Compton Polarimeter: IP

Nickolai Muchnoi

www.muchnoi.net

FCC-FS EPOL group and FCCIS WP2. 5 meeting 19

Gaussian beam of laser radiation

$\sigma(z)$ is the radius where intensity $I(z, r)$ falls to $1 /$ e of its axial value:

$$
\sigma(z)=\sigma_{0} \sqrt{1+\left(z / z_{R}\right)^{2}}=\theta_{0} \sqrt{z^{2}+z_{R}^{2}}
$$

- σ_{0} is the beam radius at waist,
$>z_{R}=\frac{4 \pi \sigma_{0}^{2}}{\lambda_{0}}$ is the Rayleigh length,
- $\theta_{0}=\frac{\sigma_{0}}{z_{R}}$ is the far field divergence.

$$
\sigma(z)=\sqrt{\epsilon \beta(z)}
$$

- $\epsilon=\frac{\lambda_{0}}{4 \pi}$ is the beam emittance,
- $\beta(z)=\beta_{0}+\frac{z^{2}}{\beta_{0}}$ is the β-function,
- $\beta_{0} \equiv z_{R}, \sigma_{0}=\sqrt{\epsilon \beta_{0}}, \theta_{0}=\sqrt{\frac{\epsilon}{\beta_{0}}}$.

$$
I(z, r)=\frac{P}{2 \pi \sigma^{2}(z)} \exp \left(-\frac{r^{2}}{2 \sigma^{2}(z)}\right)\left[\mathrm{W} \cdot \mathrm{~cm}^{-2}\right]
$$

$$
\text { For } \lambda_{0}=532 \mathrm{~nm} \epsilon=42 \mathrm{~nm} . \quad \text { For FCCee } \epsilon_{x} \simeq 0.5 \mathrm{~nm}, \epsilon_{y} \simeq 1 \mathrm{pm} .
$$

IP with CW laser: $\alpha / \theta_{0}=3$

Backscattering of CW laser radiation

For $\alpha=0$ the probability of electron scattering depends on laser power P and the $\pm L$ segment, centered at $z=0$, on which the electron trajectory coincides with the z-axis:

$$
W=\frac{P}{P_{c}} \cdot \frac{\arctan \left(L / z_{R}\right)}{\pi / 2}, \text { where } P_{c}=\frac{h c^{2}}{4 \pi \sigma_{\mathrm{T}}} \simeq 0.7 \cdot 10^{11}[\mathbf{W}] .
$$

Interaction angle α affects the following scattering parameters:

- In the lab frame the frequency of laser photon, seen by relativistic electron, will be smaller: $\omega_{0}^{*}=\omega_{0} \cos ^{2}(\alpha / 2)$.
- Decrease in reference frequency accuracy: $\frac{\Delta \omega_{0}^{*}}{\omega_{0}^{*}}=\frac{\Delta \omega_{0}}{\omega_{0}} \oplus \Delta \alpha \tan \frac{\alpha}{2}$.
- Overlap with laser target (could be improved by short laser pulses).
- Photon target density in the lab frame: $\rho^{*}=2 \rho \cos ^{2}(\alpha / 2)$.

IP with pulsed laser: $\alpha / \theta_{0}=3, c \tau / z_{R}=1$

Backscattering of pulsed laser radiation

For $\alpha=0$ and laser pulse length $\sigma_{z}=c \tau \ll z_{R}$ the probability of electron scattering is determined by the pulse energy E and the Rayleigh length z_{R} :

$$
W_{0}=\frac{E / z_{R}}{U_{c}}, \text { where } U_{c}=\frac{h c}{2 \sigma_{T}} \simeq 1.5\left[\mathrm{~J} \cdot \mathrm{~mm}^{-1}\right] .
$$

Scattering efficiency W / W_{0} :

Use of above considerations

1. Approximate transverse $e^{ \pm}$bunch sizes are $\sigma_{x} \simeq 0.5 \mathrm{~mm}, \sigma_{y} \simeq 0.02 \mathrm{~mm}$.
2. Assume a bunch of $10^{10} e^{-} / e^{+}$circulating with frequency 3 kHz .
3. Assume we want $\simeq 100$ scattering events per turn ($3 \cdot 10^{5}$ per second).
4. The scattering probability $W \simeq 10^{-8}$ per turn ($\simeq 3 \cdot 10^{-5}$ per second).
5. The beam lifetime due to scattering is about $3.3 \cdot 10^{4}$ seconds ($\simeq 10$ hours).
6. Assume we have a laser with $E=1 \mathrm{~mJ}$ pulse energy.
7. With "zero" pulse length we need $z_{R}=10^{-3} / 1.5 \cdot 10^{-8} \mathrm{~mm} \simeq 67 \mathrm{~m}$.
8. Green laser light with $\lambda_{0}=532 \mathrm{~nm}$ has emittance $\epsilon=42 \mathrm{~nm}$.
9. Corresponding waist size $\sigma_{0}=\sqrt{\epsilon z_{R}} \simeq 1.7 \mathrm{~mm}\left(\simeq 3 \times \sigma_{x}\right)$.
10. Far field divergence $\theta_{0}=\sqrt{\epsilon / z_{R}} \simeq 0.025 \mathrm{mrad}$ (misprint in TUPBB03'18).
11. Pulse length $\tau=1 \mathrm{~ns}\left(\sigma_{z}=c \tau=30 \mathrm{~cm}\right)$ gives $\sigma_{z} / z_{R} \simeq 0.005$.
12. With $\alpha=100 \cdot \theta_{0} \simeq 2.5 \mathrm{mrad} W / W_{0}>90 \%$.

Use of above considerations: continue

13. "Zero beam size" approximation is satisfied to a sufficient extent.
14. Compton cross section at $E=45 \mathrm{GeV}$ is $\simeq 50 \%$ from σ_{T} :

We obtain 50 scattered photons per pulse out of the planned 100.
15. Perhaps we want to have not 100 but 500 (2 hours beam lifetime)?
16. Can we increase efficiency by 10 times?
17. Possible solutions:

- Increase pulse energy.
- Improve focusing i.e. decrease z_{R}.
- Use elliptical optics: keep horizontal z_{R} and make vertical $z_{R} / 100\left(\sigma_{0} / 10\right)$.

$$
W_{0}=\frac{E / U_{c}}{\sqrt{R_{x} R_{y}}}, \text { where } U_{c} \simeq 1.5\left[\mathrm{~J} \cdot \mathrm{~mm}^{-1}\right] .
$$

18. $R_{x} \simeq 70 \mathrm{~m}, R_{y} \simeq 0.7 \mathrm{~m}$ gives factor $\times 10$ and $\theta_{0}^{y}=10 \cdot \theta_{0}^{x}=0.25 \mathrm{mrad}$.

Use of above considerations: continue

19. Assume the vacuum mirror installed 50 m downstream IP:

- laser spot sizes: $\sigma_{x}=2.1 \mathrm{~mm}, \sigma_{y}=4.0 \mathrm{~mm}$.
- mirror center-to-beam separation required $\Delta_{x}=2.5 \cdot 50=125 \mathrm{~mm}$.

20. Transverse dimensions at IP:

- electron: $\sigma_{x}=0.5 \mathrm{~mm}, \sigma_{y}=0.02 \mathrm{~mm}$.
- photon: $\sigma_{x}=1.7 \mathrm{~mm}, \sigma_{y}=0.17 \mathrm{~mm}$.

Summary

- Few mrads interaction angle was considered by a simple method for the scattering efficiency estimation.
- The required scattering rate could be achieved with $\simeq 1 \mathrm{~mJ}$ pulse energy.
- Pulse shorter than 1 ns do not increase the efficiency with $\alpha \simeq 2.5 \mathrm{mrad}$.
- Aurélien's suggestion: pulse RMS width $\tau=10 \mathrm{ps}$.

Spectrum width for head-on electron: $\frac{\sigma_{\omega_{0}}}{\omega_{0}}=\frac{\lambda_{0}}{\pi c \tau} \simeq 56 \mathrm{ppm}\left(\lambda_{0}=532 \mathrm{~nm}\right)$. Absolute scale $\frac{\Delta \lambda_{0}}{\left\langle\lambda_{0}\right\rangle} \simeq 1 \mathrm{ppm}$. These parameters are quite acceptable.

- With $\alpha=1^{\circ}$ and $\Delta \alpha=0.1^{\circ}$ one has $\frac{\Delta \lambda_{0}}{\left\langle\lambda_{0}\right\rangle} \simeq 8 \mathrm{ppm}$, so $\Delta \alpha=0.01^{\circ}$ is OK.
- Q-switched laser is a simple solution for 1 bunch (3 kHz) operation, but it is definitely not suitable for colliding bunch polarization control.

