
Introduction to open quantum systems

Chiara Paletta

Trinity College Dublin

PRL 126.24 (2021): 240403
+ work in progress

with M. de Leeuw, B. Pozsgay, E. Vernier

February 14, 2023



What is an open quantum system?
Closed systems are an idealization of the real ones

State: pure |ψ(t)⟩
Evolution: Schrödinger equation

d |ψ(t)⟩
dt

= −i HS |ψ(t)⟩
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What is an open quantum system?

Real world

Many contexts:

Condensed Matter: Optics, Quantum Information, Circuits, . . .

High Energy Physics: AdS/CFT, Quantum gravity (BH), . . .
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What is an open quantum system?

To give a more accurate description of the real world we need
Open quantum systems

[ Petruccione, Breuer, 2002; Manzano, 2020; Medvedyeva, Essler, Prosen, 2016; de Vega (lectures), 2019]
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What is an open quantum system?
Real world:
Open quantum systems H = HS ⊗HE

Problem: The total Hilbert space is ”huge” due to the degree of freedom
of the environment

Main goal: Understand the dynamics of the system
tracing out the d.o.f. of the environment.

5 / 38



Overview:

1) Evolution of the system

→ Approximations → Lindblad master equation

2) Hard to solve: we look at integrable cases

� Few words on (quantum) integrability

� Integrable Open Quantum Systems

3) New result: Deformation of the Hubbard model
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Few Basic concepts
Isolated systems: Pure states |ψ⟩

d

dt
|ψ(t)⟩ = −i H|ψ(t)⟩ Schrödinger equation

Open systems: Mixed states ρ =
∑

i pi |ψi ⟩⟨ψi |

ρ = ρ†, Trρ = 1, ρ ≥ 0

HT = HS ⊗HE , HT = HS ⊗ 1E + 1S ⊗ HE + αHI

ρ̇T (t) = −i [HT , ρT (t)] Von-Neumann equation
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ρ̇T (t) = −i [HT , ρT (t)] Von-Neumann equation

Aim: Understand the dynamics of the system: ρ = TrEρT

Complementary Approaches:

� Rigorous methods: map that preserves the properties of the density
matrix

� Microscopic derivation of dynamical evolution

↓

Lindblad Master Equation
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Microscopic derivation

HT = HS ⊗HE , HT = HS ⊗ 1E + 1S ⊗ HE + αHI

ρ̇T (t) = −i [HT , ρT (t)] Von-Neumann equation

Interaction picture

Õ = e i(HS+HE )tOe−i(HS+HE )t

˙̃ρT (t) = −i α [H̃I (t), ρ̃T (t)]

Formal integration

ρ̃T (t) = ρ̃T (0)− i α

∫ t

0
ds[H̃I (s), ρ̃T (s)]

d

dt
ρ̃T (t) = −i α [H̃I (t), ρ̃T (0)]− α2

∫ t

0
ds[H̃I (t), [H̃I (s), ρ̃T (s)]]
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First approximation: weak coupling

d

dt
ρ̃T (t) = −i α [H̃I (t), ρ̃T (0)]− α2

∫ t

0
ds[H̃I (t), [H̃I (s), ρ̃T (t)]]

Notice s → t → no memory!

Motivation
Different timescales

τE ≪ TS

∆E TS ∼ ℏ

τE ≪ TS ∼ ℏ
α

Main aim: Dynamic of ρS , take partial trace

d

dt
ρ̃S(t) = −i αTrE [H̃I (t), ρ̃T (0)]− α2

∫ t

0
ds TrE [H̃I (t), [H̃I (s), ρ̃T (t)]]
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Born approximation

τcorr ≪ TS

ρT (t) = ρS(t)⊗ ρE (t) + ρcorrel(t) ≈ ρS(t)⊗ ρE (t)

Reservoir’s relaxation is fast τE ≪ TS : environment is thermal

ρE (t) = ρE (0) =
exp(−HE/T )

Tr exp(−HE/T )

We take:

d

dt
ρ̃S(t) = −iαTrE [H̃I (t), ρ̃T (0)]− α2

∫ t

0
dsTrE [H̃I (t), [H̃I (s), ρ̃T (t)]]

Decompose

H̃I =
∑
i

S̃i ⊗ Ẽi
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TrE [H̃I (t), ρ̃T (0)] =
∑
i

S̃i (t)ρ̃S(0) TrE [Ẽi (t)ρ̃E (0)]︸ ︷︷ ︸
=0

−

ρ̃S(0)S̃i (t)TrE [ρ̃E (0)Ẽi (t)] = 0

d

dt
ρ̃S(t) = −α2

∫ t

0
ds TrE [H̃I (t), [H̃I (s), ρ̃S(t)⊗ ρ̃E (0)]]

↓ s → t − s

d

dt
ρ̃S(t) = −α2

∫ ∞

0
dsTrE [H̃I (t), [H̃I (t − s), ρ̃S(t)⊗ ρ̃E (0)]]

Redfield equation
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Our main aim: trace out the contribution of the environment

HI (t) =
∑
i

Si (t)⊗ Ei (t)

In the interaction picture

H̃I (t) =
∑
i ,ω

e−iωt S̃i (ω)⊗ Ẽi (t) =
∑
i ,ω

e iωt S̃†
i (ω)⊗ Ẽ †

i (t)
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Approximation: Rotating wave
Redfield equation

d

dt
ρ̃S(t) = −α2

∫ ∞

0
dsTrE [H̃I (t), [H̃I (t − s), ρ̃S(t)⊗ ρ̃E (0)]]

H̃I (t) →
∑
i ,ω

e iωt S̃†
i (ω)⊗ Ẽ †

i (t), H̃I (t − s) →
∑
i ,ω

e−iω(t−s)S̃i (ω)⊗ Ẽi (t)

˙̃ρS(t) =
∑

ω,ω′,k,l

(
e i(ω

′−ω)tΓkl(ω)[S̃l(ω)ρ̃(t), S̃
†
k(ω

′)]

+ e i(ω−ω′)tΓ∗lk(ω
′)[S̃l(ω), ρ̃(t)S̃

†
k(ω

′)]
)

Γ effects of the environment

Only keep resonant terms:

|ω − ω′| ≫ α2 → ω = ω′
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˙̃ρS(t) =
∑
ω,k,l

(
Γkl(ω)[S̃l(ω)ρ̃(t), S̃

†
k(ω)] + Γ∗lk(ω)[S̃l(ω), ρ̃(t)S̃

†
k(ω)]

)
Separate Hermitian and non-Hermitian parts

πkl =
−i

2
(Γkl − Γ∗kl)

γkl =
1

2
(Γkl + Γ∗kl)

Diagonalize γ

TγT † = diag(d1, . . . , dn)

transform back to the Schrödinger picture

ℓi =
√

di
∑
k

TikSk

ρ̇(t) = −i [H + HLS , ρ(t)] +
∑
i

(
ℓiρ(t)ℓ

†
i −

1

2
{ℓ†i ℓi , ρ(t)}

)
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Summary approximation:

ρ̇T (t) = −i [HT , ρT (t)] → ρ̇ = i [ρ,H]︸ ︷︷ ︸
Liouville equation

+
n∑

a=1

[
ℓaρℓ

†
a −

1

2
{ℓ†aℓa, ρ}

]
︸ ︷︷ ︸

Dissipator

Weak coupling α≪ 1

Markovian approximation (time separation)

Rotating wave approximation
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How do we solve the Lindblad master equation?

Hard to solve.

Numerical methods

Perturbative methods

Does an exactly solvable model exist?

Different meaning of solvability, we focus on:
Yang Baxter Integrable Lindblad systems

Reasons: The out of equilibrium dynamics can be studied:

the Non-Equilibrium steady states can be constructed with exact
methods,

the generator of the dynamics can be diagonalized.
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What do we mean by: Yang-Baxter integrable system?

Models with a high amount of symmetry and a tower of conserved charges

[H,Qr ] = [Qr ,Qs ] = 0, r , s = 1, 2, . . . ,∞

Free theories → Not a surprise!

Interacting theories → May also have integrable behaviour!

Why do we study integrable models?

Eigenvalues and eigenvectors of Qs can often be found with exact methods
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What do we mean by: Yang-Baxter integrable system?
Characterized by an R-matrix solution of the Yang-Baxter equation (YBE)

R12(u1, u2)R13(u1, u3)R23(u2, u3) = R23(u2, u3)R13(u1, u3)R12(u1, u2)

R-matrix → [Qr ,Qs ] = 0
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Why is it important to study YB Lindblad integrable
models?

Isolated integrable many particle systems behave differently from non
integrable models.

Non integrable systems relax quickly toward an equilibrium state

Integrable systems present an unusual non-equilibrium dynamics

Isolated integrable models with local charges : Generalized Gibbs
Ensamble (GGE)

ρGGE =
e−

∑
n λnQn

Tr(e−
∑

n λnQn)

and the dynamics is described by Generalized Hydrodynamics (GHD).
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Typically

→ There exist Integrable Lindblad models!
Open field of research: For Lindblad system, the time dependent GGE and
GHD are good approximations for the time evolution.
Integrable models can help to justify this statement.

Open question: Is there anything special about integrable Lindblad
evolution through the NESS? What is the role of the infinite amount of
conserved charges?
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What do we mean by: Yang-Baxter integrable Lindblad
system?
Set up: spin 1/2 chain of length L, H = C2 ⊗ C2

ρ̇ = i [ρ,H] +
L∑

i=1

[
ℓi ,i+1ρℓ

†
i ,i+1 −

1

2
{ℓ†i ,i+1ℓi ,i+1, ρ}

]

H =
∑
i

hi ,i+1
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What do we mean by: Yang-Baxter integrable Lindblad
system?

ρ̇ = i [ρ,H] +
L∑

i=1

[
ℓi ,i+1ρℓ

†
i ,i+1 −

1

2
{ℓ†i ,i+1ℓi ,i+1, ρ}

]
→ ρ̇ ≡ Lρ

H = V ⊗ V , V = C2 → H⊗H∗

Li ,j = −i h
(1)
i ,j + ih

(2)∗
i ,j + ℓ

(1)
i ,j ℓ

(2)∗
i ,j − 1

2ℓ
(1)†
i ,j ℓ

(1)
i ,j − 1

2ℓ
(2)T
i ,j ℓ

(2)∗
i ,j
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Yang-Baxter integrable superoperator

Idea: Identify L as a (non-Hermitian) Hamiltonian

HSL
i ,j = Li ,j = −i h

(1)
i ,j + ih

(2)∗
i ,j + ℓ

(1)
i ,j ℓ

(2)∗
i ,j − 1

2ℓ
(1)†
i ,j ℓ

(1)
i ,j − 1

2ℓ
(2)T
i ,j ℓ

(2)∗
i ,j

Require that L is one of the conserved charge of the integrable model

Q2 = L =
L∑

i=1

Li ,i+1

Construction of new integrable models:
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Construction of new integrable models

Li ,j = −i h
(1)
i ,j + ih

(2)∗
i ,j + ℓ

(1)
i ,j ℓ

(2)∗
i ,j − 1

2
ℓ
(1)†
i ,j ℓ

(1)
i ,j − 1

2
ℓ
(2)T
i ,j ℓ

(2)∗
i ,j

[de Leeuw, CP, Pozsgay, Pribytok, Retore, Ryan]
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Boost automorphism mechanism

[de Leeuw, CP, Pozsgay, Pribytok, Retore, Ryan]

Steps:

We found many integrable models: some new one (deformation of AdS2
and AdS3) and a medium range deformation of Hubbard model! 26 / 38



New Integrable model

L = −i h(1) + ih(2)∗ + ℓ(1)ℓ(2)∗ − 1

2
ℓ(1)†ℓ(1) − 1

2
ℓ(2)T ℓ(2)∗

h = i
[
σ+j σ

−
j+1 − σ−j σ

+
j+1

]
,

ℓ = σzj+1 + κ(σxj + σxj+2)σ
x
j+1 − κ2σzj+1σ

x
j σ

x
j+2

What is this model?!?
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Hubbard model

{cαj , c
β
k } = 0 α, β =↑, ↓

{cαj , (c
β
k )

†} = δα,βδj ,k
Fermionic Hilbert space

States

|∅⟩, |↑⟩ = (c↑)†|∅⟩, |↓⟩ = (c↓)†|∅⟩, |↑↓⟩ = (c↓)†(c↑)†|∅⟩

Hamiltonian

HHub =
∑
j

[
(c↑j )

†c↑j+1 + (c↑j+1)
†c↑j + (c↓j )

†c↓j+1 + (c↓j+1)
†c↓j + U n↑j n

↓
j

]

nj = cj
†cj , U ∈ R
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Hubbard model

HHub =
∑
j

[
(c↑j )

†c↑j+1 + (c↑j+1)
†c↑j + (c↓j )

†c↓j+1 + (c↓j+1)
†c↓j + Un↑j n

↓
j

]
Particle number conservation

∑
j n

↑
j and

∑
j n

↓
j

Bosonic version

→ Jordan-Wigner transformation

→ Similarity transformation

H ′′ =
∑
j

i(σ+j σ−j+1 − σ−j σ
+
j+1)

(1)︸ ︷︷ ︸
hj,j+1

(1)

+ i(σ+j σ
−
j+1 − σ−j σ

+
j+1)

(2)︸ ︷︷ ︸
hj,j+1

(2)

+
U

4
σzj

(1)σzj
(2)


H = V ⊗ V = W ⊗W︸ ︷︷ ︸

(1)

⊗W ⊗W︸ ︷︷ ︸
(2)
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H ′′ =
∑
j

i(σ+j σ−j+1 − σ−j σ
+
j+1)

(1)︸ ︷︷ ︸
hj,j+1

(1)

+ i(σ+j σ
−
j+1 − σ−j σ

+
j+1)

(2)︸ ︷︷ ︸
hj,j+1

(2)

+
U

4
σzj

(1)σzj
(2)


by taking U → i U and renormalizing

L =
∑
j

[−i (σ+j σ
−
j+1 − σ−j σ

+
j+1)

(1)︸ ︷︷ ︸
hj,j+1

(1)

+i [−(σ+j σ
−
j+1 − σ−j σ

+
j+1)

(2)]︸ ︷︷ ︸
hj,j+1

(2)∗

+

U σzj
(1)︸ ︷︷ ︸

ℓ
(
j 1)

σzj
(2)︸ ︷︷ ︸

ℓ
(2)∗
j

+κ1]

L = −i h(1) + ih(2)∗ + ℓ(1)ℓ(2)∗ − 1

2
ℓ(1)†ℓ(1) − 1

2
ℓ(2)T ℓ(2)∗

Integrability allows to compute exactly the spectrum of the model, what
we should find:
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Spectrum
(studied by Medvedyeva, Essler, Prosen and also analytical solution known)
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Relation with Hubbard model

L = −i h(1) + ih(2)∗ + u
[
ℓ(1)ℓ(2)∗ − 1

2
ℓ(1)†ℓ(1) − 1

2
ℓ(2)T ℓ(2)∗

]
ℓj ,j+1,j+2 = σzj+1 + κ(σxj + σxj+2)σ

x
j+1 − κ2σzj+1σ

x
j σ

x
j+2

u, κ ∈ R

κ = 0 Hubbard model

κ ̸= 0 Range 3 deformation of the Hubbard model!

κ = ±1 Two U(1) conserved charges∑
j

(σxj σ
x
j+1)

(1),
∑
j

(σxj σ
x
j+1)

(2)
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Main differences with Hubbard:

Interaction spans 3 site

Particle number conservation is broken

Previous extensions and deformations of the Hubbard model had two
common properties

Hamiltonian was always nearest neighbour interaction

(At least) two local U(1) charges
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Checked that the model is not a linear combination of Q2 and Q3 of a
known model!

Is this model integrable?
→ YES! We found the R matrix

[arXiv:2108.02053 Gambor, Pozsgay]

Important points:

Only known long-range deformation of the Hubbard model

un-usual functional dependence of the R-matrix

First long-range integrable open quantum system model

↓

future:
Spectrum and analytical solution!
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Conclusions and future work
What we saw:

Approximations to write the Lindblad master equation
Importance to study Lindblad integrable system
New model: range 3 deformation of the Hubbard model

Possible future directions:

Can we solve the new model by using one of the integrability
techniques?
(done for model B3 2207.14193)

Analyze Non-Equilibrium State of the new model

Classification of spin chain with open boundary condition

Can we understand more properties of the Lindblad superoperator by
using random matrix theory techniques?

Thank you!
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Why TrE [Ẽi(t)ρ̃E (0)] = 0
First, we work in Schrodinger picture

HI =
∑

Si ⊗ Ei

We define

H ′
I =

∑
i

Si ⊗ (Ei − ⟨Ei ⟩E ) =
∑
i

Si ⊗ Ei −
∑
i

⟨Ei ⟩E Si ⊗ 1E

with ⟨Ei ⟩E = TrE (ρEEi )〈
H ′
I

〉
=

∑
i

Si (⟨Ei ⟩E − ⟨Ei ⟩E ) = 0

HT = HS ⊗1E +1S ⊗HE +αHI = HS ⊗1E +1S ⊗HE +α(H ′
I +Si ⟨Ei ⟩E ) =

(HS + α
∑
i

⟨Ei ⟩E Si )⊗ 1E + 1S ⊗ HE + αH ′
I

So now ⟨H ′
I ⟩E = 0
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Symmetries

model Hubbard Extended

Discrete symmetry parity invariance [H3,⊗L
j=1σ

z
j τ

z
j ] = 0

spin reflection even/odd spin conserved
Shiba [H1,S

σSτ ] = 0, L even Shiba [H1, S
σSτ ] = 0, L even

Continuous symmetry SU(2)⊗ SU(2) -
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