

HALHF: A Hybrid Asymmetric Linear Higgs Factory

Richard D'Arcy

On behalf of Brian Foster and Carl Lindstrøm

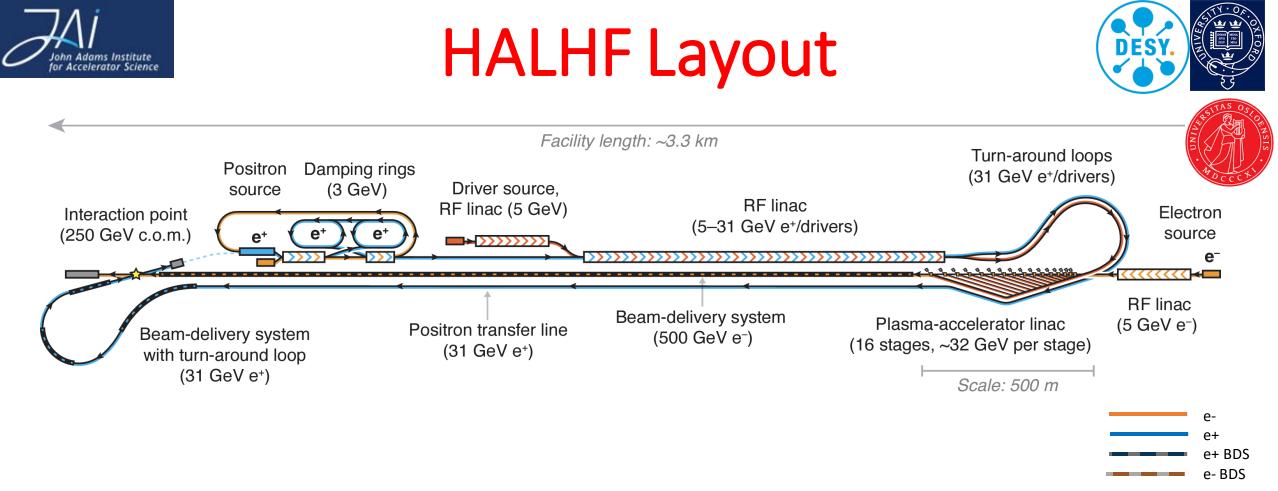
Hybrid Asymmetric Linear Higgs Factory (HALHF)

- DESY.
- The basic idea is: there are enough problems with a PWFA e⁻ accelerator; e⁺ is even more difficult. Bypass this for e⁺e⁻ collider by using conventional linac for e⁺.
- For this to be attractive financially, conventional linac must be low energy => asymmetric energy machine.
- This requirement led to (at least for us) unexpected directions – the more asymmetric the machine became, the better!

Relativistic Refresher

$$E_e E_p = s/4 \tag{1}$$

and


$$E_e + E_p = \gamma \sqrt{s},\tag{2}$$

where E_e and E_p are the electron and positron energies, respectively, govern the kinematics. These two equations link three variables; fixing one therefore determines the other two. For a given choice of positron and centre-ofmass energy, the boost becomes

$$\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right). \tag{3}$$

• It turns out that the optimum (see below) for $E_{cm} = 250 \text{ GeV}$ is to pick $E_e = 500 \text{ GeV}$, $E_p = 31 \text{ GeV}$, which gives a boost in the electron direction of $\gamma \sim 2.13$

R. D'Arcy, CLIC Workshop, 4/23

- Overall facility length ~3.3 km which will fit on ~any of the major (or even ex-major) pp labs.
- (NB. There is a service tunnel a la ILC (not shown))

HALHF Parameter Table

Machine parameters	Unit			$RF\ linac\ parameters$		
Center-of-mass energy	${\rm GeV}$	250		Average gradient	MV/m	25
Center-of-mass boost		2	2.13	Wall-plug-to-beam efficiency	%	50
Bunches per train		-	100	RF power usage	MW	47.5
Train repetition rate	Hz	-	100	Peak RF power per length	MW/m	21.4
Collision rate	kHz		10	Cooling req. per length	$\mathrm{kW/m}$	20
Luminosity	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	0.81	$\times 10^{34}$	PWFA linac parameters		
Peak luminosity (in top 1%)		5	7%			
Estimated total power usage	\mathbf{MW}	100		Number of stages	0	16
		_	+	Plasma density	cm^{-3}	1.5×10^{16}
Beam parameters		e^-	e^+	In-plasma acceleration gradient	/	6.4
Beam energy	${ m GeV}$	500	31.25	Average gradient (incl. optics)	$\mathrm{GV/m}$	1.2
Bunch population	10^{10}	1	4	Length per $stage^{a}$	m	5
Bunch length in linac (rms)	$\mu { m m}$	9	75	Energy gain per stage ^a	GeV	31.9
Bunch length at IP (rms)	μm	75		Initial injection energy	${ m GeV}$	5
Energy spread (rms)	%	C	0.15	Driver energy	${ m GeV}$	31.25
Horizontal emittance (norm.)	$\mu \mathrm{m}$	160	10	Driver bunch population	10^{10}	2.7
Vertical emittance (norm.)	μm	0.56	0.035	Driver bunch length (rms)	$\mu { m m}$	27.6
IP horizontal beta function	'nm	3.3		Driver average beam power	MW	21.4
IP vertical beta function	$\mathbf{m}\mathbf{m}$	0.1		Driver-to-wake efficiency	%	74
IP horizontal beam size (rms)	nm	729		Wake-to-beam efficiency	%	53
IP vertical beam size (rms)	nm	7.7		Driver-to-beam efficiency	%	39
Average beam power delivered		8	2	Wall-plug-to-beam efficiency	%	19.5
Average beam current	mA	0.016	0.064	Cooling req. per stage length	$\rm kW/m$	100

R. D'Arcy, CLIC Workshop, 4/23

 $^{\rm a}$ The first stage is half the length and has half the energy gain $_{5}$ of the other stages (see Section V. 4).

Energy Efficiency

- DESY.
- Asymmetric machines less energy efficient than symmetric energy lost "in accelerating the C.o.M." For equal bunch charges => 2.5 times more energy required for same C.o.M. energy.
- Can be reduced by introducing asymmetry into beam charges increase charge of low-energy beam and decrease high-energy s.t. $N^2 = N_e N_p$ constant => L conserved.
- $P/P_0 = (N_e E_e + N_p E_p)/(N*sqrt(s))$
- Optimum is to scale e^+ charge by sqrt(s)/(2E_p), i.e. factor ~ 4.
- Producing so many e⁺ problematic compromise by scaling by factor 2 (2*e⁺, ½* e⁻).
- Reduces energy increase to 1.25. Also reduces bunch charge in PWFA arm.

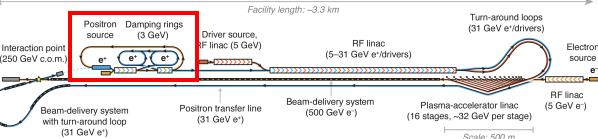
Emittance reduction

DESY.

- Geometric emittance of bunch scales with 1/E .
- Lower-energy e⁺ beam must have smaller β function at I.P. use β_x/β_y = 3.3/0.1 mm c.f. CLIC 4.0/0.1 mm.
- In contrast, high-energy e⁻ beam β function can be increased, which could reduce complexity of BDS.
- More interesting is to increase the e⁻ emittance AND reduce the β function => normalized emittance can be 16 times higher for the same L => increased tolerances in PWFA arm.
- Beam-beam focusing effect on L must be simulated with Guinea Pig.

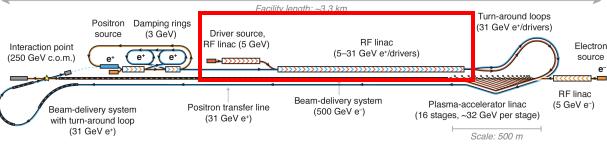
Luminosity estimation

• Guinea-Pig results:


E (GeV)	σ_z (µm)	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} (nm)$	$\beta_x \text{ (mm)}$	$\beta_y \ (\mathrm{mm})$	$\mathcal{L}~(\mu \mathrm{b}^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.58	1.18	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.32	0.92	2.13
31.3 / 500	75 / 75	2/2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.52	0.96	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.45	0.78	1.25
31.3 / 500	75 / 75	4 / 1	10 / 40	35 / 140	3.3 / 13	0.10 / 0.41	1.42	0.76	1.25
31.3 / 500	75 / 75	4 / 1	10 / 80	35 / 280	3.3 / 6.5	0.10 / 0.20	1.35	0.71	1.25
31.3 / 500	75 / 75	4 / 1	10 / 160	35 / 560	3.3 / 3.3	0.10 / 0.10	1.16	0.60	1.25

• ILC

- HALHF
- HALHF with reduced emittance for PWFA


Positron Source

- "Conventional" e⁺ sources are not trivial that for ILC, which has relaxed requirements wrt HALHF, still under development.
- e⁻ accelerated to 5 GeV and then collide with target to produce e+ which are accumulated, bunched and accelerated to 3 GeV and then damped in 2 rings (~identical to CLIC but bigger e⁺ bunch charge (4*10¹⁰ e⁺)).
- May be possible to use spent e⁺ bunch after collision rather than dedicated e⁻ bunch, with cost savings.

Main RF Linac

- Split in two parts: accelerate e⁻ PWFA drive beams from 1 → 5 GeV; then both e⁺ and e⁻ from 5 → 31.3 GeV.
- Assume acc. gradient of 25 MV/m \rightarrow 1.25 km long.
- Assume warm L-band linac if necessary CW SRF could be used but would increase cost and change bunch pattern.
- Before drivers, e⁺ bunch accelerated with 180° phase offset.

PWFA Linac

Driver source,

RF linac (5 GeV)

Positron transfer line

(31 GeV e+)

Facility length: ~3.3 km

RF linac

(5-31 GeV e+/drivers)

(500 GeV e-)

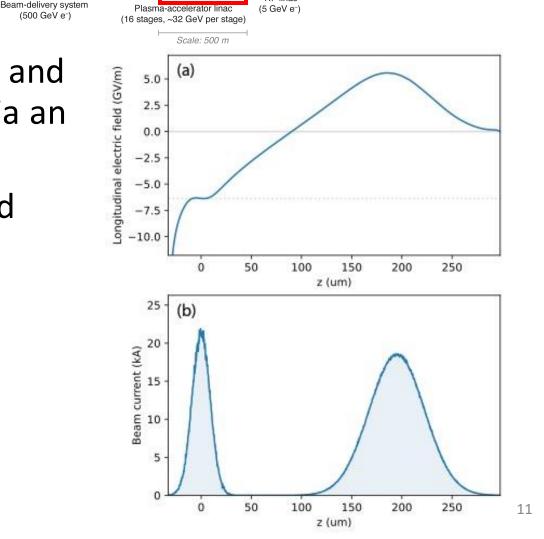
Drivers go through turn-around loops and are then distributed to plasma cells via an undulating delay chicane

Interaction point

(250 GeV c.o.m.

Positron Damping rings

e+


source

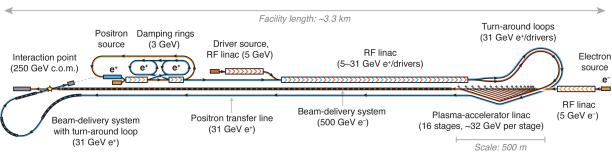
Beam-delivery system

with turn-around loop (31 GeV e+)

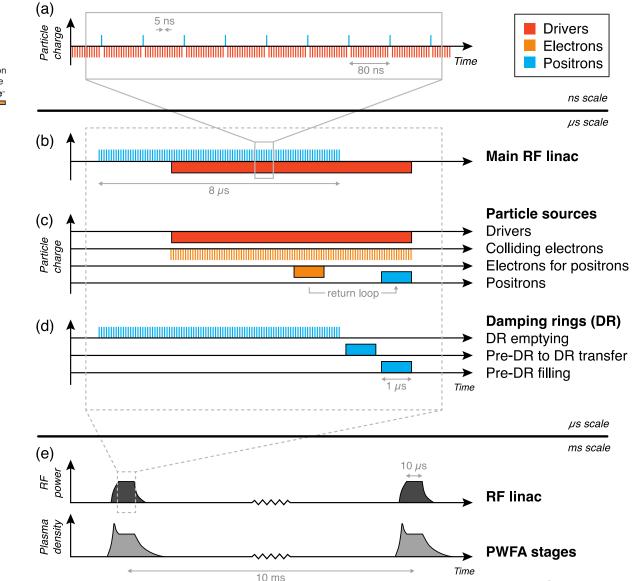
(3 GeV)

- Assuming TR ~ 1, e- bunch accelerated by 31 GeV/5m stage \rightarrow 16 stages with $\rho \sim 1.5*10^{16} \text{ cm}^{-3} \rightarrow 6.2 \text{ GV/m}.$
- Interstage optics needs ~ <26.5m> but scales with sqrt(E).
- Total length of PWFA linac = 410m.

Electron


source

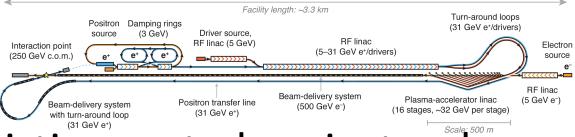
RF linac


Turn-around loops

(31 GeV e+/drivers)

Bunch-train pattern.

- Assuming L-band linac:
 - 80 ns colliding-bunch separation
 - 125 colliding bunches / 10 μs train
 - 100 trains / s
 - 12500 collisions / s



John Adams Institute for Accelerator Science

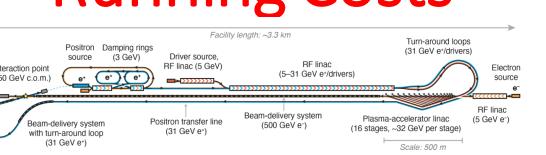
Cost Estimate

 Scale from existing costed projects wherever possible – mostly ILC – very rough – not better than 25% accurate.

Subsystem	Original	Comment	Scaling	HALHF	Fraction
	$\cos t$		factor	$\cos t$	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [69], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [47], scaled by length and multiplied by 6^{b}	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~ 4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam $dumps^e$	1	80	5%
Civil engineering	2,055	ILC cost, scaled to the ~ 10 km of tunnel required	0.21	476	31%
			Total	1,553	100%

^a Swiss deflator from $2018 \rightarrow 2012$ is approximately 1. Conversion uses Jan 1st 2012 CHF to \$ exchange rate of 0.978.

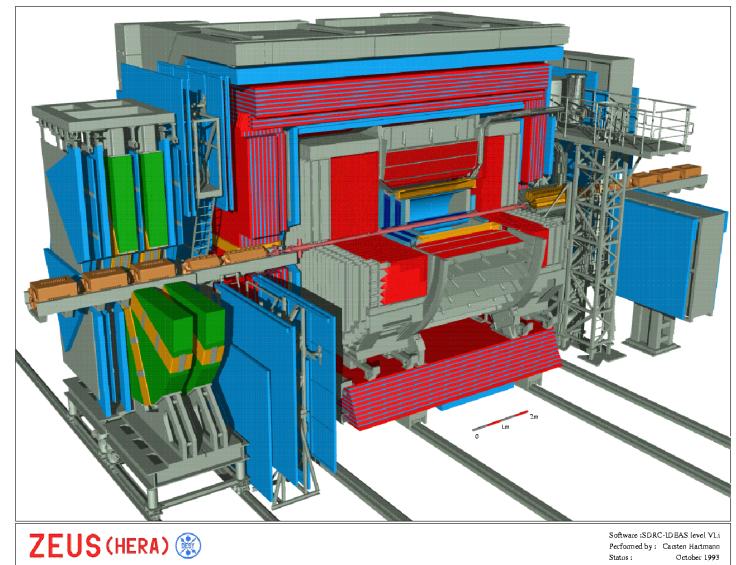
^b Cost of PWFA linac similar to ILC standard instrumented beam lines plus short plasma cells & gas systems plus kickers/chicanes. The factor 6 is a rough estimate of extra complexity involved.

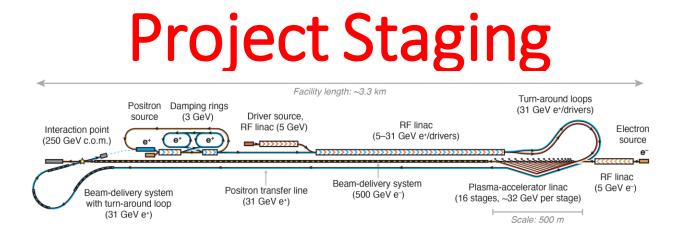

^c The positron transfer line, which is the full length of the electron BDS, dominates; this plus two turn-arounds, the electron transport to the positron source plus small additional beam lines are costed.

^d The HALHF length is scaled by \sqrt{E} and the cost assumed to scale with this length.

^e Length of excavation and beam line taken from European XFEL dump.

Running Costs

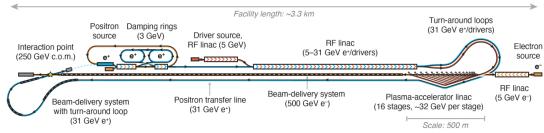

- Dominated by power to produce drive beams.
 - (100*16*4.3nC + 6.4nC)*100 → 47.5 MW@50% efficiency
- Damping rings: 2*10 MW.
- Cooling: assume similar to CLIC → 50% of RF power (corresponds to 20 kW/m).
- For magnets and other conventional sources assume ~9 MW.
- Gives total power requirement ~100 MW somewhat smaller than other proposals.


Experimentation at HALHF

- Boost is smaller than HERA - HERA detectors very similar to those at symmetric machines.
- Also H & Z heavy, so anyway more homogeneous.
- Measurement of L via Bhabha ($e^+e^- \rightarrow e^+e^-$) - rate reduced by $1/(\theta\gamma)^2$ & e^+ scattered into barrel – but not a problem. Singles rate good for machine optimisation

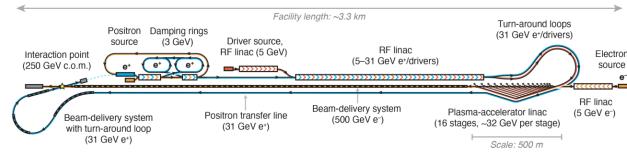
- Any project of this size and scope needs a ~10% prototype. A few cells producing useful currents of e⁻ at few 100 GeV would be very interesting for SFQED.
- Once satisfactory performance demonstrated, remaining elements can be constructed and then running at Z can be used to tune up machine and detector.

- HALHF not competitive in L with circular machines at Z and gets more expensive and complicated at high E. Keep e⁺ energy same increases γ as E increases – experiments more and more difficult; increasing e⁺ energy to keep γ ~ constant gives expensive linac.
- However, getting to ttbar threshold with same e⁺ energy => $E(e_{-}) \sim 1$ TeV and $\gamma \sim 2.9$, still less than at HERA.
- Alternatively, keeping γ constant by lengthening conventional linac (space allocated and tunnel built already in anticipation) needs E(e⁺) ~ 44 GeV and E(e⁻) ~ 700 GeV.



- $\gamma \gamma$ collider also avoids e⁺ PWFA acceleration. Switch out e⁺ source and construct another PWFA linac.
- Produce e⁺ polarization via ILC-like scheme. Would require bypass in PWFA linac at ~ 250 GeV into wiggler and rotating target – but wiggler very long to get ~ 15% e+ polarization. Important for physics but halves L (unless linac more heavily loaded).

Summary & Conclusion



- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires significant R&D.
- Conventional design work needed: DR with high bunch charge; heavily loaded linac; BDS...
- PWFA R&D: long hot cells & cooling; high-charge beams; high rep. rate; staging of plasma sources; jitter...
- Several (!) years of work required.

Summary & Conclusion

- BUT if R&D successful, HALHF is the first e+e- Higgs Factory proposal that costs ~ same as projects that can be built inside a national programme (cf XFEL, EIC, etc.)
- Success would be major achievement for both PWFA and particle physics
- For accelerator physicists don't be afraid of the plasma; for particle physicists – don't be afraid of the boost; for plasma-wakefield community – come up with the goods!