
DiracX

Demo and Technical details
1

● There are three things that we care about
○ Submitting pilots
○ Data access
○ Verifying a user’s identity

● For DIRAC - we only care about verifying identity
○ Can’t keep using certificates as it’s getting harder to find an issuer

● Once we have an identity, it’s purely internal to DIRAC
○ Should be as simple as logging in to any website

What does “tokens” even mean?

2

● Currently “getting identity” means:
1. Find someone trusted to give you a certificate
2. Import the certificate to your web browser
3. Ask for someone to help you to figure out why it didn’t work
4. Sign AUP in VOMS
5. Import the certificate ~/.globus
6. Upload the certificate to DIRAC
7. Do the whole dance again ~once a year (new PC, randomly)

How do we get an identity?

3

● Currently “getting identity” means:
1. Find someone trusted to give you a certificate
2. Import the certificate to your web browser
3. Ask for someone to help you to figure out why it didn’t work
4. Sign AUP in VOMS
5. Import the certificate ~/.globus
6. Upload the certificate to DIRAC
7. Do the whole dance again ~once a year (new PC, randomly)

● Reduce this to just a login and users don’t care how

How do we get an identity?

4

How do we make this change?

● DIRAC is old and is filled with technical debt
○ Attempts to make major change now systematically fail (OAuth2, HTTPS)

● DIRAC was very well thought out with a solid foundation
○ Wasn’t clear what a “Grid” even was when it started

● DiracX is a new approach, learning from the past 20 years
○ Learn from 20+ years of DIRAC
○ Tens of years of developer experience

● So what will using DIRAC look like during the transition?

5

The pathway

6

● Currently we use DIRAC with only X509
● Use both X509 and tokens for a while

○ X509 == DIRAC
○ Tokens == DiracX

● Users always have both a token and a proxy
● Services slowly move from DIRAC -> DiracX
● Eventually tokens + DiracX are the only thing left

The pathway

7

● Currently we use DIRAC with only X509
● Use both X509 and tokens for a while

○ X509 == DIRAC
○ Tokens == DiracX

● Users always have both a token and a proxy
● Services slowly move from DIRAC -> DiracX
● Eventually tokens + DiracX are the only thing left

This will be a multi-year transition
Users shouldn’t need to care what proxy or token is

How will this look?

8

If the demo gods are favourable, I’ll hopefully now show:

● dirac-proxy-init
● Submit a job
● Show in web app
● Job monitoring CLI
● Download output sandbox

What did you just see?

9

● dirac-proxy-init
○ Used certificate to authenticate
○ DIRAC also returned a DiracX token

● Submit a job
○ Used the existing DIRAC JobManagerHandler

● Show in web app
● Job monitoring CLI

○ Transparently used DiracX via legacy adapter mechanism (see later)

● Download output sandbox
○ Stored in the new DiracX sandbox store

←👴X509+DIRAC

←👴X509+DIRAC

← Token+DiracX
← Token+DiracX

Nothing changes for users

The philosophy of the DIRAC token migration

10

● We need to move to tokens for external constraints
● The migration needs to be smooth
● It’s a massive amount of work

● The current DIRAC design is 20+ years old
○ Lots of expertise in what we (don’t) need to be able to do
○ Held back from improving by what we’ve inherited

● For years the groundwork has been laid for modernising
● Let’s take advantage of this opportunity!

Make authentication transparent to users (no certificate errors)

So what would we want to improve?

11

Later we’ll have a talk about the security model.

For this rest of this talk we don’t care how authentication is done.

Simpler interfaces and clearer errors

● Communicating errors is critical
○ Not sustainable to have experts solving every problem

So what would we want to improve?

12

No proxy?

Simpler interfaces and clearer errors

● Communicating errors is critical
○ Not sustainable to have experts solving every problem

So what would we want to improve?

13

No proxy?

A wise person once said, users say:

“The Grid isn’t broken, DIRAC is”
DIRAC should aim to tell people what is actually broken

First class Multi VO support

● Current Multi-VO support is an afterthought
● Single VO = Multi VO with only one VO configured

○ “Could merge any two installations”

So what would we want to improve?

14

More flexibility (e.g. access via HTTPS without a DIRAC client)

● Also less flexibility
○ DIRAC was designed with lots of “flexibility”
○ Eventually paralyzes development

● Every community has some special needs
○ Standards like OAuth, HTTPS, REST make it easier to accommodate

● Make sure we can follow external changes

So what would we want to improve?

15

More stable releases

● DIRAC itself is very stable
○ Has a lot of failover mechanisms
○ Gracefully degrades when things fail

● Changing the code is a different story (but improving)
○ Design the entire package to be testable
○ More robustness to mistakes

So what would we want to improve?

16

Simpler installation and configuration

● Turn key solution
○ Trival to run a development instance locally
○ Easy for a sysadmin to get a production instance up and running

● Guided upgrade path between versions, should tell you
○ DB changes
○ Configuration changes
○ Deployment changes

● Ideally changes are automated (or wizard-like)

So what would we want to improve?

17

Easier to maintain extensions (especially for the webapp)

● Extensions are currently tightly coupled to DIRAC
○ Can modify just about anything
○ Sometimes even overriding private methods!
○ Not sustainable

● Need a clearer interface of what is extendable
● Make a smoother path to maintain extensions by design

So what would we want to improve?

18

“We worry about catching all the changes”

More accessible to new developers

● Our fields have a strong bias towards
○ inexperienced developers
○ short contracts

● Needs to be as accessible as possible
● A 4 month intern should be able to do something useful

So what would we want to improve?

19

So what would we want to improve?

20

● Make authentication transparent to users (no certificate errors)
● Simpler interfaces and clearer errors
● First class Multi VO support
● More flexibility (e.g. access via HTTPS without a DIRAC client)
● More stable releases
● Simpler installation and configuration
● Easier to maintain extensions (especially for the webapp)
● More accessible to new developers

This is very abridged, see xxx and yyy for more

21

I think we can get most of these
aforementioned desires as part
of DiracX

But:

● It will take a while
● People need to learn new things

DiracX is not the answer to everything

22

How might the final DiracX look?

23

Demo gods be willing, same actions as before

● Login
● Submit a job
● Show in web app
● Job monitoring CLI

Current status

24

● DiracX is still immature
○ The demo can be ran standalone, but…
○ It will take a long time before it’s approaching completeness
○ E.g. pilot submission isn’t going to happen “soon”

● The priority is groundwork and legacy compatibility

● Second priority is user facing components

● The “interface” (CLI, web, python, REST) is experimental
○ Not yet had much effort invested

Architecture

25

FastAPI
High performance framework and widely used at scale

Designed for easy prototyping and development

Removes a lot of low level code and boilerplate

Standards based

26

https://fastapi.tiangolo.com/

https://fastapi.tiangolo.com/

Swagger

Swagger generates interactive documentation from the JSON

Included in FastAPI by default (/docs)
27

Redoc

Redoc is another implementation

Also included in FastAPI by default (/redoc)
28

Celery

29

● We need more than just API calls
● Long running “things” (seconds -> hours)
● Covers “Agents”, “Requests” and “Executors” in DIRAC

● Will be turned into asynchronous tasks
● Celery works well for this and is widely used

Putting it together
The Python package structure looks like

30Allows us to isolate dependencies more easily

Using DiracX without the client

31

Demo gods be willing, with only curl!

● Submit a job
● Job monitoring

Migration

32

Want the least disturbance possible for installations

Service migration
Current situation has:

● MySQL database
● DIPS service using a DB class
● DIRAC Client class

33

Service migration
The MySQL DB stays the same.

Develop in parallel:

● FastAPI router
● Async SQLAlchemy DB class
● Modern API + CLI + tests

34

Service migration
Once diracx service is ready, add
a “legacy adaptor”

Integration tests pass unmodified

35

Once diracx service is ready, add
a “legacy adaptor”

Integration tests pass unmodified

Service migration

36

Once diracx service is ready, add
a “legacy adaptor”

Integration tests pass unmodified

Service migration

37

Service migration
Promptly remove the dips service

Moving away from DIRAC client class
depends on other modernisations
(agents, webapp, …)

38

Configuration Service

39

● Holds all of the configuration for what DIRAC does
○ Compute elements, storage elements, users, groups, service config

● Currently very permissive in what it accepts
○ Bad input causes downtime or hours of admin confusion

● Will keep the current service as the source of truth
○ Admins keep editing the old CS
○ DiracX automatically exports it to the new read-only CS

The Configuration Service

40

The Configuration Service
Start from the existing CS content (details are later)

41

pydantic

git
YAML

DiracX Status

42

v8.0

DIRAC
stack

May 2022

NOW, Oct
2023

v8.1

Jan 2024

DiracX
stack

demo
(on v8.1.0aX) v0.1.0

Stop
support

v7.3

(next WS?)

Stop
support

v8.0

DIRAC+X
certifications

Using DiracX services

...at some
point

Stop
support

v8.1

DiracX Status

43

● We still have a lot to finish
○ “Groundwork”
○ Interoperability with legacy DIRAC
○ Deployment
○ Telemetry and monitoring
○ Documentation
○ Extensions

● DiracX will need to be installed alongside DIRAC v8.1
● DiracX won’t do much at this point

○ But all of the groundwork for a smooth transition will be ready

● Functionality will then be slowly moved to DiracX
○ Lot’s of interest from the community
○ Please materialise this effort from Q1 2024

What we need from installations

44

● Now: Update to DIRAC v8.0 if you haven’t already
● Q1 2024: update to DIRAC v8.1 promptly
● Continuously: Give feedback, reply to discussions

https://github.com/DIRACGrid/diracx/discussions/categories/extension-requirements

Especially need help understanding what extensions need to support

● If possible, contribute developer FTEs next year

https://github.com/DIRACGrid/diracx/discussions/categories/extension-requirements

Questions?

45

