Ben Tovar

NDCMS and Center for Research Computing and Cooperative Computing Lab

CMS

ECRC

CENTER FOR RESEARCH COMPUTING

October 2023

CCTools



JINIVERSITY OF

NOTRE DAME

HHn

Panasas

foreach

How to scale up computation to clusters?

Computing Facility

Notre Dame
Condor Status

Slots Cores

woodard@nd.edu 976
hatami@nd.edu 41 siot1_8@ai12chas013 crc.nc.edu (Caimed) 4 co

beaufil@nd.edu 370

31

193

275

261

217

98

2302
1333

521
3657 10406

Display Options

Sort:
Show:
Size:
Scale:



R

R R R A R

HILEEE

L]

1

S JUNIVERSITY OF
NOTRE DAME

Workflows as a Computational Abstraction

A workflow is a collection of existing programs (functions) along with files (data
objects) joined together into a large graph expressing dependencies. Allows for
parallelism, distribution, and provenance without rewriting everything from scratch.

T

R e

Research and Design Problems:

Resource Allocation

Portability
Reproducibility

AN
)
X /4

£
DA
v

Scaling and Performance
Data Management E
Reliability

Pagas\3s




L R A i

UNIVERSITY OF

NOTRE DAME

http://workflows.community

W ‘ﬁgﬁ'ﬁﬂﬂ‘.”{? Resources ¥ Research ¥ Events ¥ Members Jobs About Get involved!

Workflows Community
Initiative Retweeted

NATIONAL .
ACADEMIES o Sl £ eScience 2023 W
\ i @escie... - Apr19

We have another insightful
workshop called ReWorDS that
discusses the #reproducibility,
#data management, and
#security efforts of #eScience,
#HPC, and #Al workflows.

Check more:
sites.google.com/vols.utk.edu/r

@paulaolaya22 @JayLofstead
#sciences #workflows

Workflows Community
Summit 2022

A Roodmop Revolution

Automated Research
Workflows for
Accelerated Discovery

sites.google....
ENERGY g g

rewords23

Zenodo, 2023 National A Z 1o, 2022

; 9 ®
Workflows S Workflows & W
Community Summit Meaicine;:2 Community Summit +7 Workflows Community

Initiative Retweeted

ion Douglas Thain y
@Prof... - Apr17

Introducing TaskVine, our next

Automated Research
Workflows for
Accelerated

Tightening the Integrat




TR e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

ol UNIVERSITY OIF
NOTRE DAME

Workflow Management Systems

Workflow Task / Data Scheduler Computing Facility

Notre Dame
Condor Status

Slots Cores
awoodard@nd.edu 976 3904

M cheaufii@nd.edu 370
acummini@nd.edu

M jinniso@nd.edu
diszort@nd.edu

M roidtman@nd.edu

I kbarlock@nd.edu
ophelani@nd.edu
Kherring@nd.edu o
smustiph@nd.edu H
mwolf3@nd.edu 2
mthomann@nd.edu 3 3 [MEE L Lay TR R RER | SEREREE

tgayle@nd.edu "
pdonnel4@nd.edu
tperkin1@nd.edu
il 0
------- :lcl ed@ 241 2302
- Ao s007 10408,
gplay Options
[ ]
Express overall workflow Assign ready tasks and data Execute tasks on computational
structure, components, objects to resources in the cluster, resources, store and move data between

constraints, and goals. subject to runtime constraints. nodes.

M hhatami@nd.edu a1 ot 5412598013 7c i o (Camed) .0



TR e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ey

% UNIVERSITY OF

NOTRE DAME

- Challenges of Worktlows on Clusters

« HPC filesystems are optimized for concurrent large-file access for message-passing jobs:
bulk load, coordinated checkpoint, final write.

« But workflows tend to behave differently:
— Traverse deep directory trees of small files. (metadata surge)
— Access same input file from many nodes at once.
— Create large intermediate files that are consumed and then deleted.
« Software is an essential part that is not usually integrated into the task dependencies:
— huge startup times at scale due to metadata

— Same packages get installed and loaded over and over again with small changes,
sometimes intended, sometimes not.



; S JUNIVERSITY OI
= NOTRE DAME

\ .
pt )
\ /

TaskVine . ¢4

TaskVine is a system for executing data intensive
scientific workflows on clusters, clouds, and grids from
very small to massive scale.

TaskVine controls the computation and storage
capability of a large number of workers, striving to
carefully manage, transfer, and re-use data and
software wherever possible.



TR e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

ol UNIVERSITY OIF
NOTRE DAME

Key Idea: Exploit Storage in Cluster

Storage Already
Workflow Creation (Dask) Task / Data Manager (TaskVine) Embedded in Cluster

- - Notre Dame
_— — Condor Status
> Cores
5 3904
X 411
) : 370

3n
291

5 275
Z1 261

e s e PN Ve S

L LT )




TR e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ey

% UNIVERSITY OF

NOTRE DAME

. TaskVine Architecture Overview

L =

TaskVine Mgr

The TaskVine manager directs
workers to read data from remote
sources, run tasks on that data, and
share data with each other.

TaskVine leaves data on workers in
the cluster wherever possible!

TaskVine TaskVine
Workeres

TaskVine
Worker =

TaskVine
Worker ==

Shared
Filesystem

~.

Remote
Services




TR e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ey

% UNIVERSITY OF

NOTRE DAME

Design Goals for TaskVine

Avoid moving data wherever possible: leave data in place until it needs to be
moved or duplicated.

Manage task resources (cpu, gpu, mem, disk) carefully in order to pack in as
much as we can (but not too much!) into each worker.

Make it easy to construct dynamic workflows with thousands to millions of tasks
running on thousands of cluster nodes.

Handle common failures by detecting and recovering from worker crashes,
network failures, and other unexpected events.

10



% T JUNIVERSITY OI
= NOTRE DAME

In-Cluster Data Management

- Suppose you have a workflow like this: a dataset D comes from a web
- repository, a software package S comes from the shared filesystem. After
- passing through tasks 1-5, the final output F should be written to the filesystem.
- TaskVine aims to keep all of the data within the cluster, as follows.

11



% T JUNIVERSITY OI
= NOTRE DAME

Cn
=

- The manager selects a

- worker for task 1, and

- then directs dataset D to
- be downloaded from the
- web, and software

- package S to be loaded
- from the shared

_ filesystem.

.

manager

worker

worker

@

12



% T JUNIVERSITY OI
= NOTRE DAME

(o
=

- Next, task 1 is

- dispatched to that

- worker, where it reads

- dataset D, runs software
- package S, and

- produces file |, which

- stays where it is created.

X
" Z

manager

worker

worker

-

@

13



% T JUNIVERSITY OI
= NOTRE DAME

Cn
s

Once file | is created, task
- 2 can run immediately on

- that node, producing file X.

- Software package S and
- file | are duplicated to the
- other worker nodes.

manager

@

14



% S JUNIVERSITY OF
= NOTRE DAME

manager

~ Now tasks 3 and 4 can run
- on the other worker nodes,

producing files Y and Z. » ﬂ @7 @

15



% T JUNIVERSITY OI
= NOTRE DAME D

@

- Next, task 5 is dispatched

- to the middle worker. It

- consumes files X, Y, and Z,
- which are pulled in from

- peer nodes. The output file
- X is produced on that

- node.

manager

16



% T JUNIVERSITY OI
= NOTRE DAME

Cn
I

- Finally, output file F is written
- back to the shared filesystem,
- as the ultimate output of the

- workflow.

- The manager directs the
- workers to delete any
- remaining uncacheable files.

- Common input files remain to
- accelerate future workflows.

manager

______

______

————————————

@

17



TR e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ey

ol UNIVERSITY OF
(&5) NOTRE DAME

Defining a Simple Task

import ndcctools.taskvine as vine
vine.Manager(9123)

doc = m.declare_url("https://www.gutenberg.org/files/1960/1960.txt")

task = vine.Task("grep chair doc.txt")

task.add_input(doc, "doc.txt")

taskid = m.submit(task)
task = queue.wait()

print(task.output)

sandbox

18



TR e e e e e e e e et e e e e e e e e r e e e e e ety

TR e e e e e e e e e e e e e ey

1

T

S JUNIVERSITY OF
NOTRE DAME

file
buffer
url
temp

API: Declare Files Explicitly

.Manager(9123)

m.declare file("mydata.txt")

m.declare buffer("Some literal data")

m.declare url("https://somewhere.edu/data.tar.gz")
m.declare _temp();

19



e API: Submit Python Functions

t = vine.PythonTask(some_ function, event, parameters)

url m.declare url("https://somewhere.edu/data.tar.gz")
temp m.declare_temp();

.add_input(url, "input.data"”)
.add_output(temp, "output.data”)

.set _cores(4)
.set_memory(2048)

.set _disk(100)
.set_category("processing")

taskid = m.submit(t)




TR e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ey

S JUNIVERSITY OF
NOTRE DAME

import ndcctools.taskvine as vine

m = vine.DaskVine(9123)

z.compute(scheduler=m.get)

Computing for Dask Worktlows

dask

taskvine as dask scheduler

university
cluster

HPC

k8s

21



TR e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ey

% UNIVERSITY OF

NOTRE DAME

Sharing Software Environments

Recipe Solution Package
python=3.7 python 3.7.0
numpy>=1.16 numpy 1.21.1 abc123.tgz
pandas 1.1.5
python 3.7.1
Every r.un of numpy 1.21.1 def456.tgz
.cor.1da install pandas 1.1.6
is likely to
generate a ron 3.7.1
. python 3.7.
dlﬁer_ent numpy 1.22.0 xyz789.t1gz
solution! pandas 2.3.4

env = m.declare_poncho("abcl23.tar.gz")

t.add _environment(env)

Workers

C O
- .tgz -+ dir K
(U )
C i O

gz - dir K
(U )
C O
\ tgz - dir K
—/ N,

Transferable
but not usable!

Cacheable but
not transferable!

22



Analysis: TopEFT Framework

Use TopEFT analysis to test current framework

Full Run 2 analysis (~150/fb, HL-LHC~3000/fb)

Designed to analyze CMS data in order to search for new physics using the
framework of Effective Field Theory (EFT) CMS-PAS-22-006

Built on Coffea framework with columnar approach relying on scientific python

ecosystem

https://github.com/TopEFT/topcoffea
https://github.com/TopEFT/topeft

L‘.\'IVERSITY OF
NOTRE DAME 23


https://github.com/TopEFT/topcoffea
https://cds.cern.ch/record/2851651?ln=en
https://coffeateam.github.io/coffea/
https://github.com/TopEFT/topcoffea
https://github.com/TopEFT/topeft

TopEFT overview

 The TopEFT workflow:
— Inputs are flat n-tuple (CMS NanoAOD) formatted proton-proton collision data from CMS
(~2TB)
—  Processing step consists of calculating relevant properties of the events and filling

histograms

— Accumulation function merges together the histograms to produce the final output

 Memory considerations of the histograms produced and accumulated with

TopEFT:

—  TopEFT histograms are heavier than conventional histograms
—  Each bin carries an array of 378 numbers for its EFT framework

—  The accumulation step can cause large memory requirements

L'.\'IVERSITY OF
NOTRE DAME 24




Previous TopEFT performance at ND Tier-3

(Work Queue, coffea 0.7.x, old coffea-hists)

Cpu needs IO needs

total root data: | 1.7 TB

runtime: | 100min origin: | xrootd local
cores: | up to 1000

processing tasks accumulation tasks (20 to 1)
avg time: | 110s avg time: | 6s
slowest: | 318s slowest: | 141s
largest mem | 4 GB largest mem: | 12 GB
largest disk | 0.5 GB largest disk: | 20 GB

Toward Ten-Minute Turnaround in CMS Data Analysis: the View from Notre Dame,
CHEP 2023

https://cds.cern.ch/record/2872899

&)
Zc
O.‘
-
= m
M=
O~
>
=
les]

25



TopEFT performance today at ND Tier-3

(TaskVine, coffea 0.7.x, new scikit HEP histograms)

cpu needs

runtime: | 30 min
cores: | up to 4500

processing tasks

avg time: | 105s

slowest: | 460s

largest mem | 6 GB
largest disk | 0.5 GB

IO needs

total root data: | 1.7 TB
origin: | vast

accumulation tasks (5 to 1)

avg time: | 6s
slowest: | 440s
largest mem: | 35 GB
largest disk: | 8 GB

26



A R R T

ol UNIVERSITY OF
(F5) NOTRE DAME

489 -

workers

12 core
workers

managed with
HTCondor

TaskVine

Full R2 run

il

workers lifetime
tasks executing
tasks lost on disconnection
results waiting retrieval
tasks failures

cache updates

inputs from manager
outputs to manager

\Waiting for a handful of slow accumulations

14

time

21

31.2m

taskvine as an old
coffea-style
executor

using scikit-hep
histograms

27



TR e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ey

B UNIVERSITY OF

NOTRE DAME

: Current Bottleneck: Histograms

ncalls tottime percall cumtime percall filename:lineno(function)
10 ©.000 0.000 101.450 10.145
/var/condor/execute/dir_736567/worker-196886-736585/task.14889/ vine_env_task-rnd-

wjargmxyiltudhp/lib/python3.10/site-packages/coffea/processor/executor.py:191( deco
mpress)
10 7.888 ©0.789 101.435 10.144 {built-in method _pickle.load}

topEFT histograms are pretty sparse (only about 15% of entries filled).

Needed to adapt scikit-hep hist to sparse histograms, otherwise we ran out of memory (more than
128GB for some accumulation tasks)

Pickling by writing histogram counts with scipy sparse matrices (saves % disk, 72 of memory)

Currently working on adding sparse histograms to scikit-hep hist.

28



TIROTRE DM TaskVine + Coffea + Dask

DaskVine(name="my-vine-manager")

processor.NanoAODSchema.warn_missing_crossrefs = False

events = NanoEventsFactory.from_root(
"file:/project@l/ndcms/btovar/Run2012B_SingleMu.root",
treepath="Events",
chunks_per_file=288,
permit_dask=True,
metadata={"dataset": "SingleMu"},

) .events()

gl_hist = (
hda.Hist.new.Reg(100, ©, 200, name="met", label="$E_{T}~{miss}$
.Double()
.fill(events.MET.pt)

h = ql_hist.compute(
scheduler=m.get,
resources_mode="min waste",
lazy_transfers=True,
environment="my-env.tar.gz",

dak.necessary columns(ql_hist)

h.plotld()




A R R T

ol UNIVERSITY OF
(F5) NOTRE DAME

TaskVine
chooses
resources
(like cores)

TaskVine + Coffea + Dask (g6 coffea benchmark)

workers

120

TaskVine

workers lifetime

Bl tasks executing =55
| B0 tasks lost on disconnection T —— = s
L] results waiting retrieval %——iﬁ - -
| MM tasks failures = A———TREE ——
- B cache updates = —_—
- Bl inputs from manager _— — ———
L M outputs to manager — — e =
— e— L —
= e e ——
= A —————
- ‘ —

—— =

— === -
— S

—— — e

S— —
— _
I e — =

o

time

47s

30



EINGTRE Ak TaskVine Other Features

- Option for cached files at workers to survive workflows executions.

- Python "serverless": install libraries at workers and don't pay
interpreter initialization overhead.

- Define custom file types and environments with mini-tasks.

- Measurement and automatic allocation of resources.

31



UNIVERSITY OF

NOTRE DAME

Documentation

https://cctools.readthedocs.io/en/stable/taskvine/

C O 8 cctools.readthedocs.io,

# CCTools Documentation Quick Start

Installing via conda is the easiest method for most users. First, Install Miniconda if you haven't do
so before. Then, open a terminal and install ndcctools like this:

About

Installation conda install -c conda-forge ndcctools

Getting Help

Using a text editor, create a manager program called quickstart.py like this:

B TaskVine

Overview # Quick start example of taskvine with python functions
Quick Start # Import the taskvine library.

Example Applications import taskvine as vine

Writing a TaskVine Application # Create a new manager, listening on port 9123.
m = vine.Manager(9123)
Running a TaskVine Application print(f“Listening on port {m.port}")

Advanced Data Handling

# Declare a common input file to be shared by multiple tasks.

Advanced Task Handling f = m.declare_url("https://www.gutenberg.org/cache/epub/2600/pg2600.txt");
Python Programming Models # Submit several tasks using that file.
print("submitting tasks...")

Managing Resources for keyword in [ ‘needle’, ‘house’, ‘water’ ]:

task = vine.Task(f"grep {keyword} warandpeace.txt | wc");
task.add_input (f, "warandpeace.txt")

task.set_cores(1)

m.submit(task)

Logging, Plotting, and Tuning

Workflow Integration

Work Queue

# As they complete, display the results:
print("Waiting for tasks to complete...")
while not m.empty():

task = m.wait(5)

« Previous Next »




L R A i

% UNIVERSITY OF

NOTRE DAME

CMS

https://cctools.readthedocs.io

https://github.com/cooperative-computing-lab/cctools

ECRC

CENTER FOR RESEARCH COMPUTING

conda install -c conda-forge ndcctools

Thanks to team and
collaborators

ND CMS

Prof. Kevin Lannon
Prof. Mike Hildreth
Kelci Mohrman
Brent R. Yates
Andrew Wightman
John Lawrence
Andrea Trapote
Irena Johnson
Kenyi Hurtado

CCL

Prof. Douglas Thain
Thanh Son Phung
Barry Sly-Delgado
Colin Thomas

Md Saiful Islam

Jin Zhou

David Simonetti
Andrew Hennessee
Jachob Dolak

_._ _

CCTools

L )

TaskVine :-°

-

This work was supported by
NSF Award OAC-1931348


https://cctools.readthedocs.io
https://github.com/cooperative-computing-lab/cctools

