ATLAS Data Flows & Rucio

Mario.Lassnig@cern.ch

DIRAC & Rucio Workshop 2023-10-16 https://indico.cern.ch/event/1252369

A candidate event display for the production of a Higgs boson decaying to two b-quarks (blue cones), in association with a W boson decaying to a muon (red) and a neutrino. The neutrino leaves the detector unseen, and is reconstructed through the missing transverse energy (dashed line). (Image: ATLAS Collaboration/CERN)

m_{bb} [GeV]

ATLAS computing usage

ATLAS computing usage

Basic experiment data flows 1/2

Original ATLAS computing model designed as static **clouds**

ATLAS Clouds ≠ "Cloud computing"
Mostly national or geographical groupings of sites
Common funding agencies
Support often using the same language

Model had a series of shortcomings

Individual tasks **inflexibly executed** within a static cloud All tasks **output aggregated** at the 10 Tier-1s The **Tier-2 storage** was not optimally exploited **High priority tasks** were **occasionally stuck** at small clouds

Basic experiment data flows 2/2

WLCG networks have evolved significantly in the last decades

Limiting transfers within a single cloud no longer necessary Now single WORLD cloud site concept

Nucleus

Any stable site can aggregate the output of a task Site can be manually assigned as a nucleus

Satellites

Process the jobs and send the output to the nucleus Defined dynamically for each task No longer confined inside the original cloud

Currently around **130 active sites** used by ATLAS

Experiment job types

Global shares are employed to allocate the available resources among the activities

Done on **agreement** between the various production and physics groups **Hierarchical** implementation

Related activities have the opportunity to inherit unused resources

Essentially two categories of jobs

ProductionData reprocessingEvent generation / Simulation / ReconstructionGroup production

Analysis User analysis Group analysis

The main activity at a given time can depend on many things

Data **reprocessing** or Monte Carlo **production** campaigns **Conference** deadlines, need for an increase for user analysis Global **pandemics**

Data transfer rates

A few numbers showing the ATLAS scale

1B+ files, 800+ PB of data, 400+ Hz interaction 120 data centres, 5 HPCs, 3 clouds, 1000+ users 1.5+ Exabytes/year transferred

3+ Exabytes/year uploaded & downloaded

Increase 1+ order of magnitude for HL-LHC

750P

500P

250P

Thursday, 12 Oct 2023

• Bytes: 821 766 309 649 510 300

10/01

Data management

Rucio handles all data management for ATLAS

Creation, location, transfer, deletion, annotation, and access Orchestration of dataflows with both low-level and high-level policies Coherent interface required to allow smooth data handling for production and users We also have data management internal flows (recovery, rebalancing, ...)

ATLAS sites are not homogeneous

Different storage, different protocols Abstracted by FTS, GFAL and Davix

ATLAS deployment

Two FTS servers in production Plus regularly the pilot & test services

Average file flow rate

1+ million successful transfers per day
 200k failed transfers per day
 Constant background failures
 Biased because of quick retries
 Peaks mostly site configuration problems

ATLAS Data Flows & Rucio :: Mario Lassnig

Data policies

Vast majority via subscriptions

RAW Export DAODs to T2 disks T0 spillover

• • •

Special use cases

Replication **P**olicy on the **G**rid e.g. migrate small files to T2

RPG functionality

Being merged into subscriptions Going away hopefully soon

Subscriptions				
Show 100 - entries		{		MigrateArchiveData.conf
Name	1 01	"scope": ["mc.* .*TeV"	1. Ohuda	MigrateArchiveMC.conf
Name	- OK	1	÷ Stuck	
Tunctional Test	1109792	"datatype": [2/22	MigrateDataDAOD.conf
Backup from INEN-T1	2609	"DAOD .*"	0	
data DAOD to pon-nucleus disk	133278	1.	26	MigrateMCDAOD.conf
DATA TAGS to CEBN DATADISK	265	"transient": [0	
data15_13TeV TAGS p2685 to CEBN DATADISK	92	"None".	0	MigrateSmallFilesToT2.conf
Enhanced bias for HI T	110	"0"	0	• •
EVNT to 2 T1s	31629	1.	0	MigrateToContainerMC conf
EVNT to 2 T1s 1 year	24529	"prod_step": [0	- migraterocontainermeteon
EVNT to T0 with 1 year lifetime	12848	"merge"	0	AligratoToContainorMC15Evet conf
group.phys-gener to CERN-PROD PHYS-GENER	5344	"deriv"	0	Migrate rocontainer wich sevint.com
MC TAGS to CERN DATADISK	714	1	0	
MC15 DAOD to T2 disk	30434	"did type": [4	Migrate to TapeData.com
mc15_13TeV TAGS p2671 to CERN DATADISK	6	"DATASET"	0	
mc15_13TeV TAGS to CERN DATADISK	101	I	0	State to tapeDataAOD.conf
mc15_13TeV TAGs to CERN DATADISK	1	"split rule", true	0	telles a real cases of
MC16 NTUP_PILEUP datasets to CERN DATADISK	179090	i spere_rute : true	0	MigrateToTapeMC.conf
non-T0 HIST to CERN disk	761	J	0	
PHYS-GENER_inputs	65968	0	0	MigrateToTapeMCReconAOD.conf
sit*PAC archival to TAPE	1	0	0	
T0 AOD to non-nucleur	400	^	0	🌣 MigrateToTapeMCT01.conf
T0 AOD to non-nucleu				
TO AOD to nucleus "lifetime": 25	92000			MigrateToTapeMCT2.conf
TO AOD to nucleus (D "copies": 1.	52000,			
To AOD to nucleus (To "rse expressio	n": "(tier<3&	type=DATADISK&datapolicyanalysis=true&data	policynucleus=false)	MigrateToTapeValid.conf
TO DAOD to T1 disk "activity": "D	ata Consolida	ition",		
TO DESD to T1 tape "weight": "fre	espace"			M README.md
T0 DRAW to T1 disk				
T0 DRAW to T1 tape				P RPG.conf.template
T0 HIST to CERN disk	16544	1	0	U
T0 RAW to T1 tape	73835	2	1	RPG crontab
T0 spillover to CERN-PROD_DERIVED	25	0	0	
Validation HITS and NTUP	6717	0	0	PRG pv
Validation RDO, ESD, AOD and HIST	2199	0	0	re krupy

Central data management operations

Following up transfer issues Rucio deployment operations User/client support

Getting disk space under control

Obsoletion campaigns

Lifetime models (and exceptions)

Ops dashboard 1/2

397 7.01 K

2023-10-16

ATLAS Data Flows & Rucio :: Mario Lassnig

Ops dashboard 2/2

Deployment / usage

2023-10-16

ATLAS Data Flows & Rucio :: Mario Lassnig

14

HL-HLC Data Roadmap

Next data challenge jumps from 10% (960 Gbps) to 25% (2400 Gbps) of HL-LHC needs

Large single step increase of volume in the decade-long plan - had to reduce from 30% Need to reconsider due to new HL-LHC schedule and hardware purchasing

With communities beyond WLCG, such as DUNE, SKA, Belle II, JUNO, ... and the NRENs

We spend a considerable effort to share our data management stack Allows us to **work together** on these shared challenges

One interesting point: For the middleware stack, the volume is rather irrelevant

Number of files total, and number of files processed is the key metrics ATLAS stance on **big files vs. lots of files** not yet decided

Transfer throughput per destination Tier

Year

2023-10-16

Death by spreadsheet

DC24 is coming in February

Lots of lessons learnt from previous Data Challenge

Rucio did very well (and so did FTS!) However, injection had a distinct sawtooth-pattern Multi-hour cycle now revised to 15 minutes

Updated rates and new methodology

Original distinction in minimal and flexible model Adapted to reality

> Tier-0 export flows match LHC machine rates Tier-1 and Tier-2 flows match processing

Ramp up challenges with new Rucio injection tools

Expect first plots at Data Challenge workshops

	100.0	1 5 3	1.10	125 0	Defaul.	- <u>n</u>	+ B	1 0	4 9	⊞ 8	· E · ·	4 • M •	A . 6		7.8-	2 .	*										
· fc. meanth-series,	2 - Section)																										
A	đ.,		Ð	e		6	8			- K		w	N		9	0		. 6					×			AA.	Að
lodei (1 = minimal, 2 = flexible	0 2	Al normal	transfers y	early avg	. 1	Scale TO e	FALSE	AI T2 ste	FALSE	T2 uplink (C	1	2 cont fact	3.65	T2 capped	500%	Fliesize (M	3072	Del. int. (h)	24								
	-	Match TO-	export with	T1 ogress	(really - 2	022 data taki	ng T1 ogre	ics was 3.2	2x T0 export	- 554Gbps	275.9 - 276	5.0															_
Table: DC24 (are: ingress	(ogress)	1	gress (Gb)	s)	-	Egress	(Gb/s)		Total Gib/s /	L bandwidth	She Vik	N (Gb/s)	DATADISH	DATADISK	HL-LHC MIN	Ingress	Egress	increas	ed ingress	(Gb/b)	inject	ted egress	(Gb/s)	50300	Deletions	Space (TB)	To chateno
Sile	Cloud	TO-+TD	T1-→T0	T2→T0	TO exp.	TO-+TO	rot1 ne	T0-+T2	S ingress	> egress	Total	ATLAS frac	CON [THI	THE [TH]	(agaess)	PCT6358	18creace	T0-→T0	T1→T0	T2→T0	T0-→T0	T0-+T1	T0.→T2	Tecon	pernour	(Sereeser of	factor
The cases	CERN	24.4	30.3	27.9	204	24.4	00.2	66.7	01.7	303.1	2100	211	23101	204	270	3.5	9.7	13.00	25.50	20.76	13.00	200.04	00.30	072	9063	672 (100)	0.9
T05 (%)	-	275	43%	30%	100	75	1004	180	1	302.1	2100		13101	104	110												
102(4)	-	1.10	47.5	5070		9 7.9	10.0	100	3																		
Table: DC24			Ingress	(8:60)		E)	ress (Obh	5)	Total Ob/S I	5 bandwidth	Stie WAT	N (03/5)	DATACISH	DATADISK	HLUHC min	Ingress	Ecress	Increase	ed ingress	(01/5)	Inject	led egress	(08/5)	Space	Deletions	Space (TR)	T1 challeng
Sile	Cloud	TO exp.	T0→T1 ne	$T1 \rightarrow T1$	T2→T1	T1→T0	$T1 \rightarrow T1$	T1→T2	Σ ingress	E egress	70(2)	ATLAS 110	size [TB]	free [TB]	(nåegrose)	Increase	Increase	T0-+T1	T1-+T1	T2-+T1	T1-→T0	T1-+T1	T1→T2	TB/24h	per hour	(deletions)h)	logress facts
NLATLAS	US.	51.6	5.4	25.4	15.	1 5.0	45.3		106.5	120.0	400	400	29915	4257		6.1	4.5	55.27	19.53	12.65	6.73	35.71	49.90	954	13060	954 (14k)	0.5
1KLC62	DE	25.2	6.5	33.5	19.	5 5.0	30.0		55.3	64.0	400	162	16750	2550		5.5	5.2	30.90	25.29	14.45	3.09	24.00	23.53	700	10751	755 (11k)	5.4
2P3-CC	FR	26.9	6.1	27.2	20.	3 4.5	25.0	35.5	50.5	00.0	200	93	15532	2515		5.5	4.4	31.50	19.96	14.53	3.09	19.63	25.31	702	\$960	702 (10k)	5.4
EN.T1	IT	18,7	5.3	15.9	12	1 3.2	20.7		54.0	45.0	200	51	9415	299		6.2	5.6	23.23	12.15	9.64		95.70	20,13	455	6503	455 (7k)	7.9
0012414	ND	4.3	11.7	34.7	25.	5 3.2	90.6	16.1	76.5	32.0	200	167	23335	2920	10	4.6	1.5	14.34	26.29	19.40	1.08	2.01	6.00	634	5014	634 (Sk)	0.6
ADA MATERS	NL	10.5	4.5	22.5	16.	0 2.0	13.4	14.3	53.5	30.0	400	201	0100	400	10	5.7	4.4	14.35	\$5.47	12.13	1.01	90.00	11.22	474	6747	474 (7k)	0.6
1	E0	10.7	2.3	8.2	7.	9 1.4	0.0	14.7	28.7	28.0	200	00	4900	100	- 15	0.0	0.4	12.67	6.30	0.00	1.90	8.01	12.75	200	3603	250 (40)	0.1
Parasold	UN	02.0	0.4	32.0	10	1 63	- 24.7		07.0	rd.0	+00	-00	20070	4/27	35	4.0	3.2	7.80	12.52	12.10	0.00	21.00	0.30	/32	10400	130,000	4.2
RUNFLCOZ	64	27.4	2.0	17.5	1 12		23 *		00.1	00.0	100	100	13000	940		1.0	10.0	29.45	12.77	8.33	4,91	20.44	24 ***	500	1020	543 (75)	14.0
T15 (892)	1 1	214.5	55.2	224.7	152	3 39.3	224.7	276.0	047.5	540.0	2500	1045	145451	21350	270	ave 5.9	ave 5.1	200.00	154 50	112.42	29.35	151.91	213.75	0070	20724	5676 (\$1k)	ava 6.9
T1s (%)	-	335	12	35%	241	7%	42%	51%		5 Al T11	12 egress 27	6.0Gops of	hould match	T1-T2 inc	ress 275.9Gb	ps in the re	at table the	ning by T2	correction t	lactor)			-	0010			
	-					-																	-				
Table: DC24		Nucleum	1	gress (Gb	(K)	6	ress (Go)	6)	Total Gib/s	5 bandwidth	Sile Via	N (GD/S)	DATADISK	DATADION	Use site	Ingress	Egress	Increase	ed ingress	(G2/5)	Inject	ted egress	(Gale)	50300	Deletions	Space (TB)	T2 challeng
Sibe	Cloud		T0T2	T1-+T2	T2-+T2	T2-+T0	T2-+T1	12-12	2 ingress	Sectors	Total	ATLAS TRO	size [TB]	nee (TB)	10/ DC24	TICTERSO	100/ease	T0:+T2	T1-+T2	12-172	T2T0	T2-+T1	12-12	18/24h	perhour	1066011570	mpr. facto
VICTORIA WESTGRID T2	CA		0.2	1.4	2	0 0.1	0.5	0.5	2.5	1.5	100	100	1907	1262	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (0k)	0.0
INTERNATIAS	CA	-	0.0	0.1	0.	0.0	0.2	0.2	0.1	0.4	20	20	1275	1150	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (0k)	0.0
WATERLOD-T2	CA	-	0.1	0.5	0.	7 0.1	0.4	0.7	1.3	12	40	40	2100	1555	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00		0	0 (00)	0.0
a opro-12	CA .	TRUE	0.5	2.0	1	0.0	1.0	3.0	3.0	0.7	100	100	4000	370	PALOE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00		0	0 1010	0.0
SUSCEP.	UE	TRUE	5.0	11.0	0.	3 1.0	0.2	0.3	24.1	13.0	100	100	3730	210	EALSE	0.7	0.7	2.12	0.00	0.00	0.00	0.10	0.00	200	2010	209 (90)	1.5
routsiand	05	TRUE	1.0	4.5	1	0 0.0	2.5	2.7	10.4	0.4			2022	110	TRUE	3.0	2.0	1.02	3.75	2.60	0.93	1.03	2.84	70	1110	79./160	2.2
CV 2N	06	TRUE	2.0	0.0	1 7	0.2	4.7	7.0	20.2	12.4	10		2250	322	TRUE	5.9	0.4	9.95	A 04	5.91	0.55	3.94	5.91	173	2460	172/260	7.9
CV MI	06	TRUE	10	47		0.4	2.5	2.2	50.2		10	10	2500	542	TRUE	19	2.5	0.62	244	1.75	0.24	1.45	6.24	51	719	51/16	2.5
V.FREIBURG	05	TRUE	0.2	0.7	0	0 0.1	0.5	0.5	1.5	1.7			2900	204	FALSE	1.0	1.0	0.00	0.00	0.00		0.00	0.00		0	0.000	0.0
FRONET LCG2	05		0.1	0.7	0.	0.1	0.5	0.7	17	12	10	10	1212	1120	FALSE	1.0	1.0	0.00	0.00	0.00		0.00	0.00	0	0	0.000	0.0
and and	00		0.3	1.5	1	5 0.1	0.4	0.7	2.3	1.2			2650	1500	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (0k)	0.0
TOAC-Koste	05		0.0	0.4	0.	3 0.0	0.1	0.3	0.5	0.4		-	1133	747	FALSE	1.0	1.0	0.00	0.00	0.00		0.00	0.00	0	0	0 (010	0.0
25LMU	30	TRUE	0.1	0.7	0.	7 0.1	0.7	1.0	1.0	1.0			2701	145	FALSE	1.0	1.0		0.00	0.00			0.00	0	0	0 (010	0.0
305-1002	DE	TRUE	0.3	1.0	1.	7 0.2	1.2	1.7	3.0	3.0			4725	630	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (010	0.0
WPIN-UNIBA	DE		0.0	0.8	0.	4 0.0	0.2	0.2	0.7	0.5			1128	740	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (06)	0.0
AUPA	68		0.0	0.4	0.	2 0.0	0.3	0.6	0.0	0.9	9	9	250	52	FALSE	1.0	1.0	0.00	0.00	0.00		0.00	0.00	0	0	0 (0K)	0.0
MLC62	ES	TRUE	0.0	2.3	1.	5 0.3	0.9	1.5	4.5	2.9	10	10	1566	- 243	TRUE	. 9.3	6.5	0.55	2.14	1.53		0.72	5.53	45	635	45 (1k)	7.3
2	63		0.1	0.5	0	7 0.1	0.2	0.4	1.6	0.7	200	200	800	212	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (0k)	0.0
CG-INGRID-PT	63		0.0	0.1	0.	2 0.0	0.1	0.2	0.4	0.2	9		500	354	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (0k)	0.0
0.1002	60	TRUE	0.2	1.0	1.	2 0.1	0.5	1.1	2.5	2.0			3400	239	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00		0	0 (0k)	0.0
DA-OTFOR	60		0.0	0.1	0.	1 0.0	0.1	0.2	0.1	0.5	10	10	300	140	PALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (00)	0.0
O OT MELLER	100	TRUE		20.9	10	1 24	13.5	34.1	41.0	29.0	40	40	7,000	1207	THUE	4.5	0.4	1.55	12.00	11.04	2.02	10.70	1.04	335	+c03	330 (50)	0.0
UNSJ C62	58	HUE	0.0	13.0	10.	0.0	0.1	10.2	21.0	0.0	100	100	3004	700	FALSE	10.2	10	0.000	0.00	0.00	0.00	0.00	0.00	200	5100	0,000	1.0
0.092	FR		0.0	0.1	0	0 00	0.1	0.0	0.0	0.3		20	840	333	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00		0	0.000	0.0
RIF	FR		0.4	2.0	1 1	7 0.2	1.9	2.6	41	42	100	100	6000	4305	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00		0	0 (06)	0.0
2P2-LP0	FR		2.5	9.4	7.	2 0.7	3.5	7.2	19.1	11.3	100	100	2564	1509	TRUE	11.0	7.7	2.39	5.76	6.25	0.55	2.56	6.25	154	2014	154 (3k)	7.3
2PS-LAPP	FR	TRUE	2.6	90.0	0	1 1.2	4.6	7.5	20.9	12.6	20	20	6000	2504	TRUE	6.2	5.0	2.41	6.54	6.34		3.54	0.34	105	2635	155 (2k)	6.4
OPD-CREM	FR	TRUE	1.4	5.1	4	1 0.5	2.7	4.1	10.5	7.5	100	100	2232	135	TRUE	6.0	4.4	1.20	4.51	9.23		2.00	3.23	95	1247	95 (1k)	4.2
IN MILANO ATLASC	IT		0.1	0.5	0.	0.1	0.0	1.0	1.2	1.7	10	10	1907	1407	FALSE	1.0	1.0	0.00	0.00	0.00		0.00	0.00	0	0	0 (010	0.0
IN MARCELATERS	п	TRUE	3.1	11.0	0.	0.0	0.4	0.0	23.2	54.0	100	100	4004	342	TRUE	9.2	6.7	2.03	10.30	7.45		4.45	7.45	210	3100	215 (30)	7.3
PN-ROMA1	IT	TRUE	1.4	5.1	4	0 0.4	2.4	3.5	10.5	0.0	10	10	1584	342	TRUE	0.0	0.0	1.22	4.40	3.20	0.34	1.57	3.20	54	1331	54 (1k)	0.5
FN-FRASCATI	IT		0.1	0.7	1 0	0.1	0.4	0.0	1.5	1.0	10	10	1979	1301	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (06)	0.0
-SNIC-T2	ND		0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0		-	0	0	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (06)	0.0
VIRE-LHEP	ND		0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0			0	0	FALSE	1.0	1.0	0.00	010	0.00	0.00	0.00	0.00	0	0	0 (0K)	0.0
Her-aurrod (to tape)	NL	PRAVDA	0.3	2.0	1 1	0.2	1.9	1.6	37	2.1	1000	1000	3550	263	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (06)	0.0
CONTRACTOR OF THE OWNER	NL.		0.2	1.0	1.	0.1	0.5	0.5	2.5	15			2675	1917	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00			0 (96)	0.0
ELCO2	NL		0.0	0.1	0	0.1	0.5	0.0	0.2	0.0	100	100	100	010	EALOF	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0		0,000	0.0
LPortugation (1987)	1 102		0.1	0.4	0	1 10	0.0	0.4	11	0.0	.00	.00	120		FALDE	1.0	10	0.00	0.00	0.00	0.00	0~	0~	0	-	0.000	0.5
CUTZ.RHUE	UK		0.0	0.7		0.0	0.1	0.2	0.0	0.5	10	10			FAIRE	1.0	10	0.00	0.00	0.00	0.00	0.00	0.00			0.000	0.0
INORTHORID MAN HER	UK	TRUE	3.4	13.5	10	8 1.5	7.0	8.2	20.0	15.5	40	40	4945	420	TRUE	54	0.0	3,00	11,00	7.85	1.00	0.04	7.50	23.5	325.5	231 (36)	73
KLSOUTHORID.RALPP	UK		0.0	0.2	0.	4 0.0	0.2	0.4	0.0	0.0	20	20	700	445	FALSE	1.0	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0 (06)	0.0
CLSCOTGRID-GLASGOW	UK		0.2	0.6	0.	0.1	0.5	0.5	1.0	1.8	20	20	4500	3599	FALSE	1.0	1.0	0.00	0.00	0.00		0.00	0.00	0	0	0 (06)	0.0
GLT2-OMUL	UK		0.4	2.2	2	0.2	1.3	1.4	5.0	2.9			9000	6731	FALSE	1.0	1.0	0.00	010	0.00		0.00	0.00	0	0	0 (06)	0.0
CLOCOTORID-ECDF	UK		0.0	0.2	0.	2 0.0	0.2	0.3	0.5	0.5			0	0	FALSE	1.0	1.0	0.00	0.00	0.00		0.00	0.00	0	0	0 (04)	0.0
CINORTHORID LANCE HEL	UK		0.4	1.5	1.	0.0	1.3	2.5	2.5	4.4	40	40	5000	3610	FALSE	1.0	1.0	0.00	0.00	0.00		0.00	0.00	0	0	0 (0k)	0.0
CINORTHORID-LIVIER	UK		0.0	0.2	0.	3 0.0	0.1	0.2	0.5	0.4			440	987	FALSE	1.0	1.0	0.00	0.00	0.00		0.00	0.00	0	0	0 (010	0.0
Iwan-LCO2 (no tape)	TW		0.2	1.2	1.	2 0.1	0.0	1.1	2.0	1.7	20	20	7477	0200	FALSE	1.0	1.0	0.00	0.00	0.00		0.00	0.00	0	0	0 (010	0.0
	1.10		0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	10	10	7240	7103	FALSE	1.0	1.0	0.00	0.00	0.00		0.00	0.00	0	0	0 (010	0.0
472	~~~										_		_	_						_							
WTZ-CH8	US	TRUE	11.5	45.0	32	0 4.2	22.1	34.4	88.7	00.7	100	100	11700	2015	TRUE	13.7	7.2	11.25	41.35	28.64	3.00	15.80	28.64	363	12340	365 (1293	7.3
12 /12.CHB 412	US US	TRUE	11.5	45.0	32	0 42	22.1	34.4	88.7	00.7 49.3	100	100	11700	2015	TRUE	13.7	7.2	11.25	41.35	28.64	3.00	15.80	28.64	000	12340	000 (129) 004 (10K)	7.

7 PB

6 PB

5 PE

4 PE

3 PB

2 PI

1 PF

07/0

ATLAS Data Flows & Rucio :: Mario Lassnig

RAW

12/16

12/01

17

12/16

12/01

ATLAS has cloud R&D projects ongoing with Amazon, Google, and SEAL Storage

Integration into ADC systems PanDA & Rucio, and in turn FTS, GFAL, Davix Very close development collaboration across the full stack

Two major angles to consider when discussing clouds

Technical Access tools, transfer protocols, monitoring, authn/z, accounting, billing, storage, ... Deployed on-site or off-site Organisational Centralised or distributed Public (institute, laboratory, ...) or commercial In-kind contribution or paid service

Large development programme in front of us to make cloud storage viable

Throughput control, access control, peering control, cloud transfer tool control, lifetime control, cost control,

11/0

10/1

Cloud

Data stored at the Google RSE Daily egress traffic out of the Google RSE 350 TB — AOD RDO 300 TB 250 TB DAOD log 200 TB EVN1 use 150 TB ESD

100 TB

50 TE

0 B

07/01

07/16

08/1

09/01

09/1/

10/01

10/16

11/01

11/16

aws

Summary

Rucio is working great for ATLAS!

Thanks to the dedication of a great team We are happy and grateful for this big community

The ATLAS data needs are immense and continuously increasing

Data flow complexity, incl. system topology and experiment policies Throughput and file rates are ever increasing Crazy R&D projects to keep things interesting ;-)

ATLAS will continue to contribute to the development and support of Rucio into the HL-LHC era!

