
Pyg4ometry: a python package to

manipulate Monte Carlo geometry

Stewart Boogert (University of Manchester)

pyHEP 2023 tutorial

Andrey Abramov (CERN), Laurie Nevay ICERN), William Shields (Royal Holloway), Luigi

Pertoldi (TUM), Stuart Walker (DESY)

Pyg4ometry – in a nutshell

• Pyg4ometry is a python API for GDML with the ability

to create 3D surface meshes.

– API matches closely to Geant4 C++ API for detector

construction (lowers cognitive load on users)

• Primary reason ~5 years ago

– To avoid users writing Geant4 or FLUKA input by-hand

• Significantly evolved from its original mission

• Amazing amount is possible with this simple API

Introduction - Authors

Stewart Boogert

(University of Manchester)

• Director of the Cockcroft Institute
of Accelerator Science

• Accelerator physicist (beam
instrumentation, ILC,
simulations)

• HEP PhD and post-doc
(ZEUS@HERA)

Laurie Nevay

(CERN)

• CERN staff member

• Background in accelerator beam
instrumentation, high power fibre
lasers

• Lead developer of BDSIM -
Geant4 application for
accelerator models

Introduction - Beam delivery simulation

(BDSIM)

• RHUL group has developed BDSIM, a code to make Geant4 accelerator models
– Computer Physics Communications (252), July 2020, 107200 http://www.pp.rhul.ac.uk/bdsim

• Want to insert custom components / customise models
– Geometry preparation takes a long time

• Needed to make geometry preparation as quick as possible to compliment BDSIM
– Create geometry from other codes e.g. Magnetic or electromagnetic modelling

Interpreter or compiler checking of syntax (not possible with GMDL

BDSIM beam

line with

possible

custom

component

?

http://www.pp.rhul.ac.uk/bdsim

Introduction BDSIM - 2

• Load STEP file using
OpenCascade

• Still need to simplify CAD file

• Parts and assemblies map
well to LV and PVs
respectively. Convert bodies to
triangulated mesh and place

• Need to account for material
– Not used in consistent way in

CAD

Introduction – pyg4ometry

Accelerator physics also user of tools like Geant4

• Others too MCNP, FLUKA, PHITS etc.

Other tools like DD4Hep or root TGeo do not work well in

the context of accelerators.

• e.g. calibration and reconstruction not important

• Diverse users are not at same skill level as HEP

community

Why?

Parametric geometry interface allows

• algorithmic generation of geometry

• Stable complex manipulation of geometry

• conversion of geometry between formats

• sustainability of pre-existing geometry information

• feature extraction from legacy geometry

• new applications (XR)

Potential users

• HEP detector physicists

– E.g. those making small prototypes

• HEP simulation developers

– E.g. those making interfaces with optical ray tracing codes)

• Radiological protection

• Space weather

• Medical physics

• Nuclear physicists

Requirements

• Load (and convert) GDML, STL,
STEP, FLUKA, ROOT files

• Complete support
(reading/writing) of GDML

• Visualize geometry

• Check for overlaps and
geometry issues

• Composite (load and place)
geometry from different sources

• Rendering for data analysis

• Modify geometry (cut holes,
remove material etc.)

• Leverage modern tools and
programming

• Lightweight

• Open source and simple to
install

• Simple to use API (think of a
intern student)

• Simple to contribute to (think of a
PhD student)

• Reasonable performance

Guiding principles and implementation

• Follow patterns of Geant4 (object interfaces, methods and internal data)

• Use GDML as a fundamental file description of geometry

• Use existing codes/libraries wherever possible

• Aim for 100% test coverage

• Create python class representation for geometric data (other data too)

Technology, tools and dependencies

1

1

OpenCASCADEVisualisation

Toolkit
ANTLR

Python

All dependencies are all open source

and well maintained

Computational Geometry

Algorithms Library

Parsing GDML

Mathematical

expression

Viewing

geomery

Loading CAD

geometry

Algorithms e.g.

booleans

Legitimate questions

• Why not just write C++ using Geant4 API?
– Compilation cycle is comparatively long (5 mins)

– Hard to debug geometry in some instances (voxelization will crash because of overlaps,
but how to find the overlaps)

• Why don’t you just include this functionality in ROOT?
– Not all users of Geant4 are particle physics experts

– Hard to prototype in ROOT and scripting languages are quick for ECRS to pick up and
use

– Lots of packages exist with python bindings and can be collected under pyg4ometry

• Why don’t you just expand Geant4?
– This is already being done and VTK is being developed as a visualization driver

– CGAL Boolean processing is already implemented and performs well compared existing
G4 implementation

• Why don’t you just write GDML?
– Quite hard to debug when bugs are introduced

Juypter notebook

1. Creating simple geometry

2. Parametric geometry

3. Modifying geometry

4. Loading CAD and other formats

5. Compositing geometry

6. Converting geometry

Compositing detailed example

Python Geant4
STL from vacuum

company

GDML from

BDSIMCAD/STEPF
lu

k
a

Laser vacuum chamber

Gate valveQuadrupole triplet

Sector bend

F
a
ra

d
a

y
 c

u
p

Parametric design example

• Hypothetical example of detector

• Silicon tracker, solenoid and ECAL

• Written in Python using pyg4ometry
– ~360 lines of Python

– ~5500 output lines of gdml

• Functions for each sub-detector
– programmatically designed

• About 8 hours of work

• Constants / variables propagate
through python expressions to final
GDML for parameterised output

Geant4/GDML to Paraview

• Cedric Hernalsteens (CERN),
Robin Tesse (ULB)

• Example of proton therapy
system from Ion Beam
Applications (IBA)

• Another potential target for 3D
data is Paraview (built on VTK)

• “Industry” standard for
visualisation of 3D data

• Use geometry data from
pyg4ometry and output from
Geant4/Fluka

CAD example

• Load STEP file using
OpenCascade

• Still need to simplify CAD file

• Parts and assemblies map
well to LV and PVs
respectively. Convert bodies to
triangulated mesh and place

• Need to account for material
– Not used in consistent way in

CAD

Full experiment FLUKA conversion (LUXE)

1. Experiment Geant4 instance

2. Export to GDML

3. Load GDML in pyg4ometry

4. Change/simplify etc

5. Export to FLUKA

6. Check geometry in FLAIR

7. Run FLUKA

Process takes minutes

Jupyter notebook (things not shown)

• Extracting features from geometry

• Cutting and clipping geometry

• Advanced visualization

• ROOT geometry loading

• Optical surfaces

• Pybind11 interfaces to OpenCASCADE and CGAL

– Granular binding to functionality of libraries. So pyg4ometry offers
many possibilities in python to create work-flows

• Please look at tests if interested pyg4ometry/tests/

Cool applications

• Modern interface to HEP geometry has lots of

applications

– Simple interface to high end rendering (ospray, pbr)

– Simple interface to multi-physics codes and visualization

(paraview, visit, comsol, ansys etc)

– Easy interface for testing new techniques (Optiks, Mitsuba etc)

– Closer connection between engineering and HEP

– Ability to load and write STEP files

3D Model directly in power point

Model directly in power point

(LUXE experiment)

XR model export

Potential improvements

• Toolkit developed (responding to need) over 6 years.
Interface could be made more uniform

– G4 has many constructors for geometry

• More convivence methods for modifying geometry

• “advanced python” dynamic remeshing upon parameter
updates (cyclic dependency graph)

• More pythonic or at least syntactically sweet interface to
parameters

• More informative __str__ and __repr__ methods

Links and information

• Paper

– https://doi.org/10.1016/j.cpc.2021.108228

• Online manual

– https://pyg4ometry.readthedocs.io

• Code repo

– https://github.com/g4edge/pyg4ometry

https://doi.org/10.1016/j.cpc.2021.108228
https://pyg4ometry.readthedocs.io/
https://github.com/g4edge/pyg4ometry

Conclusions/summary

• You can do so much with a stable API and small number

of algorithms

– Pyg4ometry of utility to many people using Monte Carlo particle

transportation

– Collaboration always welcoming new people. Luigi developed

CI/CD and advanced sk-build implementation, pip deployment

– Work like this is informing MC tracking and visualisation work

	Diapositive 1
	Diapositive 2 Pyg4ometry – in a nutshell
	Diapositive 3 Introduction - Authors
	Diapositive 4 Introduction - Beam delivery simulation (BDSIM)
	Diapositive 5 Introduction BDSIM - 2
	Diapositive 6 Introduction – pyg4ometry
	Diapositive 7 Why?
	Diapositive 8 Potential users
	Diapositive 9 Requirements
	Diapositive 10 Guiding principles and implementation
	Diapositive 11 Technology, tools and dependencies
	Diapositive 12 Legitimate questions
	Diapositive 13 Juypter notebook
	Diapositive 14 Compositing detailed example
	Diapositive 15 Parametric design example
	Diapositive 16 Geant4/GDML to Paraview
	Diapositive 17 CAD example
	Diapositive 18 Full experiment FLUKA conversion (LUXE)
	Diapositive 19 Jupyter notebook (things not shown)
	Diapositive 20 Cool applications
	Diapositive 21 3D Model directly in power point
	Diapositive 22 Model directly in power point (LUXE experiment)
	Diapositive 23 XR model export
	Diapositive 24 Potential improvements
	Diapositive 25 Links and information
	Diapositive 26 Conclusions/summary

