Introduction to open quantum systems

Chiara Paletta

Trinity College Dublin

PRL 126.24 (2021): 240403

+ work in progress
with M. de Leeuw, B. Pozsgay, E. Vernier

February 14, 2023

What is an open quantum system?

Closed systems are an idealization of the real ones

State: pure $|\psi(t)\rangle$
Evolution: Schrödinger equation

$$
\frac{d|\psi(t)\rangle}{d t}=-i H_{S}|\psi(t)\rangle
$$

What is an open quantum system?

Real world

Atom interacts with electromagnetic fields

Electrons coupled to the phonons

Many contexts:

Condensed Matter: Optics, Quantum Information, Circuits, ...
High Energy Physics: AdS/CFT, Quantum gravity (BH), ...

What is an open quantum system?

To give a more accurate description of the real world we need Open quantum systems

[Petruccione, Breuer, 2002; Manzano, 2020; Medvedyeva, Essler, Prosen, 2016; de Vega (lectures), 2019]

What is an open quantum system?

Real world:
Open quantum systems $\quad \mathcal{H}=\mathcal{H}_{S} \otimes \mathcal{H}_{E}$

Problem: The total Hilbert space is "huge" due to the degree of freedom of the environment

Main goal: Understand the dynamics of the system tracing out the d.o.f. of the environment.

Overview:

1) Evolution of the system
\rightarrow Approximations \rightarrow Lindblad master equation
2) Hard to solve: we look at integrable cases

- Few words on (quantum) integrability
- Integrable Open Quantum Systems

3) New result: Deformation of the Hubbard model

Few Basic concepts

Isolated systems: Pure states $|\psi\rangle$

$$
\frac{d}{d t}|\psi(t)\rangle=-i H|\psi(t)\rangle \quad \text { Schrödinger equation }
$$

Open systems: Mixed states $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$

$$
\rho=\rho^{\dagger}, \quad \operatorname{Tr} \rho=1, \quad \rho \geq 0
$$

$$
\begin{gathered}
\mathcal{H}_{T}=\mathcal{H}_{S} \otimes \mathcal{H}_{E}, \quad H_{T}=H_{S} \otimes 1_{E}+1_{S} \otimes H_{E}+\alpha H_{I} \\
\dot{\rho}_{T}(t)=-i\left[H_{T}, \rho_{T}(t)\right] \quad \text { Von-Neumann equation }
\end{gathered}
$$

$$
\dot{\rho}_{T}(t)=-i\left[H_{T}, \rho_{T}(t)\right] \quad \text { Von-Neumann equation }
$$

Aim: Understand the dynamics of the system: $\rho=\operatorname{Tr}_{E} \rho_{T}$
Complementary Approaches:

- Rigorous methods: map that preserves the properties of the density matrix
- Microscopic derivation of dynamical evolution

Lindblad Master Equation

Microscopic derivation

$$
\begin{gathered}
\mathcal{H}_{T}=\mathcal{H}_{S} \otimes \mathcal{H}_{E}, \quad H_{T}=H_{S} \otimes 1_{E}+1_{S} \otimes H_{E}+\alpha H_{l} \\
\dot{\rho}_{T}(t)=-i\left[H_{T}, \rho_{T}(t)\right] \quad \text { Von-Neumann equation }
\end{gathered}
$$

Interaction picture

$$
\begin{gathered}
\tilde{O}=e^{i\left(H_{S}+H_{E}\right) t} O e^{-i\left(H_{S}+H_{E}\right) t} \\
\dot{\tilde{\rho}}_{T}(t)=-i \alpha\left[\tilde{H}_{l}(t), \tilde{\rho}_{T}(t)\right]
\end{gathered}
$$

Formal integration

$$
\begin{gathered}
\tilde{\rho}_{T}(t)=\tilde{\rho}_{T}(0)-i \alpha \int_{0}^{t} d s\left[\tilde{H}_{l}(s), \tilde{\rho_{T}}(s)\right] \\
\frac{d}{d t} \tilde{\rho}_{T}(t)=-i \alpha\left[\tilde{H}_{l}(t), \tilde{\rho_{T}}(0)\right]-\alpha^{2} \int_{0}^{t} d s\left[\tilde{H}_{l}(t),\left[\tilde{H}_{l}(s), \tilde{\rho}_{T}(s)\right]\right]
\end{gathered}
$$

First approximation: weak coupling

$$
\frac{d}{d t} \tilde{\rho_{T}}(t)=-i \alpha\left[\tilde{H}_{l}(t), \tilde{\rho}_{T}(0)\right]-\alpha^{2} \int_{0}^{t} d s\left[\tilde{H}_{l}(t),\left[\tilde{H}_{l}(s), \tilde{\rho}_{T}(t)\right]\right]
$$

Notice $s \rightarrow t \rightarrow$ no memory!
Motivation
Different timescales

$$
\begin{gathered}
\tau_{E} \ll T_{S} \\
\Delta E T_{S} \sim \hbar \\
\tau_{E} \ll T_{S} \sim \frac{\hbar}{\alpha}
\end{gathered}
$$

Main aim: Dynamic of ρ_{S}, take partial trace

$$
\frac{d}{d t} \tilde{\rho_{S}}(t)=-i \alpha \operatorname{Tr}_{E}\left[\tilde{H}_{l}(t), \tilde{\rho_{T}}(0)\right]-\alpha^{2} \int_{0}^{t} d s \operatorname{Tr}_{E}\left[\tilde{H}_{l}(t),\left[\tilde{H}_{l}(s), \tilde{\rho}_{T}(t)\right]\right]
$$

Born approximation

$\tau_{\text {corr }} \ll T_{S}$

$$
\rho_{T}(t)=\rho_{S}(t) \otimes \rho_{E}(t)+\rho_{\text {correl }}(t) \approx \rho_{S}(t) \otimes \rho_{E}(t)
$$

Reservoir's relaxation is fast $\tau_{E} \ll T_{S}$: environment is thermal

$$
\rho_{E}(t)=\rho_{E}(0)=\frac{\exp \left(-H_{E} / T\right)}{\operatorname{Tr} \exp \left(-H_{E} / T\right)}
$$

We take:

$$
\frac{d}{d t} \tilde{\rho_{S}}(t)=-i \alpha \operatorname{Tr}_{E}\left[\tilde{H}_{l}(t), \tilde{\rho_{T}}(0)\right]-\alpha^{2} \int_{0}^{t} d s \operatorname{Tr}_{E}\left[\tilde{H}_{l}(t),\left[\tilde{H}_{l}(s), \tilde{\rho}_{T}(t)\right]\right]
$$

Decompose

$$
\tilde{H}_{l}=\sum_{i} \tilde{S}_{i} \otimes \tilde{E}_{i}
$$

$$
\begin{gathered}
\operatorname{Tr}_{E}\left[\tilde{H}_{l}(t), \tilde{\rho}_{T}(0)\right]=\sum_{i} \tilde{S}_{i}(t) \tilde{\rho}_{S}(0) \underbrace{\operatorname{Tr}_{E}\left[\tilde{E}_{i}(t) \tilde{\rho}_{E}(0)\right]}_{=0}- \\
\tilde{\rho}_{S}(0) \tilde{S}_{i}(t) \operatorname{Tr}_{E}\left[\tilde{\rho}_{E}(0) \tilde{E}_{i}(t)\right]=0 \\
\frac{d}{d t} \tilde{\rho}_{S}(t)=-\alpha^{2} \int_{0}^{t} d s \operatorname{Tr}_{E}\left[\tilde{H}_{l}(t),\left[\tilde{H}_{l}(s), \tilde{\rho}_{S}(t) \otimes \tilde{\rho}_{E}(0)\right]\right] \\
\downarrow s \rightarrow t-s \\
\frac{d}{d t} \tilde{\rho_{S}}(t)=-\alpha^{2} \int_{0}^{\infty} d s \operatorname{Tr}_{E}\left[\tilde{H}_{l}(t),\left[\tilde{H}_{l}(t-s), \tilde{\rho}_{S}(t) \otimes \tilde{\rho}_{E}(0)\right]\right]
\end{gathered}
$$

Redfield equation

Our main aim: trace out the contribution of the environment

$$
H_{l}(t)=\sum_{i} S_{i}(t) \otimes E_{i}(t)
$$

In the interaction picture

$$
\tilde{H}_{l}(t)=\sum_{i, \omega} e^{-i \omega t} \tilde{S}_{i}(\omega) \otimes \tilde{E}_{i}(t)=\sum_{i, \omega} e^{i \omega t} \tilde{S}_{i}^{\dagger}(\omega) \otimes \tilde{E}_{i}^{\dagger}(t)
$$

Approximation: Rotating wave

 Redfield equation$$
\frac{d}{d t} \tilde{\rho_{S}}(t)=-\alpha^{2} \int_{0}^{\infty} d s \operatorname{Tr}_{E}\left[\tilde{H}_{l}(t),\left[\tilde{H}_{l}(t-s), \tilde{\rho}_{S}(t) \otimes \tilde{\rho}_{E}(0)\right]\right]
$$

$\tilde{H}_{l}(t) \rightarrow \sum_{i, \omega} e^{i \omega t} \tilde{S}_{i}^{\dagger}(\omega) \otimes \tilde{E}_{i}^{\dagger}(t), \quad \tilde{H}_{l}(t-s) \rightarrow \sum_{i, \omega} e^{-i \omega(t-s)} \tilde{S}_{i}(\omega) \otimes \tilde{E}_{i}(t)$

$$
\begin{aligned}
\dot{\tilde{\rho}}_{S}(t)= & \sum_{\omega, \omega^{\prime}, k, l}\left(e^{i\left(\omega^{\prime}-\omega\right) t} \Gamma_{k l}(\omega)\left[\tilde{S}_{l}(\omega) \tilde{\rho}(t), \tilde{S}_{k}^{\dagger}\left(\omega^{\prime}\right)\right]\right. \\
& \left.+e^{i\left(\omega-\omega^{\prime}\right) t} \Gamma_{l k}^{*}\left(\omega^{\prime}\right)\left[\tilde{S}_{l}(\omega), \tilde{\rho}(t) \tilde{S}_{k}^{\dagger}\left(\omega^{\prime}\right)\right]\right)
\end{aligned}
$$

「 effects of the environment
Only keep resonant terms:

$$
\left|\omega-\omega^{\prime}\right| \gg \alpha^{2} \quad \rightarrow \quad \omega=\omega^{\prime}
$$

$$
\dot{\tilde{\rho}}_{S}(t)=\sum_{\omega, k, l}\left(\Gamma_{k l}(\omega)\left[\tilde{S}_{l}(\omega) \tilde{\rho}(t), \tilde{S}_{k}^{\dagger}(\omega)\right]+\Gamma_{l k}^{*}(\omega)\left[\tilde{S}_{l}(\omega), \tilde{\rho}(t) \tilde{S}_{k}^{\dagger}(\omega)\right]\right)
$$

Separate Hermitian and non-Hermitian parts

$$
\begin{aligned}
& \pi_{k l}=\frac{-i}{2}\left(\Gamma_{k l}-\Gamma_{k l}^{*}\right) \\
& \gamma_{k l}=\frac{1}{2}\left(\Gamma_{k l}+\Gamma_{k l}^{*}\right)
\end{aligned}
$$

Diagonalize γ

$$
T \gamma T^{\dagger}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)
$$

transform back to the Schrödinger picture

$$
\begin{gathered}
\ell_{i}=\sqrt{d_{i}} \sum_{k} T_{i k} S_{k} \\
\dot{\rho}(t)=-i\left[H+H_{L S}, \rho(t)\right]+\sum_{i}\left(\ell_{i} \rho(t) \ell_{i}^{\dagger}-\frac{1}{2}\left\{\ell_{i}^{\dagger} \ell_{i}, \rho(t)\right\}\right)
\end{gathered}
$$

Summary approximation:

- Weak coupling $\alpha \ll 1$
- Markovian approximation (time separation)
- Rotating wave approximation

How do we solve the Lindblad master equation?

Hard to solve.

- Numerical methods
- Perturbative methods

Does an exactly solvable model exist?
Different meaning of solvability, we focus on:
Yang Baxter Integrable Lindblad systems
Reasons: The out of equilibrium dynamics can be studied:

- the Non-Equilibrium steady states can be constructed with exact methods,
- the generator of the dynamics can be diagonalized.

What do we mean by: Yang-Baxter integrable system?

Models with a high amount of symmetry and a tower of conserved charges

$$
\left[\mathbb{H}, \mathbb{Q}_{r}\right]=\left[\mathbb{Q}_{r}, \mathbb{Q}_{s}\right]=0, \quad r, s=1,2, \ldots, \infty
$$

Free theories \rightarrow Not a surprise!
Interacting theories \rightarrow May also have integrable behaviour!

Why do we study integrable models?
Eigenvalues and eigenvectors of $\mathbb{Q} s$ can often be found with exact methods

What do we mean by: Yang-Baxter integrable system?
Characterized by an R-matrix solution of the Yang-Baxter equation (YBE)

$$
R\left(u_{1}, u_{2}\right)=
$$

$$
1 \quad 2
$$

$$
R_{12}\left(u_{1}, u_{2}\right) R_{13}\left(u_{1}, u_{3}\right) R_{23}\left(u_{2}, u_{3}\right)=R_{23}\left(u_{2}, u_{3}\right) R_{13}\left(u_{1}, u_{3}\right) R_{12}\left(u_{1}, u_{2}\right)
$$

$$
R \text {-matrix } \rightarrow\left[\mathbb{Q}_{r}, \mathbb{Q}_{s}\right]=0
$$

Why is it important to study YB Lindblad integrable

 models?Isolated integrable many particle systems behave differently from non integrable models.

- Non integrable systems relax quickly toward an equilibrium state
- Integrable systems present an unusual non-equilibrium dynamics Isolated integrable models with local charges : Generalized Gibbs Ensamble (GGE)

$$
\rho^{G G E}=\frac{e^{-\sum_{n} \lambda_{n} \mathcal{Q}_{n}}}{\operatorname{Tr}\left(e^{-\sum_{n} \lambda_{n} \mathcal{Q}_{n}}\right)}
$$

and the dynamics is described by Generalized Hydrodynamics (GHD).

integrable

\rightarrow There exist Integrable Lindblad models!
Open field of research: For Lindblad system, the time dependent GGE and GHD are good approximations for the time evolution. Integrable models can help to justify this statement.

Open question: Is there anything special about integrable Lindblad evolution through the NESS? What is the role of the infinite amount of conserved charges?

What do we mean by: Yang-Baxter integrable Lindblad system?
Set up: spin $1 / 2$ chain of length L,

$$
\mathcal{H}=\mathbb{C}^{2} \otimes \mathbb{C}^{2}
$$

$$
\dot{\rho}=i[\rho, H]+\sum_{i=1}^{L}\left[\ell_{i, i+1} \rho \ell_{i, i+1}^{\dagger}-\frac{1}{2}\left\{\ell_{i, i+1}^{\dagger} \ell_{i, i+1}, \rho\right\}\right]
$$

$$
\sqrt{\checkmark} \ell_{\mathrm{i}, \mathrm{i}+1}
$$

$$
H=\sum_{i} h_{i, i+1}
$$

What do we mean by: Yang-Baxter integrable Lindblad system?

$$
\begin{aligned}
\dot{\rho}=i[\rho, H]+\sum_{i=1}^{L}\left[\ell_{i, i+1} \rho \ell_{i, i+1}^{\dagger}-\frac{1}{2}\left\{\ell_{i, i+1}^{\dagger} \ell_{i, i+1}, \rho\right\}\right] & \rightarrow \dot{\rho} \equiv \mathcal{L} \rho \\
\mathcal{H}=V \otimes V, \quad V=\mathbb{C}^{2} & \rightarrow \mathcal{H} \otimes \mathcal{H}^{*}
\end{aligned}
$$

$\mathcal{L}_{i, j}=-i h_{i, j}^{(1)}+i h_{i, j}^{(2) *}+\ell_{i, j}^{(1)} \ell_{i, j}^{(2) *}-\frac{1}{2} \ell_{i, j}^{(1) \dagger} \ell_{i, j}^{(1)}-\frac{1}{2} \ell_{i, j}^{(2) T} \ell_{i, j}^{(2) *}$

Yang-Baxter integrable superoperator

Idea: Identify \mathcal{L} as a (non-Hermitian) Hamiltonian
$H_{i, j}^{S L}=\mathcal{L}_{i, j}=-i h_{i, j}^{(1)}+i h_{i, j}^{(2) *}+\ell_{i, j}^{(1)} \ell_{i, j}^{(2) *}-\frac{1}{2} \ell_{i, j}^{(1) \dagger} \ell_{i, j}^{(1)}-\frac{1}{2} \ell_{i, j}^{(2) T} \ell_{i, j}^{(2) *}$
Require that \mathcal{L} is one of the conserved charge of the integrable model

$$
\mathbb{Q}_{2}=\mathcal{L}=\sum_{i=1}^{L} \mathcal{L}_{i, i+1}
$$

Construction of new integrable models:

Construction of new integrable models

$$
\mathcal{L}_{i, j}=-i h_{i, j}^{(1)}+i h_{i, j}^{(2) *}+\ell_{i, j}^{(1)} \ell_{i, j}^{(2) *}-\frac{1}{2} \ell_{i, j}^{(1) \dagger} \ell_{i, j}^{(1)}-\frac{1}{2} \ell_{i, j}^{(2) T} \ell_{i, j}^{(2) *}
$$

[de Leeuw, CP, Pozsgay, Pribytok, Retore, Ryan]

Boost automorphism mechanism

[de Leeuw, CP, Pozsgay, Pribytok, Retore, Ryan]
Steps:

We found many integrable models: some new one (deformation of $A d S_{2}$ and $A d S_{3}$) and a medium range deformation of Hubbard model!

New Integrable model

$$
\begin{aligned}
\mathcal{L}= & -i h^{(1)}+i h^{(2) *}+\ell^{(1)} \ell^{(2) *}-\frac{1}{2} \ell^{(1) \dagger} \ell^{(1)}-\frac{1}{2} \ell^{(2) T} \ell^{(2) *} \\
& h=i\left[\sigma_{j}^{+} \sigma_{j+1}^{-}-\sigma_{j}^{-} \sigma_{j+1}^{+}\right], \\
& \ell=\sigma_{j+1}^{z}+\kappa\left(\sigma_{j}^{x}+\sigma_{j+2}^{x}\right) \sigma_{j+1}^{x}-\kappa^{2} \sigma_{j+1}^{z} \sigma_{j}^{x} \sigma_{j+2}^{x}
\end{aligned}
$$

What is this model?!?

Hubbard model

$$
\begin{aligned}
\left\{c_{j}^{\alpha}, c_{k}^{\beta}\right\} & =0 \quad \alpha, \beta=\uparrow, \downarrow \\
\left\{c_{j}^{\alpha},\left(c_{k}^{\beta}\right)^{\dagger}\right\} & =\delta^{\alpha, \beta} \delta_{j, k}
\end{aligned}
$$

Fermionic Hilbert space

States

$$
|\emptyset\rangle, \quad|\uparrow\rangle=\left(c^{\uparrow}\right)^{\dagger}|\emptyset\rangle, \quad|\downarrow\rangle=\left(c^{\downarrow}\right)^{\dagger}|\emptyset\rangle, \quad|\uparrow \downarrow\rangle=\left(c^{\downarrow}\right)^{\dagger}\left(c^{\uparrow}\right)^{\dagger}|\emptyset\rangle
$$

Hamiltonian

$$
H_{H u b}=\sum_{j}\left[\left(c_{j}^{\uparrow}\right)^{\dagger} c_{j+1}^{\uparrow}+\left(c_{j+1}^{\uparrow}\right)^{\dagger} c_{j}^{\uparrow}+\left(c_{j}^{\downarrow}\right)^{\dagger} c_{j+1}^{\downarrow}+\left(c_{j+1}^{\downarrow}\right)^{\dagger} c_{j}^{\downarrow}+U n_{j}^{\uparrow} n_{j}^{\downarrow}\right]
$$

$$
n_{j}=c_{j}^{\dagger} c_{j}, \quad U \in \mathbb{R}
$$

Hubbard model

$$
H_{\text {Hub }}=\sum_{j}\left[\left(c_{j}^{\uparrow}\right)^{\dagger} c_{j+1}^{\uparrow}+\left(c_{j+1}^{\uparrow}\right)^{\dagger} c_{j}^{\uparrow}+\left(c_{j}^{\downarrow}\right)^{\dagger} c_{j+1}^{\downarrow}+\left(c_{j+1}^{\downarrow}\right)^{\dagger} c_{j}^{\downarrow}+U n_{j}^{\uparrow} n_{j}^{\downarrow}\right]
$$

Particle number conservation $\sum_{j} n_{j}^{\uparrow}$ and $\sum_{j} n_{j}^{\downarrow}$
Bosonic version
\rightarrow Jordan-Wigner transformation
\rightarrow Similarity transformation

$$
\begin{gathered}
H^{\prime \prime}=\sum_{j}[\underbrace{i\left(\sigma_{j}^{+} \sigma_{j+1}^{-}-\sigma_{j}^{-} \sigma_{j+1}^{+}\right)^{(1)}}_{h_{j, j+1}^{(1)}}+\underbrace{i\left(\sigma_{j}^{+} \sigma_{j+1}^{-}-\sigma_{j}^{-} \sigma_{j+1}^{+}\right)^{(2)}}_{h_{j, j+1}^{(2)}}+\frac{U}{4} \sigma_{j}^{z(1)} \sigma_{j}^{z(2)}] \\
\mathcal{H}=V \otimes V=\underbrace{W \otimes W}_{(1)} \otimes \underbrace{W \otimes W}_{(2)}
\end{gathered}
$$

$$
H^{\prime \prime}=\sum_{j}[\underbrace{i\left(\sigma_{j}^{+} \sigma_{j+1}^{-}-\sigma_{j}^{-} \sigma_{j+1}^{+}\right)^{(1)}}_{h_{j, j+1}{ }^{(1)}}+\underbrace{i\left(\sigma_{j}^{+} \sigma_{j+1}^{-}-\sigma_{j}^{-} \sigma_{j+1}^{+}\right)^{(2)}}_{h_{j, j+1}{ }^{(2)}}+\frac{U}{4} \sigma_{j}^{z(1)} \sigma_{j}^{z(2)}]
$$

by taking $U \rightarrow i U$ and renormalizing

$$
\begin{aligned}
\mathcal{L}= & \sum_{j}[-i \underbrace{\left(\sigma_{j}^{+} \sigma_{j+1}^{-}-\sigma_{j}^{-} \sigma_{j+1}^{+}\right)^{(1)}}_{h_{j, j+1}^{(1)}}+i \underbrace{\left[-\left(\sigma_{j}^{+} \sigma_{j+1}^{-}-\sigma_{j}^{-} \sigma_{j+1}^{+}\right)^{(2)}\right]}_{h_{j, j+1}^{(2) *}}+ \\
& U \underbrace{\sigma_{j}^{z(1)}}_{\ell_{j}^{(1)}} \underbrace{\sigma_{j}^{z(2)}}_{\ell_{j}^{(2) *}}+\kappa 1] \\
& \mathcal{L}=-i h^{(1)}+i h^{(2) *}+\ell^{(1)} \ell^{(2) *}-\frac{1}{2} \ell^{(1) \dagger} \ell^{(1)}-\frac{1}{2} \ell^{(2) T} \ell^{(2) *}
\end{aligned}
$$

Integrability allows to compute exactly the spectrum of the model, what we should find:

Spectrum

(studied by Medvedyeva, Essler, Prosen and also analytical solution known)

$$
\begin{gathered}
L=5 \\
U=1 / 8
\end{gathered}
$$

Relation with Hubbard model

$$
\begin{gathered}
\mathcal{L}=-i h^{(1)}+i h^{(2) *}+u\left[\ell^{(1)} \ell^{(2) *}-\frac{1}{2} \ell^{(1) \dagger} \ell^{(1)}-\frac{1}{2} \ell^{(2) T} \ell^{(2) *}\right] \\
\ell_{j, j+1, j+2}=\sigma_{j+1}^{z}+\kappa\left(\sigma_{j}^{x}+\sigma_{j+2}^{x}\right) \sigma_{j+1}^{x}-\kappa^{2} \sigma_{j+1}^{z} \sigma_{j}^{x} \sigma_{j+2}^{x}
\end{gathered}
$$

$u, \kappa \in \mathbb{R}$

- $\kappa=0$ Hubbard model
- $\kappa \neq 0$ Range 3 deformation of the Hubbard model!
- $\kappa= \pm 1$ Two $U(1)$ conserved charges

$$
\sum_{j}\left(\sigma_{j}^{\times} \sigma_{j+1}^{\times}\right)^{(1)}, \quad \sum_{j}\left(\sigma_{j}^{\times} \sigma_{j+1}^{\times}\right)^{(2)}
$$

Main differences with Hubbard:

- Interaction spans 3 site
- Particle number conservation is broken

Previous extensions and deformations of the Hubbard model had two common properties

- Hamiltonian was always nearest neighbour interaction
- (At least) two local $U(1)$ charges

Checked that the model is not a linear combination of \mathbb{Q}_{2} and \mathbb{Q}_{3} of a known model!

Is this model integrable?
\rightarrow YES! We found the R matrix

> [arXiv:2108.02053 Gambor, Pozsgay]

Important points:

- Only known long-range deformation of the Hubbard model
- un-usual functional dependence of the R-matrix
- First long-range integrable open quantum system model \downarrow
future:
Spectrum and analytical solution!

Conclusions and future work

What we saw:

- Approximations to write the Lindblad master equation
- Importance to study Lindblad integrable system
- New model: range 3 deformation of the Hubbard model

Possible future directions:

- Can we solve the new model by using one of the integrability techniques?
(done for model B3 2207.14193)
- Analyze Non-Equilibrium State of the new model
- Classification of spin chain with open boundary condition
- Can we understand more properties of the Lindblad superoperator by using random matrix theory techniques?

Conclusions and future work

What we saw:

- Approximations to write the Lindblad master equation
- Importance to study Lindblad integrable system
- New model: range 3 deformation of the Hubbard model

Possible future directions:

- Can we solve the new model by using one of the integrability techniques?
(done for model B3 2207.14193)
- Analyze Non-Equilibrium State of the new model
- Classification of spin chain with open boundary condition
- Can we understand more properties of the Lindblad superoperator by using random matrix theory techniques?

Thank you!

Why $\operatorname{Tr}_{E}\left[\tilde{E}_{i}(t) \tilde{\rho}_{E}(0)\right]=0$
First, we work in Schrodinger picture

$$
H_{l}=\sum S_{i} \otimes E_{i}
$$

We define

$$
H_{l}^{\prime}=\sum_{i} S_{i} \otimes\left(E_{i}-\left\langle E_{i}\right\rangle_{E}\right)=\sum_{i} S_{i} \otimes E_{i}-\sum_{i}\left\langle E_{i}\right\rangle_{E} S_{i} \otimes 1_{E}
$$

with $\left\langle E_{i}\right\rangle_{E}=\operatorname{Tr}_{E}\left(\rho_{E} E_{i}\right)$

$$
\left\langle H_{l}^{\prime}\right\rangle=\sum_{i} S_{i}\left(\left\langle E_{i}\right\rangle_{E}-\left\langle E_{i}\right\rangle_{E}\right)=0
$$

$H_{T}=H_{S} \otimes 1_{E}+1_{S} \otimes H_{E}+\alpha H_{l}=H_{S} \otimes 1_{E}+1_{S} \otimes H_{E}+\alpha\left(H_{l}^{\prime}+S_{i}\left\langle E_{i}\right\rangle_{E}\right)=$

$$
\left(H_{S}+\alpha \sum_{i}\left\langle E_{i}\right\rangle_{E} S_{i}\right) \otimes 1_{E}+1_{S} \otimes H_{E}+\alpha H_{l}^{\prime}
$$

So now $\left\langle H_{l}^{\prime}\right\rangle_{E}=0$

Symmetries

model	Hubbard	Extended
Discrete symmetry	parity invariance	$\left[H_{3}, \otimes_{j=1}^{L} \sigma_{j}^{z} \tau_{j}^{z}\right]=0$
	spin reflection	even $/$ odd spin conserved
	Shiba $\left[H_{1}, S^{\sigma} S^{\tau}\right]=0, L$ even	Shiba $\left[H_{1}, S^{\sigma} S^{\tau}\right]=0, L$ even
Continuous symmetry	$S U(2) \otimes S U(2)$	-

