Common Geometry Primitives library A proposal Gabriele Cosmo, PH/SFT

Outline

- The context
- Main motivations
- Proposed strategy
- Current plan & resources

Geometry primitives

- Geometrical representations of the detector elements for solid 3D modeling
 - Used in detector simulation: "solids"
 - Include high precision and efficient algorithms and functions for dealing with tracking and navigation techniques
 - Provide tools for computing area and cubic volume of a shape
 - Include hooks for graphical representation and object persistency
- Different implementations existing today
 - Geant4: up to 23 primitives defined (limited to CSG and specific solids)
 - Root: similar set of primitives, sharing most of the functionalities and concepts
- GDML schema defining a super-set of all primitives
 implemented in Geant4 and Root

Motivations for a common library

- Optimize and guarantee better long-term maintenance
 - A rough estimation indicates that about 70-80% of code investment for the geometry modeler concerns solids
 - Most of the maintenance effort and debugging is on solids, to guarantee the required precision and efficiency in a huge variety of combinations
- Target to create a unique library of high quality implementation
 - Starting from what exists today in Geant4 and Root
 - Adopt a single type for each shape
- Converge on a unique description and interface
 - Allowing to reach also a common persistency GDML schema for solids
- Optimize, extend and rationalize the testing suite

A first analysis

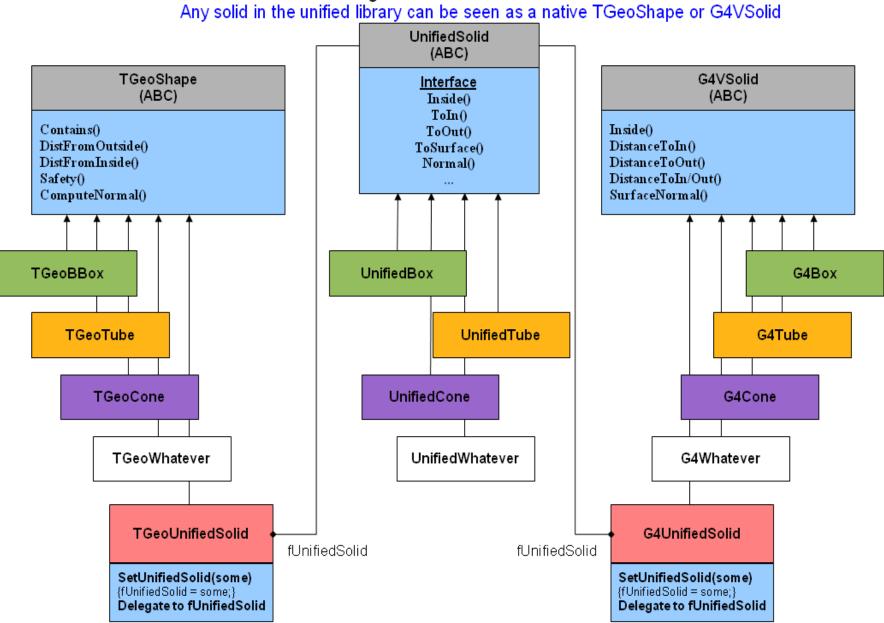
- Examined key methods of Solid interface
 - No showstoppers were found in comparing function capabilities
 - Some key differences identified:
 - Adoption of geometrical tolerance for surface thickness in Geant4, which is no present in Root
 - Mechanism for computing a solid extent is slightly different
 - First plan is to support extra Geant4 functionality (some are certainly mandatory, some potentially optional)
 - Keep auxiliary methods (volume, area, sampling surface points, ...)
- Persistency mechanism will be kept external
 - Provide constructors (default or "special") which will be used by persistency solutions
- Visualisation-enabling method (graphics representation) appear similar

Proposed strategy

<u>Stage ONE</u>: Startup

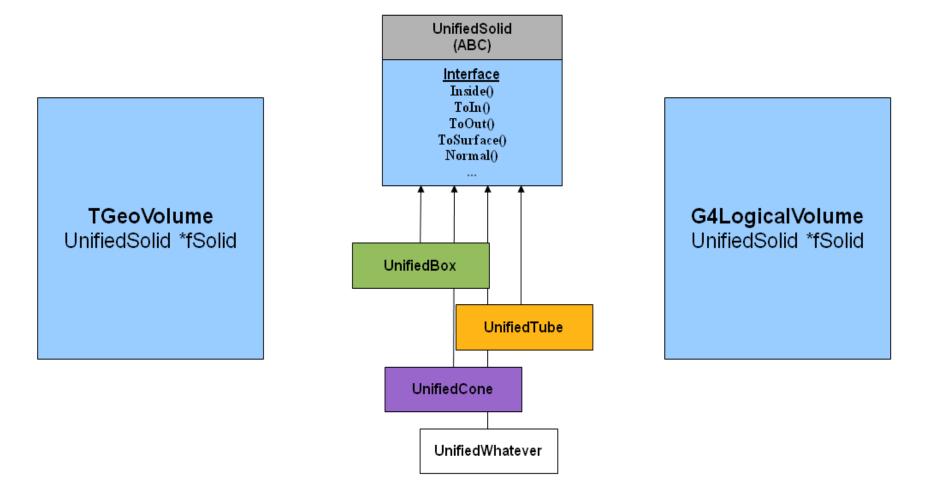
a) Birth of type and interface

- Define common interface
- Define and implement bridge classes
 - enabling use of new interface, new solids in Root/Tgeo and Geant4
- Implement a first (test) common solid: Box
- b) Deploy testing suite and existing testing tools for common use
- Eventually extend and improve what existing,


c) Design new "Union of Many" volume

<u>Stage TWO</u>: Migration

a) Evaluate weaknesses of solids for priority


b) Implement migration of each solid according to priority

G.Cosmo - Common Geometry Primitives library - A proposal

Bridge classes for a smooth transition

Library used directly by TGeo and GEANT4 after consolidation

Current resources

- Assuming current resources sum up to ~0.4 FTE, adding contributions from
 - Andrei Gheata (ALICE)
 - John Apostolakis (PH/SFT)
 - Tatiana Nikitina (PH/SFT)
 - Astrid Munnich (PH/SFT)
 - Gabriele Cosmo (PH/SFT)
- Estimate to complete stage ONE in 2011 with current resources
- Additional 1 FTE for 1.5-2 years required in order to achieve stage TWO

Thanks!

• G.Cosmo - Common Geometry Primitives library - A proposal

17 February 2011 • 10