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Introduction

The current DIRAC Web Application

• Provides web interfaces to interact with DIRAC services.

• Has done the job so far...

• ...But will prevent us from moving forward in the next few years: under the hood, it is
becoming unmaintainable.

DiracX is coming and represents a great opportunity to revisit the design and implementation
of the web application.
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Limitations of the current DIRAC Web Application

What is wrong with the Web App?

• Highly custom: not based on a framework (not easy
to modify, lack of support).

• Based on vendor lock-in libraries: components rely
on ExtJS, which requires a custom compiler to
work.

• Tightly coupled with DIRAC itself.

Technologies and libraries in web development are
evolving rapidly, so it is worth taking a fresh look.
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DiracX-Web requirements

Mostly follow DiracX requirements

• Technically: Welcoming to newcomers,
responsive, stable and easy to deploy.

• Conceptually: Multi-VO, appealing, not
overdesigned, user-centric and intuitive..

Based on the current limitations

• Should be based on a highly-used framework: it
should be easy to get support from a community.

• Libraries should be open source and free: it should
not be hard to escape from it if needed.

5



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

DiracX-Web current status

Foundations are being built

• The technical groundwork has begun.

• We want to provide a UI/UX that meets the needs of the DIRAC community: we need you
(more details in a few slides).

You can already have an overview of the source code:
https://github.com/DIRACGrid/diracx-web
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Introduction to front end development

Web browsers understand 3 languages

• HTML: provides a standardized means to specify
web page content, such as text, photos, videos...

• CSS: used to determine web pages’ visual
appearance and layout.

• JavaScript: enables dynamic and interactive
behavior on web pages (respond to user actions,
perform calculations).

Building a web application without any library/framework on top of those would be time
consuming and very challenging.
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Using Typescript over Javascript

Typescript

• Superset of Javascript (code needs to be compiled).

• Appeared in 2012, developed by Microsoft.

Advantages

• Static Typing: more robust code, improved tooling
(autocompletion), code documentation.

• Community and Ecosystem: strong community
support and a growing ecosystem. Popular
frameworks like Angular, Vue, and React support it.

• ESNext features: supports latest ECMAScript
features (Javascript specifications).
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Using a component library instead of pure CSS

Designing nice and responsive UI components with
HTML and CSS represents a massive amount of work
(and great skills).

Material UI

• Library of components that can be directly
imported and customized.

• Features an implementation of Google’s Material
Design system.

• Community and Ecosystem: strong community
support and a growing ecosystem.
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Relying on a framework: React

Nowadays, most websites are built upon
libraries and frameworks that allow teams to
focus on components and business logic, and
lean on battle-tested open-source solutions for
routing, rendering, data fetching and more.

React

• The most famous Javascript/Typescript
library nowadays.

• Created and used by Meta since 2011.

• Open source and large community and
ecosystem: strong community support
and a growing ecosystem.

Pros and Cons

+ Reusable UI components: can be
combined to create complex components.

+ Virtual DOM: re-renders only the changed
parts of the app.

- No convention: forces the development
team to spend time on discussing some
common development rules.

- Based on 3rd party libraries: no official
libraries to handle common features such
as routing, http requests...
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Relying on a framework: NextJS

NextJS

• Created & open sourced in 2016 by Vercel

• Community and Ecosystem: strong community
support and a growing ecosystem.

• Out-of-the-box experience: structure, routing,
rendering, data fetching, optimizations.

• Performant: applications built with it are fast.
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Dealing with AuthN/AuthZ

Getting a token from an OIDC provider (through DiracX),
extracting its information and making sure that only
authorized users access critical parts of the web
application is not trivial.

AXA oidc-client

• Library to manage authentication with the OpenID
Connect (OIDC) and OAuth2 protocols.

• Works with any OIDC provider (very easy to setup).
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Testing and keeping code consistent

Tests

It is essential to make sure that key
user actions are working properly.

• Unit tests: JEST and React
Testing Library.

• End to end testing: Cypress.

Code consistency

Avoid spending time on formatting rules and enforce a
given level of code quality.

• ESLint: ensure code quality.

• Prettier: ensure code is properly formatted.

• Husky: pre-commit scripts.
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Technical state: Structure of the project

/src

• hooks: logic to build requests targeting a diracx installation.
Investigating autorest from diracx.

• components: ui components (e.g. button, data table),
layout (e.g. side bar, header) and applications (e.g. job
monitor) are defined here.

• app: a way of organizing the components in a tree structure
(e.g. /src/app/dashboard contains the content that will be
displayed under https://<diracx>/dashboard).

/test

• unit-tests: test components.

• integration-tests: end-to-end tests (todo)
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Technical state: conclusion

Technical foundations are (almost) here

• We rely on free, open source and widely used frameworks and libraries.

• We strive to provide a welcoming development environment for the contributors.

Now we need your feedback to develop a web UI/UX that would match your needs.
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Current design

The current DiracX web UI is poor in features: you can basically log in (single-VO) and monitor
all your jobs.

How can you contribute?

• Want to give a general feedback on the DIRAC web
application? Answer the survey.

• Want to request a feature? Create a user story to
describe your need.

• Want to discuss about UX/UI design? Share your
ideas.

You can already submit your requests:
https://github.com/DIRACGrid/diracx-web/discussions
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Survey

General feedback

Questions are related to the current DIRAC
web application. Anyone can participate. We
discuss about:

• General opinion of the web application.

• Features.

• UX/UI design and responsiveness.

• Extensions
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Feature Requests

User Personas and Stories

There is a clear way of requesting new fea-
tures:

• Create a ”persona”: a semi-fictional
representation of (some of) your users.

• Create a story: focus on what you want to
achieve rather than how you think it
should be achieved.

• An example is provided within the
discussion template.
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Design ideas

Based on an existing story, you might want
to propose design choices

• You need to link your design idea to an
existing user story.

• You need to describe the problem you
have with the current approach...

• ...And explain the reasons for your
choices. Don’t hesitate to include
drawings that reflect your ideas (tools like
Ninja Mock can be helpful).
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Want to get an overview?
DIY

• Clone the DiracX chart: git clone https://github.com/DIRACGrid/diracx-charts

• Run the demo: diracx-charts/run_demo.sh (not now!)

• Copy paste the obtained URL into your web browser.
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Conclusion

Main contribution

• The foundations of the next DIRAC web application: DiracX-Web.

• An overview of the project technicalities.

• Explanations on how to contribute to the web UX/UI.

What's next?

• We need your feedback! We are waiting for your feature requests and design ideas.
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Thank you for your attention

Questions? Comments?
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