}}}{2\pi} \ln \frac{M_{X}}{m_{X_{1}}} - \frac{b_{3,X_{2}}}{2\pi} \ln \frac{M_{X}}{m_{X_{2}}}, \\ &- \frac{b_{3,\Sigma_{8H}}}{2\pi} \ln \frac{M_{X}}{m_{\Sigma_{8H}}} - \frac{b_{3,\Sigma_{8}}}{2\pi} \ln \frac{M_{X}}{m_{\Sigma_{8}}} \end{split}$

The breaking of SU(5) splits some masses

 $\Sigma_{3H}, \Sigma_{8H}, H_C, X_{1,2}, \Sigma_8$

- These masses are constrained by gauge coupling unification
 - Four equations, 7 unknown leads to continuum of solutions

• The breaking of SU(5) splits some masses

 $\Sigma_{3H}, \Sigma_{8H}, H_C, X_{1,2}, \Sigma_8$

- These masses are constrained by gauge coupling unification
 - Four equations, 7 unknown leads to continuum of solutions

• The breaking of SU(5) splits some masses

 $\Sigma_{3H}, \Sigma_{8H}, H_C, X_{1,2}, \Sigma_8$

- These masses are constrained by gauge coupling unification
 - Four equations, 7 unknown leads to continuum of solutions
- Reasonable "Upper limit" of lifetime happens $M_X = 1.7 \times 10^{14} \text{ GeV}$

 $m_{H_C} \sim 10 M_X$ others $\sim 10^{\pm} M_X$

• However, lifetime can be well beyond experimental limit

$$\tau_p = \frac{1}{\Gamma_{p \to K^+ \overline{\nu}_{\tau}}} = 9.4 \times 10^{41} \text{yrs} \left(\frac{m_{H_C}}{2 \times 10^{15} \text{GeV}}\right)^4 \left(\frac{10^{-4}}{\sin \theta_U \sin \theta_Q}\right)^2$$

SM Yukawa Couplings: The Low Scale

• Minimal SU(5): Yukawa couplings explained by M_P suppressed operator

$$-\mathcal{L}
i \sqrt{2} rac{c_{ij}}{M_*} \mathbf{\bar{5}}_i \Sigma_{24H} \mathbf{10}'_j H_5^*$$

• Because GUT scale suppressed contribution too small

$$y_b(M_X) - y_\tau(M_X) \sim \frac{M_X}{M_P} \sim 10^{-4}$$
 Theory

$$y_b(M_X) - y_\tau(M_X) = \frac{m_b(M_X) - m_\tau(M_X)}{v} \simeq 4 \times 10^{-3}$$
 Experiment

- Yukawa can be accommodated by vector $5+\overline{5}$
 - Mixing involving 24 can split the Yukawa Coupling
 - This can enhance proton decay through color Higgs as well

- Scalar Wino Dark Matter
 - Real scalar SU(2) Triplet with Hypercharge zero

Dark matter band

- Scalar Wino Dark Matter
 - Real scalar SU(2) Triplet with Hypercharge zero
- Couple to Higgs, in a Z_2 invariant way

 $\mathcal{L} = -\lambda_H \phi_3^2 H^\dagger H$

Already in our Lagrangian

Shifts mass with correct relic density

- Scalar Wino Dark Matter
 - Real scalar SU(2) Triplet with Hypercharge zero
- Couple to Higgs, in a Z_2 invariant way
- Indirect constraints weakened

- Scalar Wino Dark Matter
 - Real scalar SU(2) Triplet with Hypercharge zero
- Couple to Higgs, in a Z_2 invariant way
- Indirect constraints weakened
- One real SU(2) Triplet for W-boson anomaly
- $V \quad \ni \quad 2\mu_{24}^2 \operatorname{Tr}(\Sigma_{24}\Sigma_{24}) + 2A_1 \operatorname{Tr}(\Sigma_{24H}\Sigma_{24}\Sigma_{24}) + 2A_2 \operatorname{Tr}(\Sigma_{24}\Sigma_{24H}\Sigma_{24})$
 - + $\lambda_1 \operatorname{Tr}(\Sigma_{24H}^2) \operatorname{Tr}(\Sigma_{24\Sigma}^2) + 2\lambda_2 \operatorname{Tr}(\Sigma_{24H}^2 \Sigma_{24}^\dagger \Sigma_{24}) + 2\lambda_3 \operatorname{Tr}(\Sigma_{24H}^2 \Sigma_{24H} \Sigma_{24})$
- One for Dark matter with mass and vevs tuned differently
 - Z₂ symmetry makes triplet stable
 - Similar potential as W-boson anomaly case

Other Possible Directions in Grand Unification

- Do we really need mixing?
 - We could have a light color octet and triplet fermion or bosons
 - Proton decay out of reach

Other Possible Directions in Grand Unification

- Do we really need mixing?
 - We could have a light color octet and triplet fermion or bosons
- We could have intermediate scales

- Intermediate scales push up unification scale
- Proton decay long enough

Lazarides, Maji, Roshan, Shafi : Phys. Rev D 2205.04824

Other Possible Directions in Grand Unification

- Do we really need mixing?
 - We could have a light color octet and triplet fermion or bosons

Gauge coupling

marginally ok

Entire 24 Light

- We could have intermediate scales
- What about supersymmetric unification?
 - Couplings already unify
 - Light triplet makes unification worse
 - Have take whole multiplet light
 - Proton decay ok since $\Gamma_p \sim rac{1}{v_{GUT}^4}$

Conclusions

- W boson mass anomaly dominated by CDF measurement
 - Put is present in a lesser degree in other experiments
- W boson constrained by Fermi Constant
 - Shifts in $\alpha, \ \theta_W, \ G_F$ can lead to deviation in M_W
- Loop level explanations are tightly constrained by experiment
 - Requires $\sim 100~{\rm GeV}$ electroweak interacting particle
- Fits to SMEFT show only a few possibilities
 - Triplet Higgs being one of them
 - Some others seem difficult to realize
- Triplet Higgs can be motivated by Grand unification
 - Unification scale suppressed
 - Dimension-6 proton decay suppressed by mixing
 - Colored Higgs mediated proton decay enhanced, but still ok
 - Yukawa couplings also explained by mixing