Confronting the W mass anomaly with a possible observation of primordial gravitational waves

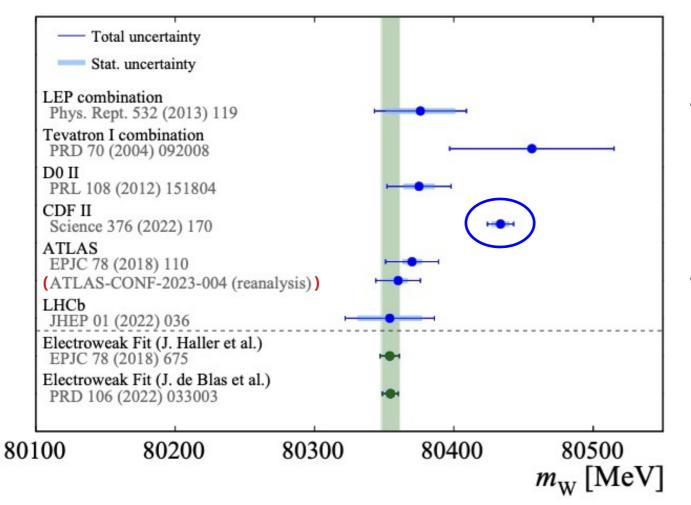
Roman Pasechnik

Lund U.

In collaboration with: A. Addazi, A. Marciano, A. Morais, H. Yang

MW days 2023, April 17-20, CERN

Outline



talk by Maarten Boonekamp

- Surprising CDF II measurement of W mass lies >7σ away from the Standard Model
- Many scenarios beyond the SM have been deployed in the literature to explain this measurement (over 300 publications so far!)
- A large class of BSM scenarios offering such an explanation features the existence of a new SU(2) adjoint (triplet) scalar which provides a tree-level corrections to the SM W mass value
- Existence of such scalars may impact the Electro Weak phase transition in early Universe, possibly rendering such models testable in future gravitational-wave detectors

EMEFT approach

L. Di Luzio, R. Gröber and P. Paradisi,

"Higgs physics confronts the mw anomaly" Phys.Lett.B 832 (2022) 137250

SMEFT Lagrangian (Warsaw):

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} c_i \mathcal{O}_i$$

Universal "bosonic" operators:

 $\mathcal{O}_{HWB} = (H^{\dagger} \tau^{a} H) W^{a}_{\mu\nu} B^{\mu\nu} ,$ $\mathcal{O}_{HD} = (H^{\dagger} D_{\mu} H) ((D_{\mu} H)^{\dagger} H) ,$

W mass anomaly

 $\quad \Longleftrightarrow \quad$

 $\hat{T} \simeq (0.84 \pm 0.14) \times 10^{-3}$ $c_{HD} = -(0.17 \pm 0.07/\text{TeV})^2$

Leading EW oblique corrections:

$$\hat{S} \equiv \frac{c_W}{s_W} \Pi'(0)_{W_3B} = \frac{c_W}{s_W} v^2 c_{HWB} ,$$
$$\hat{T} \equiv \frac{1}{M_W^2} (\Pi_{W_3W_3}(0) - \Pi_{W^+W^-}(0)) = -\frac{v^2}{2} c_{HD} ,$$

EFT d=6 operator generates W mass shift

A. Strumia, JHEP 08 (2022) 248

Anomaly in T-parameter (assuming U=0)

$$\hat{S} \sim 10^{-3} \quad c_{HWB} \sim (0.07/\text{TeV})^2$$

compatible with zero

What can generate a positive shift in T?

L. Di Luzio, R. Gröber and P. Paradisi,

"Higgs physics confronts the mw anomaly" Phys.Lett.B 832 (2022) 137250

New Physics states generating tree-level contribution to T via renormalisable interactions with SM states:

our focus	Field	Spin	$\mathrm{SU}(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\operatorname{sign}(\hat{T})$	\hat{S}
	Δ	0	1	3	0	+	×
	Δ_1	0	1	3	1	—	×
	Θ_1	0	1	4	1/2	+	×
	Θ_3	0	1	4	3/2	—	×
	B	1	1	1	0	+	×
	\mathcal{B}_1	1	1	1	1	—	×
	$ \mathcal{W} $	1	1	3	0	—	\times
	\mathcal{W}_1	1	1	3	1	+	×
	\mathcal{L}	1	1	2	1/2	+/-	\checkmark

Let us focus on a simplified framework that relates the characteristics of EW phase transitions to a possible explanation of the W mass anomaly

A minimal scalar SU(2) triplet extension

Interaction Lagrangian with Higgs:

Integrating out heavy triplet:

$$\mathcal{L}_{\Delta}^{\text{int}} \ni -\kappa_{\Delta} H^{\dagger} \Delta^{a} \sigma^{a} H - \frac{\lambda_{H\Delta}}{2} (H^{\dagger} H) \Delta^{a} \Delta^{a} \qquad c_{HD} = -2 \frac{\kappa_{\Delta}^{2}}{M_{\Delta}^{4}}$$

$$\Delta = (1, 3, 0)$$

$$coupling!$$

$$coupling!$$

$$\hat{T} = \frac{\kappa_{\Delta}^{2} v^{2}}{M_{\Delta}^{4}} = 0.84 \times 10^{-3} \left(\frac{|\kappa_{\Delta}|}{M_{\Delta}}\right)^{2} \left(\frac{8.5 \text{ TeV}}{M_{\Delta}}\right)^{2}$$

$$\langle \Delta \rangle \equiv v_{\Delta} = \kappa_{\Delta} v^{2} / (2M_{\Delta}^{2})$$

$$\langle \Delta \rangle$$
, $\langle \Delta \rangle$
 W^+ $\langle M^+ \rangle$ W^+

L. Di Luzio, R. Gröber and P. Paradisi, Phys.Lett.B 832 (2022) 137250

Saturating the perturbativity bound $|k_{\Delta}|/M_{\Delta} \leq 4\pi$ the mass scale cannot exceed 100 TeV

Effective d=6 Higgs self-interaction

Integrating out heavy new scalar triplet state yields both: <u>a positive contribution to the T-parameter</u> and <u>a modification of the Higgs potential</u>

Higgs quartic couplings receives a tree-level correction

due to an adjoint VEV, we have

$$\lambda = \lambda_{\text{bare}} + (k_{\Delta}/m_{\Delta})^2$$

 $\lambda = m^2/2v^2$

$\lambda_{\Delta} \operatorname{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] \rightarrow \frac{\mu_{\Delta}}{3} \Delta^{3} \qquad \mu_{\Delta} \sim \lambda_{\Delta} v_{\Delta}$

effective operator below the cutoff scale:

d=6 Higgs self-interaction term:

$$c_H (H^{\dagger} H)^3$$
 $c_H \equiv \frac{\kappa}{\Lambda^2} \sim v_{\Delta}$

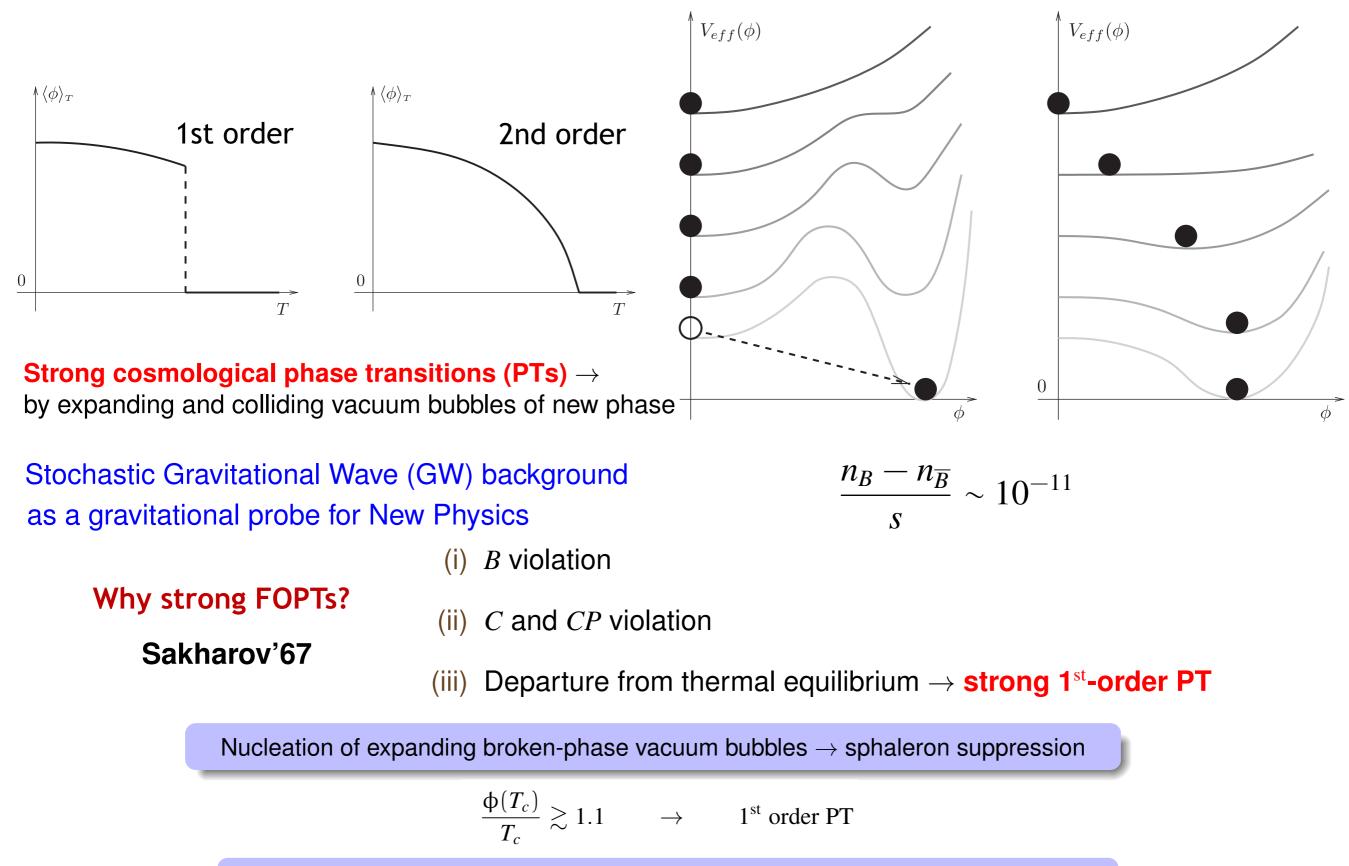
Other contributions to this operator come from quartics:

$$\frac{k_{\Delta}^2}{M_{\Delta}^4}\lambda' \to c_H \qquad \lambda' \equiv 4\lambda - \frac{\lambda_{H\Delta}}{2}$$

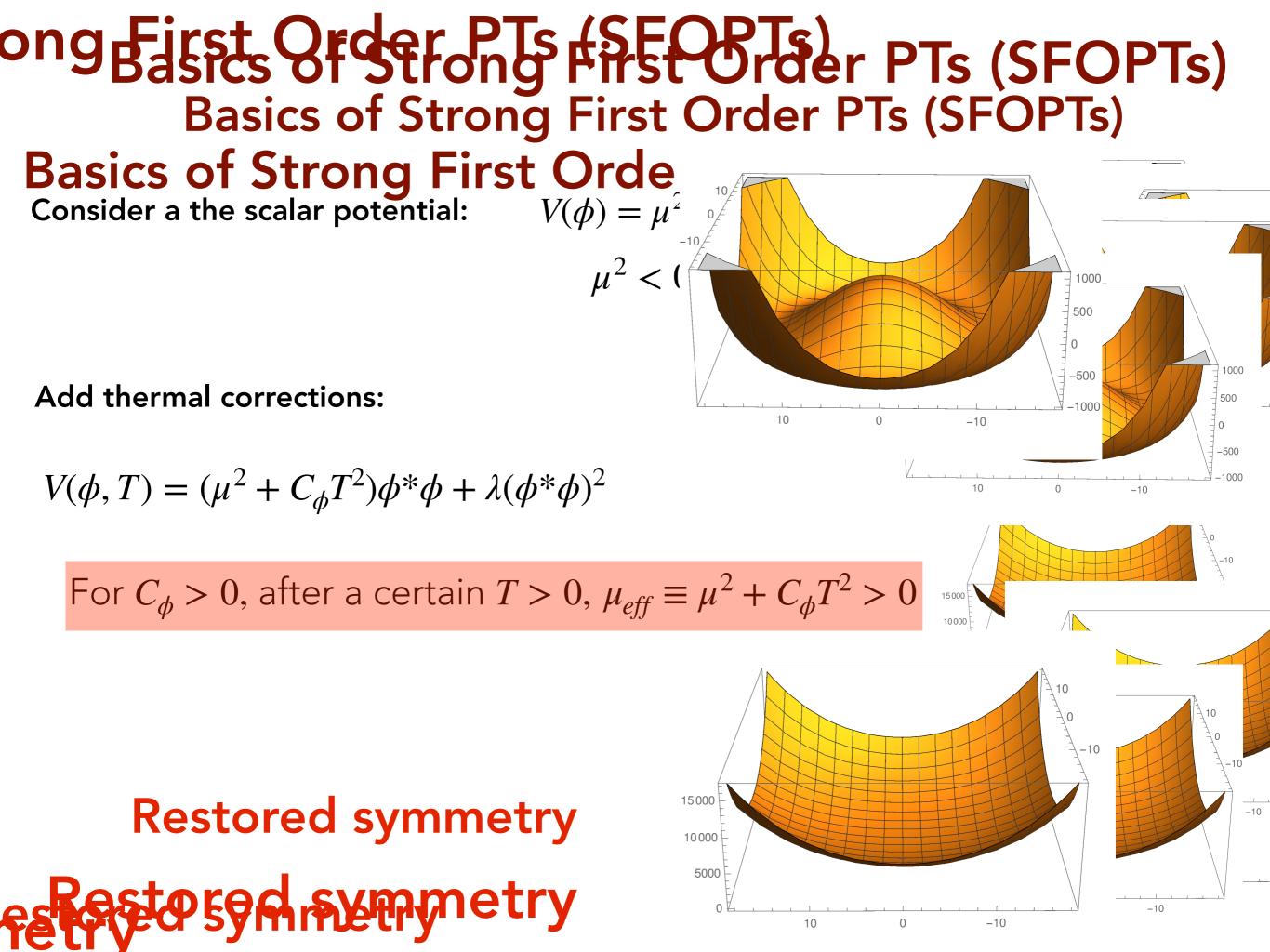
$$\mu_{\Delta} \to 0 \qquad c_H = -4\frac{\hat{T}}{v^2} \left(\frac{\lambda_{H\Delta}}{8} - \lambda\right) \sim v_{\Delta}^2 \to 0$$

d=6 contribution to the Higgs potential is important for the nature and the strength of the EW phase transition

EW phase transitions



Standard Model (SM) does not explain the BA \rightarrow the need to go beyond the SM



Euclidean effective action

• High $T \rightarrow$ classical motion in Euclidean space described by action \hat{S}_3

$$\hat{S}_3 = 4\pi \int_0^\infty \mathrm{d}r \, r^2 \left\{ \frac{1}{2} \left(\frac{\mathrm{d}\hat{\phi}}{\mathrm{d}r} \right)^2 + V_{\mathrm{eff}}(\hat{\phi}) \right\} \,,$$

• Effective potential: loop and thermal corrections

$$\begin{split} V_{\rm eff}^{(1)}(\hat{\Phi}) &= V_{\rm tree} + V_{\rm CW} + \Delta V^{(1)}(T) \\ V_{\rm CW} &= \sum_{i} (-1)^{F} n_{i} \frac{m_{i}^{4}}{64\pi^{2}} \left(\log \left[\frac{m_{i}^{2}(\hat{\Phi}_{\alpha})}{\Lambda^{2}} \right] - c_{i} \right) \\ \Delta V^{(1)}(T) &= \frac{T^{4}}{2\pi^{2}} \left\{ \sum_{b} n_{b} J_{B} \left[\frac{m_{b}^{2}(\hat{\Phi}_{\alpha})}{T^{2}} \right] - \sum_{f} n_{f} J_{F} \left[\frac{m_{f}^{2}(\hat{\Phi}_{\alpha})}{T^{2}} \right] \right\} \,, \end{split}$$

• $\hat{\varphi} \rightarrow$ solution of the e.o.m. found by the path that minimizes the energy.

$$\Delta V^{(1)}(T)|_{\text{L.O.}} = \frac{T^2}{24} \left\{ \text{Tr} \left[M^2_{\alpha\beta}(\phi_{\alpha}) \right] + \sum_{i=W,Z,\gamma} n_i m_i^2(\phi_{\alpha}) + \sum_{i=t,b,\tau} \frac{n_i}{2} m_i^2(\phi_{\alpha}) \right\}$$

Characteristics of phase transitions

- Nucleation temperature $T_n \rightarrow$ the PT does effectively occur \rightarrow vacuum bubble nucleation processes
- Satisfies $T_n < T_c$, where T_c is the critical temperature \rightarrow degenerate minima
- Corresponds to probability to realize one transition per cosmological horizon volume equal one

$$\frac{\Gamma}{H^4} \sim 1 \qquad \Rightarrow \qquad \frac{\hat{S}_3}{T_n} \sim 140$$

Inverse time-scale of the PTs:

Relative latent heat (PT strength):

$$\alpha = \frac{1}{\rho_{\gamma}} \Big[V_i - V_f - \frac{T_*}{4} \Big(\frac{\partial V_i}{\partial T} - \frac{\partial V_f}{\partial T} \Big) \Big]$$

 $\frac{\beta}{H} = T_* \left. \frac{\partial}{\partial T} \left(\frac{\hat{S}_3}{T} \right) \right|_T$

- This formalism is implemented in CosmoTransitions package (Wainwright'12)
- $\rho_{\gamma} = g_* \frac{\pi^2}{30} T_n^4, \qquad g_* \simeq 106.75$

Probability to find a point in the false vacuum:

$$\begin{split} P(T) &= e^{-I(T)},\\ I(T) &= \frac{4\pi v_b^3}{3} \int_T^{T_c} \frac{\Gamma(T') dT'}{T'^4 H(T')} \left(\int_T^{T'} \frac{d\tilde{T}}{H(\tilde{T})} \right)^3 \end{split}$$

Percolation temperature (temperature at which at least 34% of the false vacuum has tunnelled into the true vacuum)

$$I(T_*) = 0.34$$

J. Ellis, M. Lewicki, and V. Vaskonen, Journal of Cosmology and Astroparticle Physics **2020**, 020–020 (2020).

• The phase transition rate

$$\Gamma \sim T^4 \left(\frac{\hat{S}_3}{2\pi T}\right)^{3/2} \exp\left(-\hat{S}_3/T\right)$$

Gravitational-wave power spectrum

• GW energy density per logarithmic frequency

$$h^2 \Omega_{\rm GW} \equiv \frac{h^2}{\rho_c} \frac{d\rho_{\rm GW}}{d\log f} \simeq h^2 \Omega_{\rm col} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm MHD}$$

C. Caprini et al., JCAP 2003, 024 (2020), 1910.13125

$$i \ h^2 \Omega_{\rm GW} = h^2 \Omega_{\rm GW}^{\rm peak} \left(\frac{4}{7}\right)^{-\frac{7}{2}} \left(\frac{f}{f_{\rm peak}}\right)^3 \left[1 + \frac{3}{4} \left(\frac{f}{f_{\rm peak}}\right)\right]^{-\frac{7}{2}} {}^3 \left[1 + \frac{3}{4} \left(\frac{f}{f_{\rm peak}}\right)\right]^{-\frac{7}{2}} {}^3 \left[1 + \frac{1}{4} \left(\frac{f}{f_{\rm peak}}\right)\right]^{-\frac{7}{2}} {$$

Finite-T effective potential & EW FOPTs

In unitary gauge, one-loop effective Higgs potential:

$$V_{\text{eff}}(T,h) = V_{\text{tree}}(h) + V_{T=0}^{(1)}(h) + \Delta V_T(h,T)$$
$$V_{\text{tree}}(h) = \frac{1}{2}m^2h^2 + \frac{\lambda}{4}h^4 + \frac{\kappa}{8\Lambda^2}h^6$$

The dominant thermal correction to the Higgs mass:

$$CT^{2}/2$$
$$C \simeq \frac{1}{16} \left(g'^{2} + 3g^{2} + 4y_{t}^{2} + 4\frac{m_{h}^{2}}{v^{2}} + 36\frac{\kappa v^{2}}{\Lambda^{2}} \right)$$

modification of EW parameters

$$m^{2} = m_{\rm SM}^{2} (1 - \Lambda_{\rm M}^{2}/2\Lambda^{2})$$
$$\lambda = \lambda_{\rm SM} (1 - \Lambda_{\rm M}^{2}/\Lambda^{2})$$

$$\begin{split} \Lambda_{\rm M} &= \sqrt{3} \Lambda_{\rm m} = \sqrt{3\kappa} v^2/m^2 \\ \Lambda_{\rm m} &\leq \Lambda \leq \Lambda_{\rm M} \quad \text{cutoff scale} \end{split}$$

$$m_{\rm h}^2 = 2\lambda v^2 + 3v^4 \kappa / \Lambda^2 \qquad m_{\rm h} =$$

$$m_{\rm h} = 125 \,\mathrm{GeV}$$

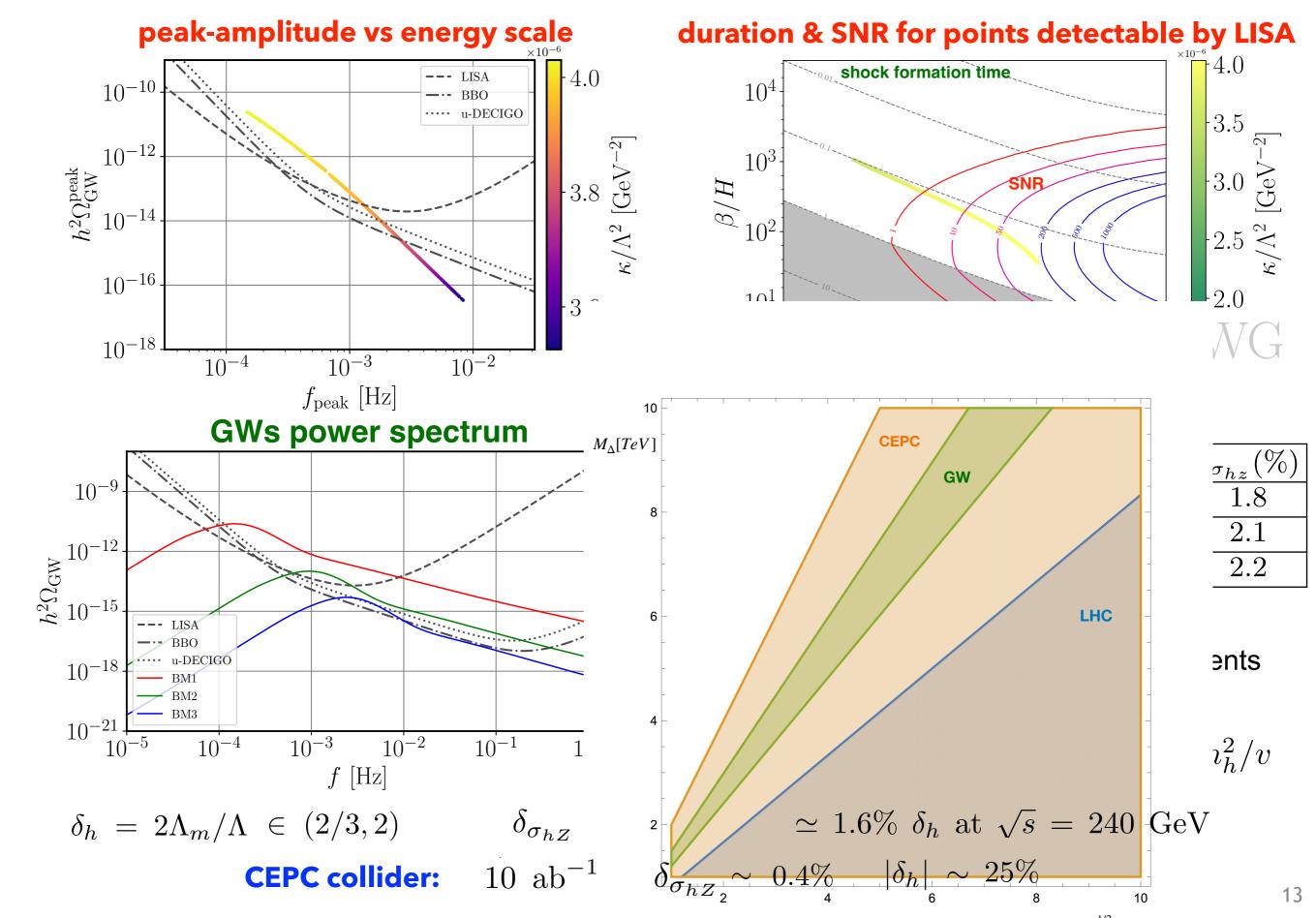
Limit on the d=6 operator imposed by the strongly 1st order EW phase transition requirement yields:

F. Huang et al, Phys. Rev. D94 (2016) 041702 [arXiv:1601.01640 [hep-ph]]

$$480\,{\rm GeV} \lesssim \frac{1}{\sqrt{|c_H|}} \lesssim 840\,{\rm GeV}$$

$$v(T_{\rm c})/T_{\rm c} > 1$$

Primordial GWs in a minimal triplet model



Summary

- A simple model with heavy scalar triplet provides potentially observable new signatures (W mass correction, triple-Higgs coupling, FOPTs & GWs) and addresses some of the fundamental questions (e.g. neutrino mass)
- Primordial gravitational waves represent a complimentary source of information to the collider measurements (such as HE-LHC and Circular e+e- Collider)
- Combining W mass, future measurements of triple Higgs coupling and primordial GWs would provide strong case of probing such a class of models BSM