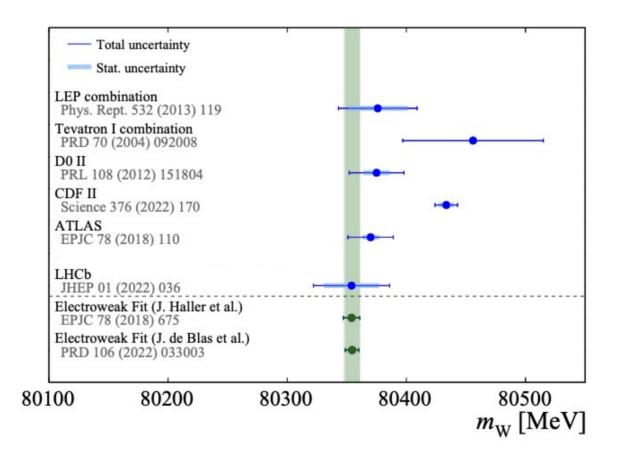
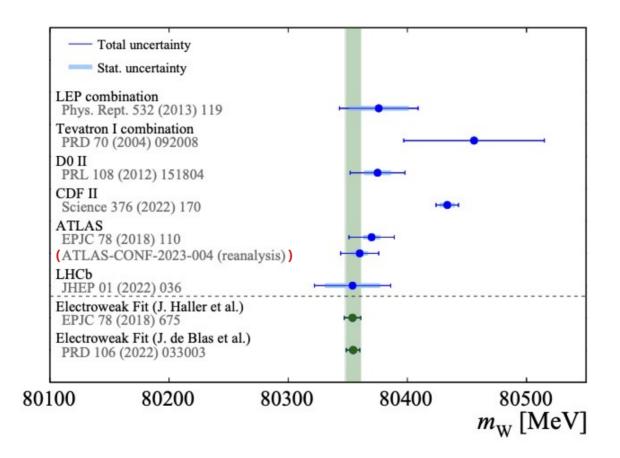
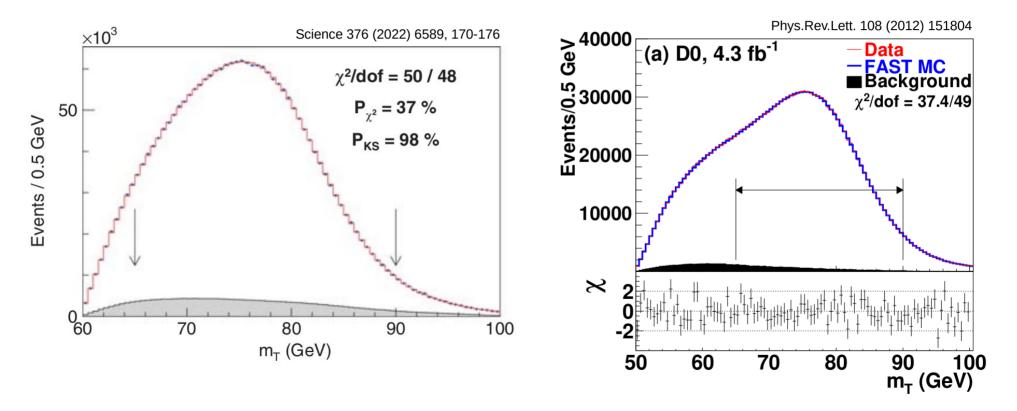


W-boson mass combination

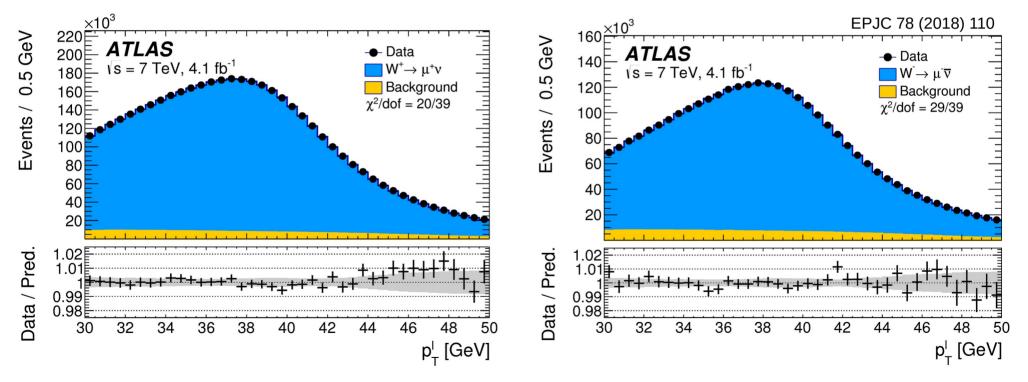

M.Boonekamp, on behalf of the m_w combination working group https://twiki.cern.ch/twiki/bin/view/LHCPhysics/MWCOMB https://cds.cern.ch/record/2815187

2019-2020



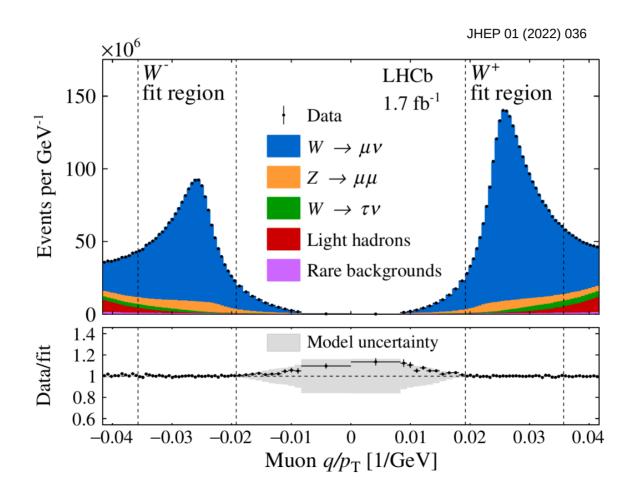


(2023)


Measurements

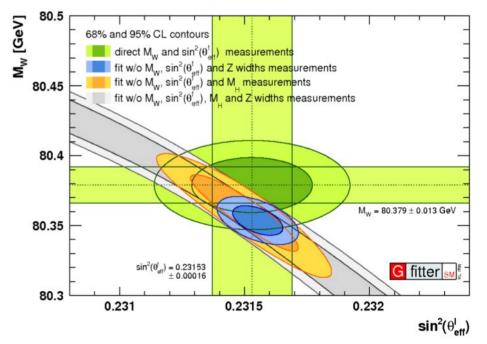
• CDF, D0 : charge-blind m_T fits (CP-even initial and final states)

Measurements


• ATLAS : lepton p_T fits, separate by charge, and η bins

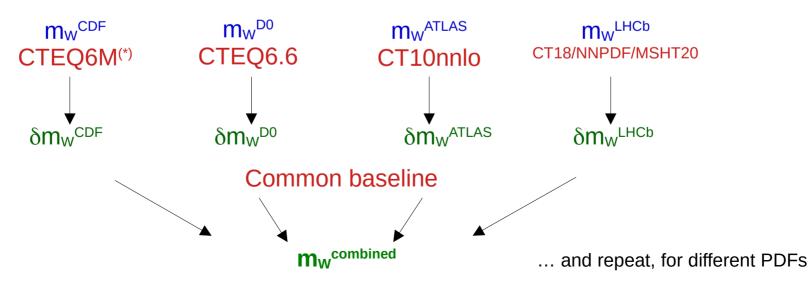
W-

Measurements


• LHCb

Objectives

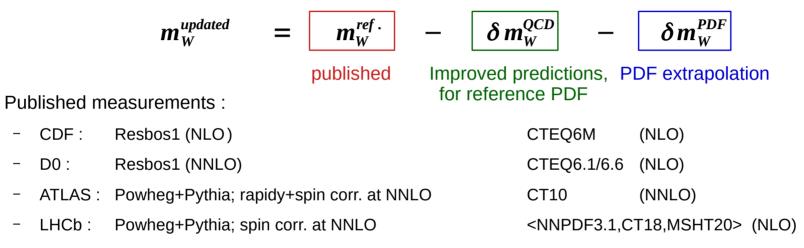
• Provide endorsed comparison/combination of available m_w measurements


- Establish combination methodology for present and future measurements
 - Enable modelling updates
 - Properly correlate m_w , $sin^2\theta_w$ and other PDF-dominated measurements
- Quantitative results
 - Combine all, if possible
 - Produce largest-possible combination and quantify discrepancy, if not

[Eur. Phys. J. C74 (2014) 3046]

Analysis strategy

- Measurements performed at different times, using different baseline PDFs and QCD tools : "translate" existing result to common baseline
- Two-step procedure :
 - correct to common PDF & QCD accuracy
 - combination including correlations



10

Measurement extrapolations

• Full procedure, decomposed into generator and PDF effects :

•

- Extrapolations (δm_w) evaluated using generator-level reweightings and "emulation" of detector effects
 - $\delta m_{\scriptscriptstyle W}^{\scriptscriptstyle PDF}$ Main PDF targets : modern NNLO sets
 - δm_W^{QCD} Applies when generators or QCD improvements are beyond the quoted uncertainties.

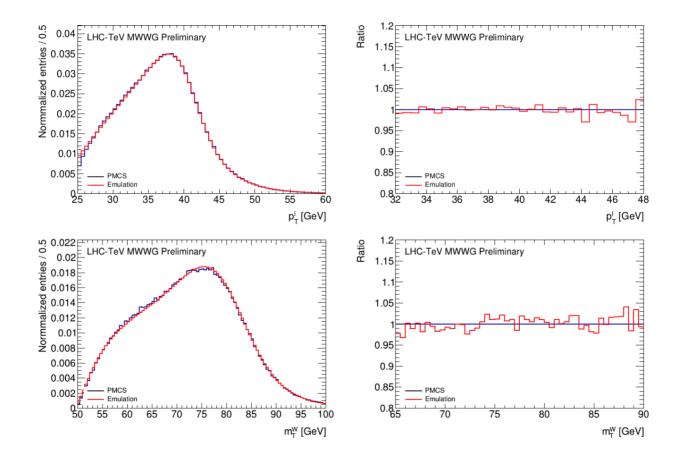
Emulation

- Measurements performed at detector level : account for detector response when evaluating the effect of changes in the underlying physics.
 - ATLAS, CDF, D0 : "analysis emulation"
 - Parameterise lepton and recoil scales and resolutions, efficiencies, etc according to published information
 - Assumption : even with a simplified simulation, resolutions cancel in first order when making ratios with varying physics
 - Approximate, but affordable (systematics added). Done this way because it was acknowledged that insufficient resources were available to perform calculations with complete simulation.
 - LHCb analysis is "live" and provides all information from the actual measurement procedure better!

Emulation : event generation

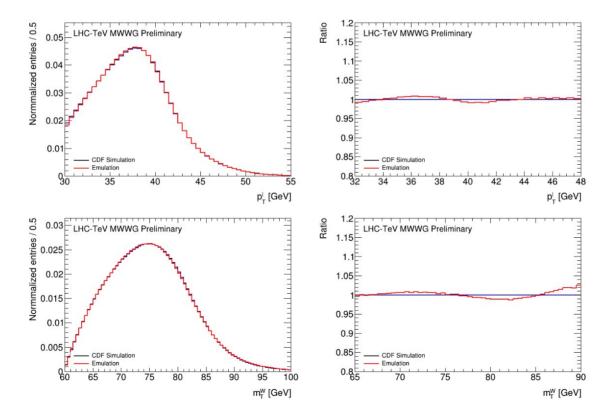
Fully **reproduced the event generation chain** from the original measurements

- D0: Resbos CP (NNLO+NNLL) generated with CTEQ66 (NLO)
- **CDF**: Resbos C (NLO+NNLL) generated with CTEQ6M (NLO)
- **ATLAS**: Powheg+Pythia8 (NLO+PS); y_W + Ai at NNLO with CT10 (NNLO)
- LHCb: Powheg+Pythia8 (NLO+PS); Ai at NNLO, as PDF the average of NNPDF3.1,CT18,MSHT20 (NLO)
- Variety of predictions used to validate the PDF shifts and estimate the possible need of QCD correction to published m_W
 - Powheg (NLO+PS), MiNNLOPS (NNLO+PS), DYNNLO (NLO/NNLO F.O.)
 - In addition, updated integration grids from the Resbos authors (dubbed here Resbos2) at NLO+NNLL and NNLO+NNLL with improved treatment of spin correlations [2205.02788]


Emulation : selections and fitting ranges

Experiment	Event selections	Fit ranges
CDF	$30 < p_{\rm T}^{\ell} < 55 \text{ GeV}, \eta_{\ell} < 1$ $30 < E_{\rm T}^{\rm miss} < 55 \text{ GeV}, 60 < m_{\rm T} < 100 \text{ GeV}$ $u_{\rm T} < 15 \text{ GeV}$	$32 < p_{\rm T}^{\ell} < 48 { m GeV}$ $32 < E_{\rm T}^{ m miss} < 48 { m GeV}$ $65 < m_{\rm T} < 90 { m GeV}$
D0	$p_{\rm T}^{\ell} > 25 \text{ GeV}, \eta_{\ell} < 1.05$ $E_{\rm T}^{\rm miss} > 25 \text{ GeV}, m_{\rm T} > 50 \text{ GeV}$ $u_{\rm T} < 15 \text{ GeV}$	$32 < p_{\rm T}^{\ell} < 48 { m GeV}$ $65 < m_{\rm T} < 90 { m GeV}$
ATLAS	$p_{\rm T}^{\ell} > 30 \text{ GeV}, \eta_{\ell} < 2.4$ $E_{\rm T}^{\rm miss} > 30 \text{ GeV}, m_{\rm T} > 60 \text{ GeV}$ $u_{\rm T} < 30 \text{ GeV}$	$32 < p_{\rm T}^{\ell} < 45 { m GeV}$ $66 < m_{\rm T} < 99 { m GeV}$

Table 3: Event selections and fit ranges for CDF, D0 and ATLAS.


Emulation : D0

• Detector resolutions

Emulation : CDF

- Detector resolutions
 - Systematics from parameterisation variations, as for D0

Emulation : ATLAS

• Detector resolutions

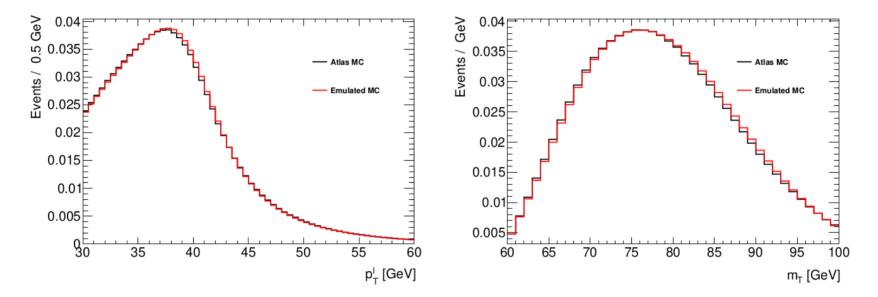
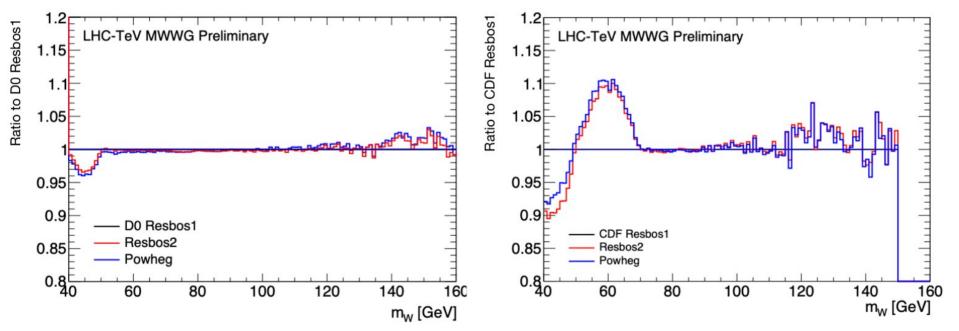
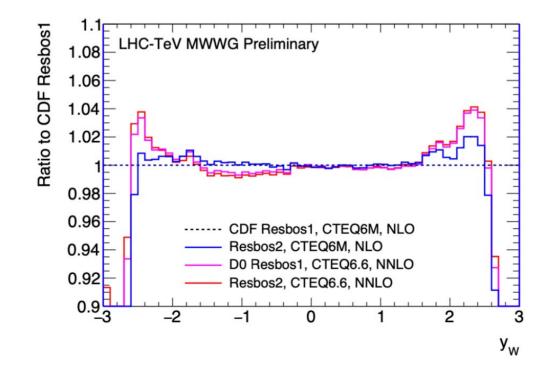
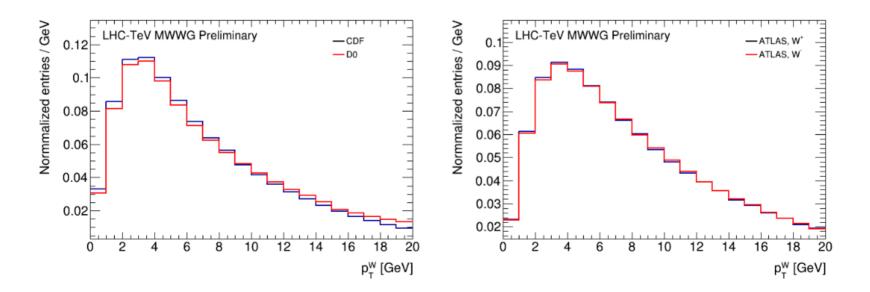



Figure 6: Comparison of the published and simulated p_T^{ℓ} (lefT) and m_T (right) distributions for ATLAS.

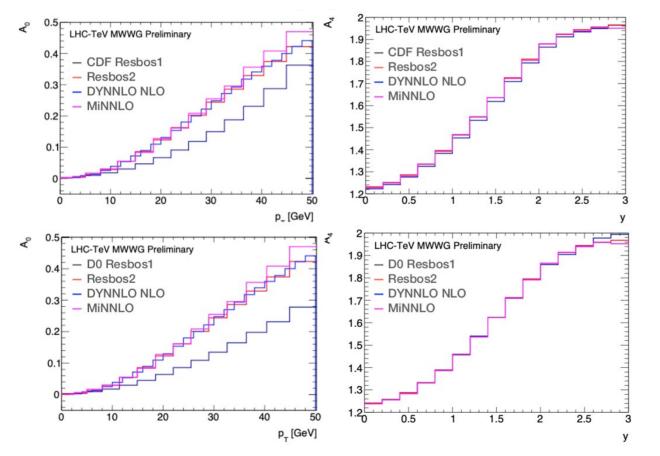

- Do we need to look back into the QCD predictions of previous experiments?
 - TeVatron tool (Resbos1) >20 years old; improved version (Resbos2) available
 - Should not lose the nice experimental precision!
- To look into this, decompose distributions according to canonical formula:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{dmdp_{\rm T}dy} \left[(1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin 2\theta\cos\phi + \frac{1}{2}A_2\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta + A_5\sin^2\theta\sin 2\phi + A_6\sin 2\theta\sin\phi + A_7\sin\theta\sin\phi \right],$$

- Invariant mass distribution
 - Trends with respect to modern generators
 - Look mostly technical. Impact ~1 MeV

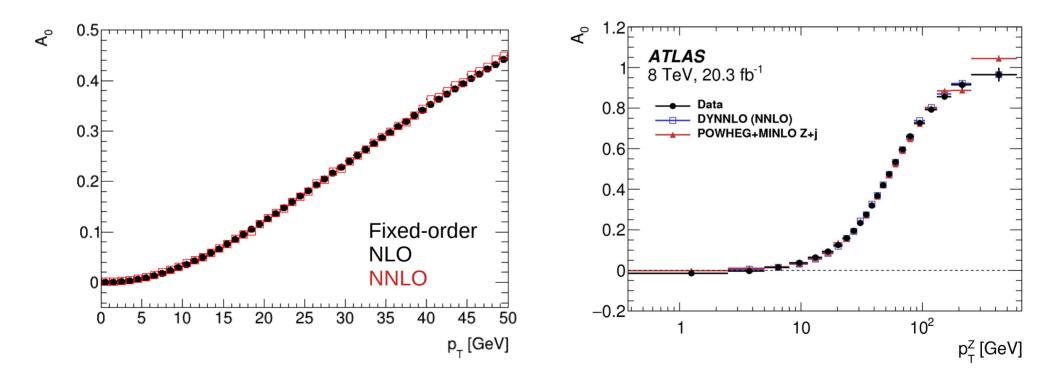


- Rapidity distribution
 - Percent-level between CTEQ6M distribution predicted in Resbos1 and Resbos2
 - Visible differences between CTEQ6M (CDF) and CTEQ66 (D0)

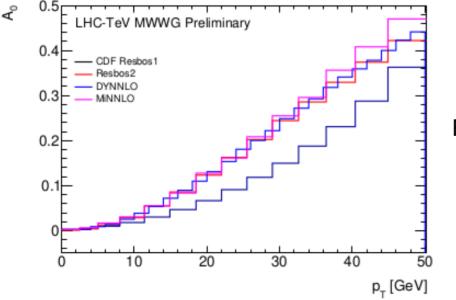


Transverse momentum distribution

- Assume baseline distributions as published, and constrained under QCD / PDF extrapolations
 - Justified by successful recoil control plots
 - Tevatron : p_T^W distribution fixed; ATLAS fixes only the pTW/pTZ distribution ratio



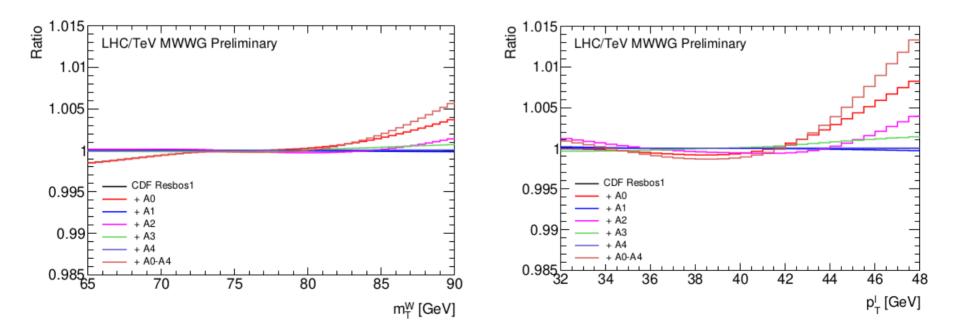
• Angular coefficients


- Issue with resummation of helicity cross sections
 - Only unpolarised and A4 are resummed
 - differences wrt fixed-order Ai
- Differences visible comparing to DYNNLO, MiNNLOPS or Resbos2
- Motivates correction of Tevatron measurements to a common QCD calculation

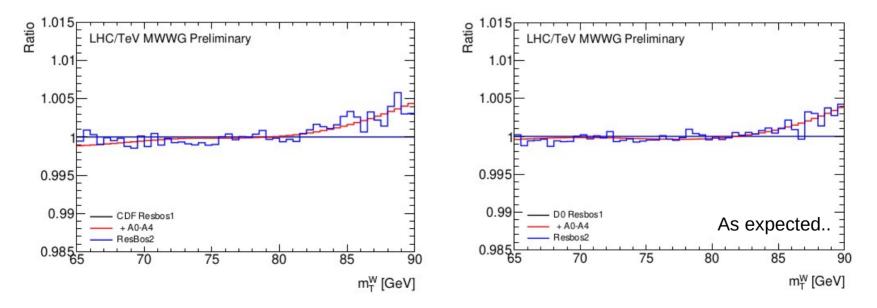
• Angular coefficients – why disfavour Resbos1?

• Angular coefficients

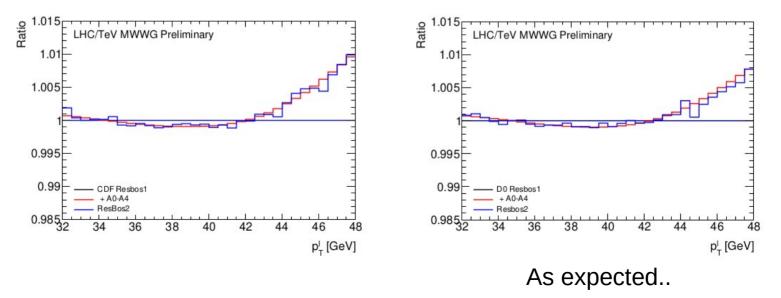
$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{dmdp_{\rm T}dy} \left[(1 + \cos^2\theta) + \frac{1}{2}A_0(1 - 3\cos^2\theta) + A_1\sin 2\theta\cos\phi + \dots \right]$$

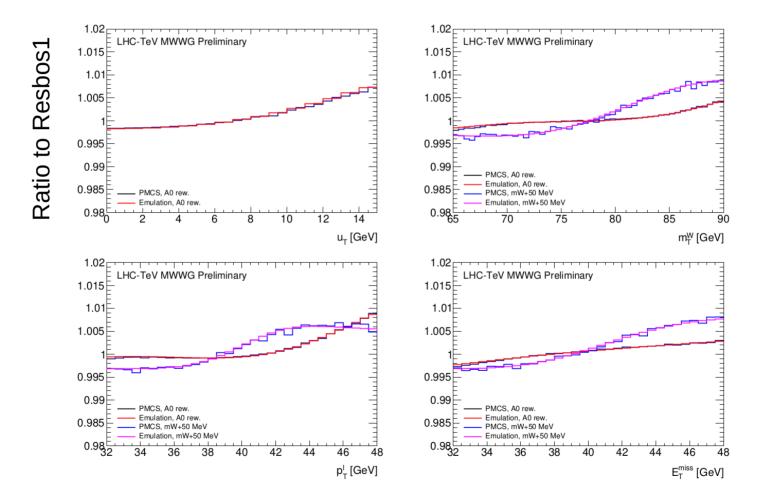


 \rightarrow lepton distributions too "forward" in Resbos1 \rightarrow p_T distribution too soft


Expected effect of correction : increase of A_0 \rightarrow leptons more central

- \rightarrow hardening of predicted $p_T{}^I$ spectrum, for given m_W
 - \rightarrow measured value should decrease
 - \rightarrow quantitatively?

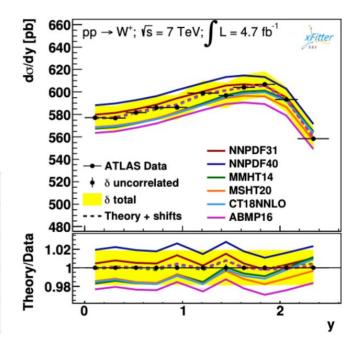

- Impact :
 - Reference : Resbos1


- Impact :
 - Reference : Resbos1
 - Red line : Resbos1 + Ai corrections (reweightings)
 - Blue line : direct comparison with Resbos2

- Impact :
 - Reference : Resbos1
 - Red line : Resbos1 + Ai corrections (reweightings)
 - Blue line : direct comparison with Resbos2

Emulation and physics variations :

QCD/generator corrections


Impact for D0 (similar numbers for CDF): •

	Correction	Shift [MeV]						
		$p_{\rm T}^W$ -constrained		No constraint				
		p_{T}^{ℓ}	m_{T}	p_{T}^{ν}	p_{T}^ℓ	m_{T}	p_{T}^{ν}	
	Invariant mass	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	Rapidity	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	A ₀	7.6	10.0	15.8	16.0	12.6	19.4	
	A_1	-2.4	-1.9	-1.8	-1.2	-1.6	-1.4	
	A_2	-3.0	-2.6	2.9	-4.2	-3.0	2.3	
	A_3	2.9	1.6	-0.5	3.5	1.8	-0.2	
	A_4	2.4	-0.1	-0.5	0.1	-0.7	-1.0	
	$A_0 - A_4$	7.6	7.0	16.0	14.1	9.1	18.9	
Effects understood quantitatively	Total	7.6	7.0	16.0	14.1	9.1	18.9	← measured value
	ResBos2	7.3±1.1	8.4±1.0	16.6 ± 1.2	13.9±1.1	10.3 ± 1.0	19.8±1.2	decreases by this amount
	Non-closure	-0.3±1.1	$1.4{\pm}1.0$	0.6 ± 1.2	-0.2±1.1	1.2 ± 1.0	$0.9{\pm}1.2$	

PDF extrapolations

- PDFs considered for the combination
 - Performed a benchmarking of PDF sets against Tevatron and LHC cross-section measurements
 - Considering measurements of W and Z cross-sections from Tevatron and LHC
 - Theory predictions at NNLO QCD x NLO EW

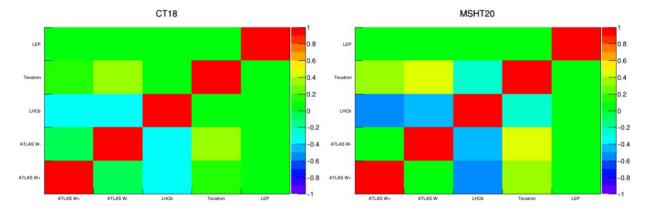
PDF set	Chi2/ndf	PDF set	Chi2/ndf
Cteq66	231/126	CT18NNLO	163/126
CT10	179/126	CT18ANNLO	170/126
NNPDF31	200/126	MSHT20	270/126
NNPDF40	195/126	ABMP16	236/126

- * Modern NNLO PDFs provide the best description, no set gives a χ^2 /ndf~1
- Simone Amoroso
- * Decision on the final PDF will consider χ^2 and uncertainty of the combination itself

PDF extrapolations

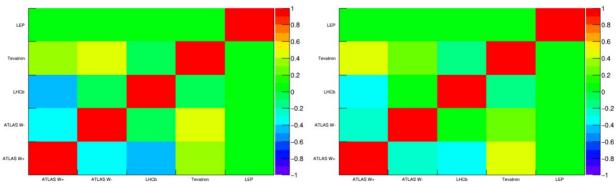
- Extrapolations calculated for
 - Legacy PDFs : CTEQ6; CTEQ6.6; CT10nnlo
 - Newer/current sets : ABMP16; CT14/CT18; MMHT2014/MSHT20; NNPDF3.1/4.0
 - Separately for CDF, D0, ATLAS, LHCb
- Generator comparisons (and associated systematics):
 - Tevatron : Powheg (reweighted & direct), Resbos, MiNNLO
 - LHC : Powheg (reweighted & direct), MiNNLO
 - In general, generators agree on PDF extrapolations to \sim 1 MeV in m_w.

PDF extrapolations


- Example, for Tevatron (similar effects at the LHC) :
 - Disclaimer : preliminary numbers (link), updated since.

Just to show the relevance of these effects, and evaluate their generator dependence :

Generator	Powheg	Powheg	MiNNLO	Resbos
Sample type	Reweighted	Direct	Reweighted	Direct
QCD accuracy	NLO+NLL	NLO+NLL	NNLO+NLL	NLO+NLL
PDF set			Shift	
CTEQ6M		0	0	0
CTEQ66	-15.4 ± 0.8	-15.8 ± 0.8	-14.0 ± 1.3	-17.8 ± 1.0
CT10	-6.3 ± 0.8	-6.2 ± 0.8	-4.2 ± 1.3	_
CT10nnlo	-16.2 ± 0.8	-16.6 ± 0.8	-16.8 ± 1.3	_
CT14	$-4,1 \pm 0.8$	-3.9 ± 0.8	-6.8 ± 1.3	-7.1 ± 1.0
CT18	-6.2 ± 0.8	-6.6 ± 0.8	-8.5 ± 1.3	-9.4 ± 1.0
CJ15	7.7 ± 0.8	7.9 ± 0.8	10.1 ± 1.3	_
MMHT14	-6.2 ± 0.8	-6.4 ± 0.8	-6.9 ± 1.3	-8.1 ± 1.0
MSHT20	-5.0 ± 0.8	-4.9 ± 0.8	-4.9 ± 1.3	_
ABMP16	5.2 ± 0.8	5.0 ± 0.8	-0.2 ± 1.3	_
NNPDF3.1	-13.8 ± 0.8	-14.3 ± 1.4	-14.1 ± 1.3	-15.8 ± 1.0


PDF correlations

• Non-trivial PDF correlations, with significant PDF model dependence!

Combinations

- Performed using BLUE procedure , as used by most/all experiments this far. Complete uncertainty decomposition available, including correlations
 - Validation : reproduce published combination results
- Anticipated set of results :
 - For each experiment:
 - Published
 - With QCD updates
 - PDF extrapolations
 - Combinations : Tevatron; LHC; "N-1"; full (including LEP)
 - QCD updates applied; all PDFs
 - Further PDF discrimination based on combination quality
 - Presentation of final results : under discussion

Status & prospects

- Studies documented in a public note: CERN-LPCC-2022-06
 - Validation of emulation
 - QCD effects quantified; impact ~10 MeV ultimately.
- All combinations and studies essentially finalized; currently under final review
- working out publication procedure

- Future updates will hopefully be smoother
 - Many future results eagerly awaited!
 - One more methodological step : uncertainty components in profile-likelihood fits