Compton Polarimeter: IP

Nickolai Muchnoi

www.muchnoi.net

FCC-FS EPOL group and FCCIS WP2.5 meeting 19

Gaussian beam of laser radiation

 $\sigma(z)$ is the radius where intensity I(z,r) falls to 1/e of its axial value:

$$\sigma(z) = \sigma_0 \sqrt{1 + (z/z_R)^2} = \theta_0 \sqrt{z^2 + z_R^2}$$

▶ σ₀ is the beam radius at waist,
 ▶ z_R = 4πσ₀²/λ₀ is the Rayleigh length,
 ▶ θ₀ = σ₀/z_R is the far field divergence.

 $\sigma(z) = \sqrt{\epsilon \beta(z)}$

•
$$\epsilon = \frac{\lambda_0}{4\pi}$$
 is the beam emittance,
• $\beta(z) = \beta_0 + \frac{z^2}{\beta_0}$ is the β -function,
• $\beta = z - \frac{z}{2} -$

$$\blacktriangleright \ \beta_0 \equiv z_R, \ \sigma_0 = \sqrt{\epsilon\beta_0}, \ \theta_0 = \sqrt{\frac{\epsilon}{\beta_0}}.$$

$$I(z,r) = \frac{P}{2\pi\sigma^2(z)} \exp\left(-\frac{r^2}{2\sigma^2(z)}\right) \ \left[\mathbf{W} \cdot \mathbf{cm}^{-2}\right]$$

For $\lambda_0 = 532$ nm $\epsilon = 42$ nm.

For FCCee $\epsilon_x \simeq 0.5$ nm, $\epsilon_y \simeq 1$ pm.

IP with CW laser: $\alpha/\theta_0 = 3$

Backscattering of CW laser radiation

For $\alpha = 0$ the probability of electron scattering depends on laser power P and the $\pm L$ segment, centered at z = 0, on which the electron trajectory coincides with the z - axis:

$$W = rac{P}{P_c} \cdot rac{rctan(L/z_R)}{\pi/2}$$
 , where $P_c = rac{hc^2}{4\pi \, \sigma_{ au}} \simeq 0.7 \cdot 10^{11} \, \, [W]$.

Interaction angle α affects the following scattering parameters:

- ► In the lab frame the frequency of laser photon, seen by relativistic electron, will be smaller: $\omega_0^* = \omega_0 \cos^2(\alpha/2)$.
- Decrease in reference frequency accuracy: $\frac{\Delta \omega_0^*}{\omega_0^*} = \frac{\Delta \omega_0}{\omega_0} \oplus \Delta \alpha \tan \frac{\alpha}{2}$.
- Overlap with laser target (could be improved by short laser pulses).
- Photon target density in the lab frame: $\rho^* = 2\rho \cos^2(\alpha/2)$.

IP with pulsed laser: $\alpha/\theta_0 = 3, c\tau/z_R = 1$

Backscattering of pulsed laser radiation

For $\alpha = 0$ and laser pulse length $\sigma_z = c\tau \ll z_R$ the probability of electron scattering is determined by the pulse energy E and the Rayleigh length z_R :

$$W_0 = rac{E/z_R}{U_c}$$
 , where $U_c = rac{hc}{2\,\sigma_{ au}} \simeq 1.5 \left[{f J} \cdot {f mm^{-1}}
ight]$.

Scattering efficiency W/W_0 :

March 6, 2023

Use of above considerations

- 1. Approximate transverse e^{\pm} bunch sizes are $\sigma_x \simeq 0.5$ mm, $\sigma_y \simeq 0.02$ mm.
- 2. Assume a bunch of $10^{10} \text{ e}^{-}/\text{e}^{+}$ circulating with frequency 3 kHz.
- 3. Assume we want $\simeq 100$ scattering events per turn ($3 \cdot 10^5$ per second).
- 4. The scattering probability $W \simeq 10^{-8}$ per turn ($\simeq 3 \cdot 10^{-5}$ per second).
- 5. The beam lifetime due to scattering is about $3.3 \cdot 10^4$ seconds ($\simeq 10$ hours).
- 6. Assume we have a laser with E = 1 mJ pulse energy.
- 7. With "zero" pulse length we need $z_R = 10^{-3}/1.5 \cdot 10^{-8}$ mm $\simeq 67$ m.
- 8. Green laser light with $\lambda_0 = 532$ nm has emittance $\epsilon = 42$ nm.
- 9. Corresponding waist size $\sigma_0 = \sqrt{\epsilon z_R} \simeq 1.7$ mm ($\simeq 3 \times \sigma_x$).
- 10. Far field divergence $\theta_0 = \sqrt{\epsilon/z_R} \simeq 0.025$ mrad (misprint in TUPBB03'18).
- 11. Pulse length $\tau = 1$ ns ($\sigma_z = c\tau = 30$ cm) gives $\sigma_z/z_R \simeq 0.005$.
- 12. With $\alpha = 100 \cdot \theta_0 \simeq 2.5 \text{ mrad } W/W_0 > 90\%$.

Use of above considerations: continue

- 13. "Zero beam size" approximation is satisfied to a sufficient extent.
- 14. Compton cross section at E = 45 GeV is $\simeq 50\%$ from σ_{τ} : We obtain 50 scattered photons per pulse out of the planned 100.
- 15. Perhaps we want to have not 100 but 500 (2 hours beam lifetime)?
- 16. Can we increase efficiency by 10 times?
- 17. Possible solutions:
 - ► Increase pulse energy.
 - ▶ Improve focusing i.e. decrease z_R .
 - Use elliptical optics: keep horizontal z_R and make vertical $z_R/100$ ($\sigma_0/10$).

$$W_0 = rac{E/U_c}{\sqrt{R_x R_y}}$$
 , where $U_c \simeq 1.5 \left[{f J} \cdot {f mm}^{-1}
ight]$.

18. $R_x \simeq 70$ m, $R_y \simeq 0.7$ m gives factor $\times 10$ and $\theta_0^y = 10 \cdot \theta_0^x = 0.25$ mrad.

Use of above considerations: continue

- 19. Assume the vacuum mirror installed 50 m downstream IP:
 - ▶ laser spot sizes: $\sigma_x = 2.1 \text{ mm}, \sigma_y = 4.0 \text{ mm}.$
 - mirror center-to-beam separation required $\Delta_x = 2.5 \cdot 50 = 125$ mm.
- 20. Transverse dimensions at IP:
 - electron: $\sigma_x = 0.5$ mm, $\sigma_y = 0.02$ mm.

Summary

- Few mrads interaction angle was considered by a simple method for the scattering efficiency estimation.
- \blacktriangleright The required scattering rate could be achieved with $\simeq 1$ mJ pulse energy.
- ▶ Pulse shorter than 1 ns do not increase the efficiency with $\alpha \simeq 2.5$ mrad.
- Aurélien's suggestion: pulse RMS width $\tau = 10$ ps. Spectrum width for head-on electron: $\frac{\sigma_{\omega_0}}{\omega_0} = \frac{\lambda_0}{\pi c \tau} \simeq 56$ ppm ($\lambda_0 = 532$ nm). Absolute scale $\frac{\Delta \lambda_0}{\langle \lambda_0 \rangle} \simeq 1$ ppm. These parameters are quite acceptable.

• With $\alpha = 1^{\circ}$ and $\Delta \alpha = 0.1^{\circ}$ one has $\frac{\Delta \lambda_0}{\langle \lambda_0 \rangle} \simeq 8$ ppm, so $\Delta \alpha = 0.01^{\circ}$ is OK.

 Q-switched laser is a simple solution for 1 bunch (3kHz) operation, but it is definitely not suitable for colliding bunch polarization control.