
DIRACX-WEB:
The Next Evolution of the Dirac WebApp
D&RW 2023

October 18th 2023

Alexandre F. Boyer
alexandre.boyer@cern.ch

European Organization for Nuclear Research
Meyrin, Switzerland



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Introduction

The current DIRAC Web Application

• Provides web interfaces to interact with DIRAC services.

• Has done the job so far...

• ...But will prevent us from moving forward in the next few years: under the hood, it is
becoming unmaintainable.

DiracX is coming and represents a great opportunity to revisit the design and implementation
of the web application.

2



REQUIREMENTS



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Limitations of the current DIRAC Web Application

What is wrong with the Web App?

• Highly custom: not based on a framework (not easy
to modify, lack of support).

• Based on vendor lock-in libraries: components rely
on ExtJS, which requires a custom compiler to
work.

• Tightly coupled with DIRAC itself.

Technologies and libraries in web development are
evolving rapidly, so it is worth taking a fresh look.

4



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

DiracX-Web requirements

Mostly follow DiracX requirements

• Technically: Welcoming to newcomers,
responsive, stable and easy to deploy.

• Conceptually: Multi-VO, appealing, not
overdesigned, user-centric and intuitive..

Based on the current limitations

• Should be based on a highly-used framework: it
should be easy to get support from a community.

• Libraries should be open source and free: it should
not be hard to escape from it if needed.

5



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

DiracX-Web current status

Foundations are being built

• The technical groundwork has begun.

• We want to provide a UI/UX that meets the needs of the DIRAC community: we need you
(more details in a few slides).

You can already have an overview of the source code:
https://github.com/DIRACGrid/diracx-web

6

https://github.com/DIRACGrid/diracx-web


TECHNOLOGIES INVOLVED



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Introduction to front end development

Web browsers understand 3 languages

• HTML: provides a standardized means to specify
web page content, such as text, photos, videos...

• CSS: used to determine web pages’ visual
appearance and layout.

• JavaScript: enables dynamic and interactive
behavior on web pages (respond to user actions,
perform calculations).

Building a web application without any library/framework on top of those would be time
consuming and very challenging.

8



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Using Typescript over Javascript

Typescript

• Superset of Javascript (code needs to be compiled).

• Appeared in 2012, developed by Microsoft.

Advantages

• Static Typing: more robust code, improved tooling
(autocompletion), code documentation.

• Community and Ecosystem: strong community
support and a growing ecosystem. Popular
frameworks like Angular, Vue, and React support it.

• ESNext features: supports latest ECMAScript
features (Javascript specifications).

9



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Using a component library instead of pure CSS

Designing nice and responsive UI components with
HTML and CSS represents a massive amount of work
(and great skills).

Material UI

• Library of components that can be directly
imported and customized.

• Features an implementation of Google’s Material
Design system.

• Community and Ecosystem: strong community
support and a growing ecosystem.

10



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Relying on a framework: React

Nowadays, most websites are built upon
libraries and frameworks that allow teams to
focus on components and business logic, and
lean on battle-tested open-source solutions for
routing, rendering, data fetching and more.

React

• The most famous Javascript/Typescript
library nowadays.

• Created and used by Meta since 2011.

• Open source and large community and
ecosystem: strong community support
and a growing ecosystem.

Pros and Cons

+ Reusable UI components: can be
combined to create complex components.

+ Virtual DOM: re-renders only the changed
parts of the app.

- No convention: forces the development
team to spend time on discussing some
common development rules.

- Based on 3rd party libraries: no official
libraries to handle common features such
as routing, http requests...

11



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Relying on a framework: NextJS

NextJS

• Created & open sourced in 2016 by Vercel

• Community and Ecosystem: strong community
support and a growing ecosystem.

• Out-of-the-box experience: structure, routing,
rendering, data fetching, optimizations.

• Performant: applications built with it are fast.

12



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Dealing with AuthN/AuthZ

Getting a token from an OIDC provider (through DiracX),
extracting its information and making sure that only
authorized users access critical parts of the web
application is not trivial.

AXA oidc-client

• Library to manage authentication with the OpenID
Connect (OIDC) and OAuth2 protocols.

• Works with any OIDC provider (very easy to setup).

13



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Testing and keeping code consistent

Tests

It is essential to make sure that key
user actions are working properly.

• Unit tests: JEST and React
Testing Library.

• End to end testing: Cypress.

Code consistency

Avoid spending time on formatting rules and enforce a
given level of code quality.

• ESLint: ensure code quality.

• Prettier: ensure code is properly formatted.

• Husky: pre-commit scripts.

14



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Technical state: Structure of the project

/src

• hooks: logic to build requests targeting a diracx installation.
Investigating autorest from diracx.

• components: ui components (e.g. button, data table),
layout (e.g. side bar, header) and applications (e.g. job
monitor) are defined here.

• app: a way of organizing the components in a tree structure
(e.g. /src/app/dashboard contains the content that will be
displayed under https://<diracx>/dashboard).

/test

• unit-tests: test components.

• integration-tests: end-to-end tests (todo)
15



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Technical state: conclusion

Technical foundations are (almost) here

• We rely on free, open source and widely used frameworks and libraries.

• We strive to provide a welcoming development environment for the contributors.

Now we need your feedback to develop a web UI/UX that would match your needs.

16



USER EXPERIENCE (UX) AND USER INTERFACE (UI)



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Current design

The current DiracX web UI is poor in features: you can basically log in (single-VO) and monitor
all your jobs.

How can you contribute?

• Want to give a general feedback on the DIRAC web
application? Answer the survey.

• Want to request a feature? Create a user story to
describe your need.

• Want to discuss about UX/UI design? Share your
ideas.

You can already submit your requests:
https://github.com/DIRACGrid/diracx-web/discussions

18

https://github.com/DIRACGrid/diracx-web/discussions


Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Survey

General feedback

Questions are related to the current DIRAC
web application. Anyone can participate. We
discuss about:

• General opinion of the web application.

• Features.

• UX/UI design and responsiveness.

• Extensions

19



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Feature Requests

User Personas and Stories

There is a clear way of requesting new fea-
tures:

• Create a ”persona”: a semi-fictional
representation of (some of) your users.

• Create a story: focus on what you want to
achieve rather than how you think it
should be achieved.

• An example is provided within the
discussion template.

20



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Design ideas

Based on an existing story, you might want
to propose design choices

• You need to link your design idea to an
existing user story.

• You need to describe the problem you
have with the current approach...

• ...And explain the reasons for your
choices. Don’t hesitate to include
drawings that reflect your ideas (tools like
Ninja Mock can be helpful).

21



CONCLUSION



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Want to get an overview?
DIY

• Clone the DiracX chart: git clone https://github.com/DIRACGrid/diracx-charts

• Run the demo: diracx-charts/run_demo.sh (not now!)

• Copy paste the obtained URL into your web browser.

23



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Conclusion

Main contribution

• The foundations of the next DIRAC web application: DiracX-Web.

• An overview of the project technicalities.

• Explanations on how to contribute to the web UX/UI.

What's next?

• We need your feedback! We are waiting for your feature requests and design ideas.

24



Requirements Technologies involved User eXperience (UX) and User Interface (UI) Conclusion

Thank you for your attention

Questions? Comments?

25


	Requirements
	Technologies involved
	User eXperience (UX) and User Interface (UI)
	Conclusion

