RUNNING JOBS ON HIGH PERFORMANCE COMPUTERS WITH DIRAC:

Overview of the existing solutions

D&RW 2023

October 18th 2023

Alexandre F. Boyer alexandre.boyer@cern.ch

European Organization for Nuclear Research Meyrin, Switzerland

... On High Performance Computers

Technical solutions

Use Cases (LHCb)

Conclusion 000

Introduction

DIRAC Workload Management System

- Mostly used for High-Throughput Computing (HTC) purposes.
- Able to federate a large variety of heterogeneous computing resources.
- Mainly Grid Sites. What about Clouds (see Daniela's talk) & High Performance Computers (HPC)?

HPCs can provide massive computing power

- National science programs are consolidating computing resources: a small number of very powerful computing infrastructures may become the norm in the future.
- Running HTC tasks on HPCs can be challenging and requires a significant amount of work.

What can we do, as DIRAC developers, to help you in this journey?

RUNNING HIGH THROUGHPUT COMPUTING TASKS...

Running High Throughput Computing tasks... $0 \bullet 0$

... On High Performance Computers

Technical solutions

Use Cases (LHCb)

Conclusion 000

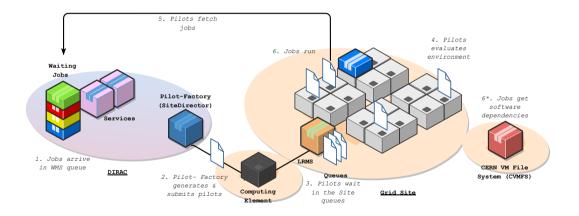
Anatomy of a HTC workload

Nature

 Consists of many loosely coupled and independent tasks requiring a large amount of computing power during a long period.

Properties of a typical HTC task

- Minimal input data dependency.
- CPU-intensive task.
- Long execution time.


... On High Performance Computers

Technical solutions

Use Cases (LHCb)

Conclusion 000

Executing HTC workoads across distributed computing resources

... ON HIGH PERFORMANCE COMPUTERS

... On High Performance Computers $0 \bullet 00$

Technical solutions

Use Cases (LHCb)

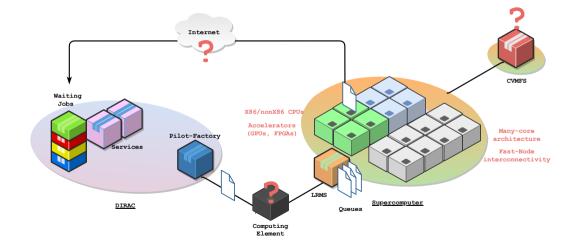
Conclusion 000

High Performance Computers: definitions and numbers

Supercomputers: the most powerful HPCs of the world

A mainframe computer that is among the largest, fastest, or most powerful of those available at a given time.

- Twice a year, top500.org releases the list of the most powerful HPCs of the world.
- #1 Frontier is composed of 8,699,904 cores.
- In comparison, WLCG provides about 1 million cores (many additional parameters have to be taken into account for a fair comparison though).


... On High Performance Computers 0000

Technical solutions

Use Cases (LHCb)

Conclusion 000

DIRAC Workload Management System & HPCs?

Challenges

... On High Performance Computers 000 \bullet

Technical solutions

Use Cases (LHCb)

Conclusion 000

Software architecture and Distributed Computing

- Software has to be flexible. HPCs may include non-x86 CPUs and accelerators.
- The DIRAC Workload Management System needs to provide the software requirements and maximize the use of the requested resources. We will focus on these aspects in the following section.
- ⇒ HPCs are very heterogeneous: it is impossible to produce a generic and unique solution that would work for all of them.
- ⇒ Goal: build small software blocks that can be added together to create a customized solution.

TECHNICAL SOLUTIONS

... On High Performance Computers

Technical solutions

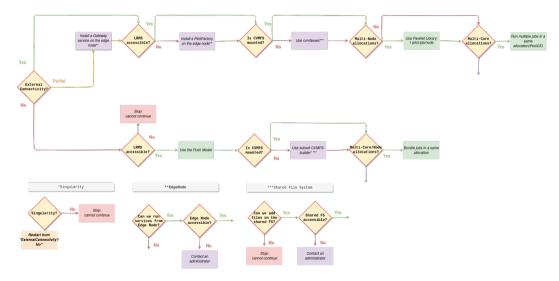
Use Cases (LHCb)

Conclusion 000

Solutions based on features

Features

- 1 feature directly affects the chosen paradigm:
- + Do the worker nodes have an external connectivity? Yes (or only via the head node), no.
- · Other features generate some technical adjustments around the chosen paradigm:
- + Is CVMFS mounted on the worker nodes? yes, no.
- + Is the Batch System accessible from outside? yes, no.
- + What type(s) of allocations can we request? Single core, multi-core, multi-node.

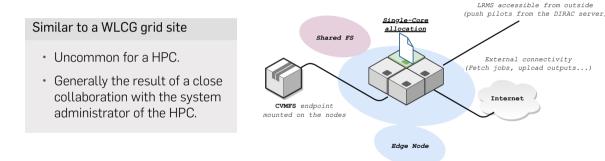

... On High Performance Computers

Technical solutions

Use Cases (LHCb)

Conclusion 000

Choosing the right approach


... On High Performance Computers

Technical solutions

Use Cases (LHCb)

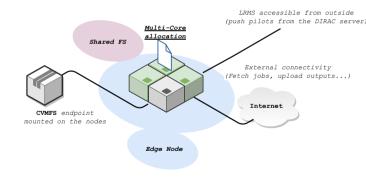
Conclusion 000

Software solutions: Complete access to the HPC & single-core allocations

... On High Performance Computers

Technical solutions

Use Cases (LHCb)


Conclusion 000

Software solutions: Complete access to the HPC & multi-core allocations

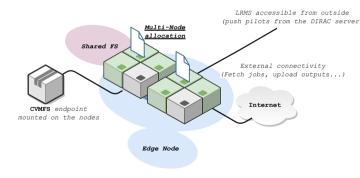
HPCs tend to favor multi-core allocations...

- One pilot-job for many cores on 1 node.
- The pilot-job repeats the following operations until all the available cores are occupied: fetches a job from the DIRAC services and executes it on the node.

... On High Performance Computers

Technical solutions

Use Cases (LHCb)


Conclusion 000

Software solutions: Complete access to the HPC & multi-node allocations

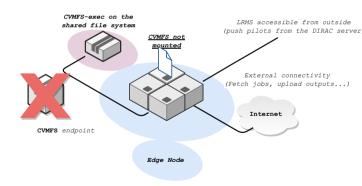
... And even multi-node allocations.

- Use of **srun** to install 1 pilot-job per node in parallel.
- The pilot-jobs share the same identifier, status and logs.
- Possibilities to request elastic allocations (e.g. between 1 and 5 nodes).

... On High Performance Computers

Technical solutions

Use Cases (LHCb)


Conclusion 000

Software solutions: External connectivity but CVMFS not available

By default, HPCs do not provide access to CVMFS.

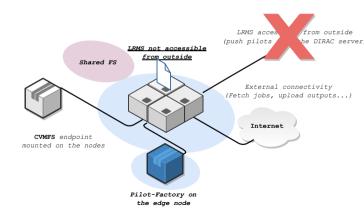
CVMFS-exec

- Client installed on the shared file system of the HPC.
- Mounts CVMFS as an unprivileged user.
- Requires actions from a DIRAC operator.

... On High Performance Computers

Technical solutions

Use Cases (LHCb)


Conclusion 000

Software solutions: External connectivity but no remote access to the Batch System

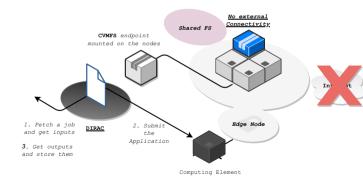
Some HPCs can only be accessed via a VPN (No CE, no direct SSH access).

Pilot factory installed on a head node **DIRAC**

- Pilot-Jobs are directly submitted from the HPC.
- Requires actions from both a system administrator of the HPC (getting the certificate, authorizing cron jobs), and a DIRAC operator (installing the Pilot factory).

... On High Performance Computers

Technical solutions 0000000€0 Use Cases (LHCb)


Conclusion 000

Software solutions: No external connectivity...

Some HPCs do not allow jobs to access external services.

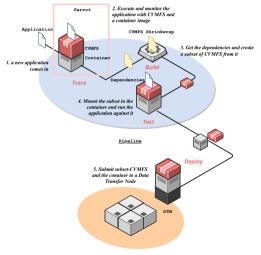
PushJobAgent v7r3 DIRAC

- Works as a Pilot-Job that would be executed outside of the HPC.
- Fetches jobs, manages their input and output data, and solely submits the application to the HPC.
- Requires a direct access to the Batch System.

... On High Performance Computers

Technical solutions

Use Cases (LHCb)


Conclusion 000

Software solutions: No external connectivity, so no CVMFS

In this context, we cannot leverage CVMFS-exec.

subcvmfs-builder

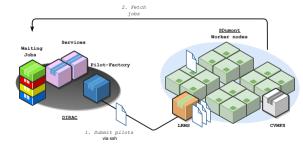
- Generic solution to create and deploy subsets of CVMFS.
- Takes the form of a Python package and a continuous integration pipeline.
- Example: extracting Gauss dependencies (a few GB) in 2h30: https: //gitlab.cern.ch/lhcb-dirac/ subcvmfs-builder-pipeline

USE CASES (LHCB)

... On High Performance Computers

Technical solutions

Use Cases (LHCb) o●ooo Conclusior 000


SDumont, LNCC: Development

Features

- Opportunistic resources.
- 36,472 CPU cores, distributed across 1,134 compute node.
- 24 cores and 64Gb of RAM per node.

Environment

- + External connectivity, CVMFS mounted on the nodes.
- Protected by a VPN, but LHCb-specific SSH access available.
- Multi-core and multi-node are preferred.

SDumont, LNCC: Status

... On High Performance Computers

Technical solutions

Use Cases (LHCb) 00●00 Conclusion 000

Set up the following solutions

- Sub-pilots and node partitioning.
- Test: Pilot factory installed on one of the head node.

Results

- A single-core job on every logical cores available per allocation.
- Elastic allocation: we request a time interval and a variable number of nodes.

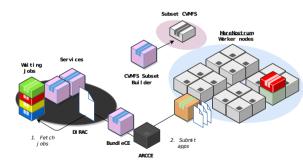
Problems & Considered approaches

• Inaccurate CPU work estimates: a lot of our jobs run out of time.

... On High Performance Computers

Technical solutions

Use Cases (LHCb) 000●0 Conclusion 000


Mare Nostrum, BSC: Development

Features

- 4-month allocations of CPU hours.
- 153,216 cores distributed across 3456 nodes.
- 48 cores and 96Gb of RAM per node.

Environment

- + Access through a CE
- Single-core allocations possible but not preferred.
- No external connectivity, no access to CVMFS.

... On High Performance Computers

Technical solutions

Use Cases (LHCb) 0000● Conclusion 000

Mare Nostrum, BSC: Status

Set up the following solutions

- PushJobAgent to push jobs.
- SubCVMFS-Builder to generate and deploy up-to-date subsets of CVMFS.

Results

- One job per single-core allocation.
- 300 jobs in parallel.
- The subset of CVMFS is regularly updated: no major issue so far.

Problems & Considered approaches

- PushJobAgent is simple but consumes a lot of memory: cannot scale.
- Reducing the memory consumption implies important changes within the LHCbDIRAC extension.

CONCLUSION

... On High Performance Computers

Technical solutions

Use Cases (LHCb)

Conclusion 000

Conclusion

Main contribution

- Methods and software blocks to integrate HTC tasks on HPCs (constrained environments).
- May benefit to any VOs using DIRAC.

What's next?

- We should mainly focus on reducing the memory footpring of the PushJobAgent in the next few months.
- In the meantime, you can already access the documentation to set up the solutions on your side: https://dirac.readthedocs.io/en/latest/AdministratorGuide/Resources/ supercomputers.html

... On High Performance Computers

Technical solutions

Use Cases (LHCb)

Conclusion

Thank you for your attention

Questions? Comments?

