
Executing Analysis Workflows
at Scale with
Coffea+Dask+TaskVine

Ben Tovar
NDCMS and Center for Research Computing and Cooperative Computing Lab

October 2023

How to scale up computation to clusters?
Computing Facility

2

Workflows as a Computational Abstraction

Research and Design Problems:
• Resource Allocation
• Scaling and Performance
• Data Management
• Reliability
• Portability
• Reproducibility

A workflow is a collection of existing programs (functions) along with files (data
objects) joined together into a large graph expressing dependencies. Allows for
parallelism, distribution, and provenance without rewriting everything from scratch.

3

http://workflows.community

4

Workflow Management Systems

Workflow Task / Data Scheduler Computing Facility

Express overall workflow
structure, components,
constraints, and goals.

Assign ready tasks and data
objects to resources in the cluster,
subject to runtime constraints.

Execute tasks on computational
resources, store and move data between
nodes.

5

Challenges of Workflows on Clusters

• HPC filesystems are optimized for concurrent large-file access for message-passing jobs:
bulk load, coordinated checkpoint, final write.

• But workflows tend to behave differently:

– Traverse deep directory trees of small files. (metadata surge)

– Access same input file from many nodes at once.

– Create large intermediate files that are consumed and then deleted.

• Software is an essential part that is not usually integrated into the task dependencies:

– huge startup times at scale due to metadata

– Same packages get installed and loaded over and over again with small changes,
sometimes intended, sometimes not.

6

TaskVine is a system for executing data intensive
scientific workflows on clusters, clouds, and grids from

very small to massive scale.

TaskVine controls the computation and storage
capability of a large number of workers, striving to
carefully manage, transfer, and re-use data and

software wherever possible.

SNSN SN SN MDSShared Parallel Filesystem

Key Idea: Exploit Storage in Cluster

Workflow Creation (Dask) Task / Data Manager (TaskVine)
Storage Already

Embedded in Cluster

8

TaskVine Architecture Overview

Compute Cluster

Application

TaskVine Mgr

tasks results

Remote
Services

Shared
Filesystem

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

Files
Files

Files
Data

S/W

Other
App

Other
App

The TaskVine manager directs
workers to read data from remote
sources, run tasks on that data, and
share data with each other.

TaskVine leaves data on workers in
the cluster wherever possible!

Design Goals for TaskVine

 Avoid moving data wherever possible: leave data in place until it needs to be

moved or duplicated.

 Manage task resources (cpu, gpu, mem, disk) carefully in order to pack in as
much as we can (but not too much!) into each worker.

 Make it easy to construct dynamic workflows with thousands to millions of tasks

running on thousands of cluster nodes.

 Handle common failures by detecting and recovering from worker crashes,

network failures, and other unexpected events.

10

In-Cluster Data Management

D
1 3

4

I
S

FS

W

Y

Z

FS

2 X

5 F

Suppose you have a workflow like this: a dataset D comes from a web
repository, a software package S comes from the shared filesystem. After
passing through tasks 1-5, the final output F should be written to the filesystem.
TaskVine aims to keep all of the data within the cluster, as follows.

11

In-Cluster Data Management

FSWEB

D S worker worker

manager
The manager selects a
worker for task 1, and
then directs dataset D to
be downloaded from the
web, and software
package S to be loaded
from the shared
filesystem.

12

D
1 3

4

I
S

FS

W

Y

Z

FS

2 X

5 F

In-Cluster Data Management

FSWEB

D S I

1

worker worker

manager
Next, task 1 is
dispatched to that
worker, where it reads
dataset D, runs software
package S, and
produces file I, which
stays where it is created.

13

D
1 3

4

I
S

FS

W

Y

Z

FS

2 X

5 F

In-Cluster Data Management

FSWEB

D S I

2

I ISS

X

manager
Once file I is created, task
2 can run immediately on
that node, producing file X.
Software package S and
file I are duplicated to the
other worker nodes.

14

D
1 3

4

I
S

FS

W

Y

Z

FS

2 X

5 F

In-Cluster Data Management

FSWEB

D S I

2

I ISS Y Z

3 4X

manager
Now tasks 3 and 4 can run
on the other worker nodes,
producing files Y and Z.

15

D
1 3

4

I
S

FS

W

Y

Z

FS

2 X

5 F

In-Cluster Data Management

FSWEB

D S I I ISS Y Z

5X F

Next, task 5 is dispatched
to the middle worker. It
consumes files X, Y, and Z,
which are pulled in from
peer nodes. The output file
X is produced on that
node.

manager

16

D
1 3

4

I
S

FS

W

Y

Z

FS

2 X

5 F

In-Cluster Data Management

FSWEB

D S I I ISS Y Z

X F

manager
Finally, output file F is written
back to the shared filesystem,
as the ultimate output of the
workflow.

The manager directs the
workers to delete any
remaining uncacheable files.

Common input files remain to
accelerate future workflows.

F

17

D
1 3

4

I
S

FS

W

Y

Z

FS

2 X

5 F

sa
nd

bo
x

Defining a Simple Task

doc.txt

grep

WWW

stdout

18

API: Declare Files Explicitly

19

API: Submit Python Functions

20

Computing for Dask Workflows

21

taskvine as dask scheduler

dask

university
cluster HPC k8s

Workers

Sharing Software Environments

python=3.7
numpy>=1.16

python 3.7.1
numpy 1.21.1
pandas 1.1.6

python 3.7.1
numpy 1.22.0
pandas 2.3.4

def456.tgz

xyz789.tgz

Recipe

python 3.7.0
numpy 1.21.1
pandas 1.1.5

abc123.tgz

Solution Package

.tgz

.tgz

.tgz

dir

dir

dir

Every run of
conda install
is likely to
generate a
different
solution!

Cacheable but
not transferable!

Transferable
but not usable!

T

T

T

T

T

T

22

Analysis: TopEFT Framework

• Use TopEFT analysis to test current framework

• Full Run 2 analysis (~150/fb, HL-LHC~3000/fb)

• Designed to analyze CMS data in order to search for new physics using the

framework of Effective Field Theory (EFT) CMS-PAS-22-006

• Built on Coffea framework with columnar approach relying on scientific python

ecosystem

23

https://github.com/TopEFT/topcoffea
https://github.com/TopEFT/topeft

https://github.com/TopEFT/topcoffea
https://cds.cern.ch/record/2851651?ln=en
https://coffeateam.github.io/coffea/
https://github.com/TopEFT/topcoffea
https://github.com/TopEFT/topeft

TopEFT overview
• The TopEFT workflow:

– Inputs are flat n-tuple (CMS NanoAOD) formatted proton-proton collision data from CMS

(~2TB)

– Processing step consists of calculating relevant properties of the events and filling

histograms

– Accumulation function merges together the histograms to produce the final output

• Memory considerations of the histograms produced and accumulated with

TopEFT:
– TopEFT histograms are heavier than conventional histograms

– Each bin carries an array of 378 numbers for its EFT framework

– The accumulation step can cause large memory requirements

24

Previous TopEFT performance at ND Tier-3
(Work Queue, coffea 0.7.x, old coffea-hists)

avg time:
slowest:

largest mem:
largest disk:

6s
141s
12 GB
20 GB

25

runtime:
cores:

100min
up to 1000

total root data:
origin:

1.7 TB
xrootd local

avg time:
slowest:

largest mem
largest disk

110s
318s
4 GB
0.5 GB

processing tasks accumulation tasks (20 to 1)

cpu needs IO needs

Toward Ten-Minute Turnaround in CMS Data Analysis: the View from Notre Dame,
CHEP 2023
https://cds.cern.ch/record/2872899

TopEFT performance today at ND Tier-3
(TaskVine, coffea 0.7.x, new scikit HEP histograms)

avg time:
slowest:

largest mem:
largest disk:

6s
440s
35 GB
8 GB

26

runtime:
cores:

30 min
up to 4500

total root data:
origin:

1.7 TB
vast

avg time:
slowest:

largest mem
largest disk

105s
460s
6 GB
0.5 GB

processing tasks accumulation tasks (5 to 1)

cpu needs IO needs

Full R2 run

27

12 core
workers

managed with
HTCondor

taskvine as an old
coffea-style
executor

using scikit-hep
histograms

Almost all tasks finish in less than 10 minutes

Waiting for a handful of slow accumulations

Current Bottleneck: Histograms

28

topEFT histograms are pretty sparse (only about 15% of entries filled).

Needed to adapt scikit-hep hist to sparse histograms, otherwise we ran out of memory (more than
128GB for some accumulation tasks)

Pickling by writing histogram counts with scipy sparse matrices (saves ¾ disk, ½ of memory)

Currently working on adding sparse histograms to scikit-hep hist.

29

TaskVine + Coffea + Dask

30

TaskVine + Coffea + Dask (q6 coffea benchmark)

TaskVine
chooses
resources
(like cores)

TaskVine Other Features

- Option for cached files at workers to survive workflows executions.

- Python "serverless": install libraries at workers and don't pay
interpreter initialization overhead.

- Define custom file types and environments with mini-tasks.

- Measurement and automatic allocation of resources.

31

Documentation
https://cctools.readthedocs.io/en/stable/taskvine/

32

https://cctools.readthedocs.io
https://github.com/cooperative-computing-lab/cctools
conda install -c conda-forge ndcctools

Thanks to team and
collaborators

ND CMS
Prof. Kevin Lannon
Prof. Mike Hildreth

Kelci Mohrman
 Brent R. Yates

 Andrew Wightman
John Lawrence
Andrea Trapote

Irena Johnson
Kenyi Hurtado

CCL
Prof. Douglas Thain
Thanh Son Phung
Barry Sly-Delgado
Colin Thomas
Md Saiful Islam
Jin Zhou
David Simonetti
Andrew Hennessee
Jachob Dolak This work was supported by

NSF Award OAC-1931348

https://cctools.readthedocs.io
https://github.com/cooperative-computing-lab/cctools

