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Running productions with DIRAC
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} The DIRAC communities that need to manage massive
productions with complex workflows use the
Transformation System (see doc here) combined with a
higher level system built on top of the it, called
Production System

} Historically each of these communities has developed its
own Production System

} Since v7r0 DIRAC provides its own Production System
which is used by CTAO for now (see doc here)

} We present here how CTAO and LHCb run their
productions with DIRAC and LHCbDIRAC Production
Systems

https://dirac.readthedocs.io/en/latest/AdministratorGuide/Systems/Transformation/index.html
https://dirac.readthedocs.io/en/latest/AdministratorGuide/Systems/Transformation/index.html


DIRAC Production System

3

A Production

The Production System is a high-level system built on top of the Transformation
System.

It automatically instantiates the different transformations that compose a
Production.

Two transformations are connected if the output data of T1 intersects the input
data of T2. The workflows are data-driven.

OutputDataQuery InputDataQuery

Simple workflow example



CTAO processing workflow example
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CTAO processing workflow example
(detailed view 1/2)
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DL1/2 gamma-diff 
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DL1/2 gamma-diff 
Merged (single file)
Subset: energy training

DL1/2 gamma-diff 
Merged (single file)
Subset: classifier training

DL1/2 gamma-diff
Merged (single file)
Subset: performance
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P1

P2



CTAO processing workflow example
(detailed view 2/2)
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DL1/2 gamma-diff 
Merged (single file)
Subset: energy training

DL1/2 gamma-diff 
Merged (single file)
Subset: classifier training

DL1/2 proton
Merged (single file)
Subset: performance

DL1/2 gamma 
Merged (single file)
Subset: performance

DL1/2 electron 
Merged (single file)
Subset: performance
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Energy Model 

T23
ctapipe-apply-models

DL1/2 gamma-diff  
Merged Energy Model applied
Subset: classifier training

T24
ctapipe-apply-models

DL1/2 proton
Merged Energy Model applied
Subset: classifier training

DL1/2 gamma-diff
Merged (single file)
Subset: performance

DL1/2 proton
Merged (single file)
Subset: classifier training

T25
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Classifier Model
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DL2 gamma-diff
Subset: performance

DL2 proton
Subset: performance

T28
ctapipe-apply-models

DL2 gamma
Subset: performance

T29
ctapipe-apply-models

DL2 electron
Subset: performance

29 
transformations 
grouped in 
5 productions  

P3 P4 P5



User interface for the Production System
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} The Production System user interface comprises a Python
API a limited CLI
-> Not very practical to configure and submit complex workflows

} For our convenience in CTADIRAC we have developed a
YAML-based user interface (A. Faure)

} Currently it’s specific to CTAO but it can be generalized
and port it to vanilla DIRAC
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User interface for the Production 
System

cta-prod-submit <prodName> <workflow.yml>

Computing resources

Production System

CLI User InterfaceProduction description in YAML

Transformation System

WMS
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User interface for the Production 
System

Step 1

Step 2

Step 3

Production description in YAML A production is described by 
several steps, i.e. 
transformations
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User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query

Production description in YAML
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User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query
• Job configuration

Production description in YAML
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User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query
• Job configuration

An input data query can be 
specified :
• By a dataset

Production description in YAML
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User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query
• Job configuration

An input data query can be 
specified :
• By a dataset
• By a parent step (i.e. a query 

on the metadata of the outputs 
of the parent)

Production description in YAML



14

User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query
• Job configuration

An input data query can be 
specified :
• By a dataset
• By a parent step (i.e. a query on 

the metadata of the outputs of 
the parent)

• By a set of meta-data key-values  

Production description in YAML

Another 
production 
example
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User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query
• Job configuration

An input data query can be 
specified :
• By a dataset
• By a parent step (i.e. a query on 

the metadata of the outputs of 
the parent)

• By a set of meta-data key-values  

For each step, the metadata of 
the outputs are automatically 
built from input data and job 
configuration

Production description in YAML

Another 
production 
example
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Monitoring productions

Luisa Arrabito LUPM

$ dirac-prod-get-trans 649

TransformationName Status F_Proc. F_Proc.(%) TransformationID
1 00000649_Step10_Merging Active 38 100.0 4468
2 00000649_Step11_Merging Active 9977 100.0 4469
3 00000649_Step12_Merging Active 139 100.0 4470
4 00000649_Step13_Merging Active 5 100.0 4471

Production System CLI : start, stop, complete, monitor productions, etc.

WebApp Transformation Monitor



Support of CWL for describing 
transformations 
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} Initial support of transformations described in CWL (see
Alice’s talk at CHEP 2023)

Standard for 
describing workflows

Composed of several steps (command lines
/ expressions)

A CWL runner (e.g. cwltool) parses the steps
described in YAML and runs the workflow

https://indico.jlab.org/event/459/contributions/11491/


Support of CWL for describing 
transformations
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} Motivations
} Use a common workflow language both for local execution
(e.g. by software developers for testing purpose) and
execution through DIRAC

} Advantages of using CWL
} Standard language

} Syntax validation

} Workflow graph automatically generated



Support of CWL for describing 
transformations
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} In principle CWL could be used to describe workflows at
different levels :
} Job workflows : the different steps (executables) executed
within a job

} Production workflows : the different transformations
composing a production

In CTADIRAC we have developed a tool :
cta-prod-submit-from-cwl
to parse CWL descriptions at job level and to submit
transformations



trans = Transformation()
trans.setType("MCSimulation")
trans.setBody(job.workflow.toXML())
trans.addTransformation()

Support of CWL for describing 
transformations
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cta-prod-submit-from-cwl
1. Parses a workflow description in CWL using cwltool functions to

extract the command lines and builds a DIRAC job (using DIRAC Job
API)

2. From the job description, it builds and submits a transformation

job.setExecutable(“env setup”)
job.setExecutable(“run application”)
Job.setExecutable(“data management”)

Input YAML file

CWL description
DIRAC jobTransformation



Perspectives on CWL support
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} We want to generalize our tool to build any kind of
transformation

} We would like to explore the possibility to use CWL to
describe DIRAC productions

} Explore how to take benefit from CWL scatter/gather
functionality
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Backup



Support of CWL for describing 
transformations 

} cta-prod-submit-from-cwl supports
} Workflows described using the CWL CommandLine class

} Workflow described using the CWL Workflow class
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Support for CWL CommandLine

cta-prod-submit-from-cwl

} Uses cwltool functions to generate the command lines from CWL
description

} Builds DIRAC Jobs from the generated command lines

} Current limitations
} It doesn’t support Javascript expression
} All inputs needed for the execution must be present in the command line, e.g.

we don’t support initialWorkDirRequirement

24

job.setExecutable( “command-line-1”)
job.setExecutable( “ command-line-2”)
….



Support of CWL Workflows

} A CWL workflow is made of different steps
} The execution order depends on their I/O relations

} If 2 steps are indipendent cwltool executes them in parallel

cta-prod-submit-from-cwl

} Determines the execution order using the same logic as
cwltool and builds DIRAC jobs but with all steps in
sequence
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job.setExecutable( “command-line-1”)
job.setExecutable( “ command-line-2”)
….

Step1
Inputs : in1, in2
Outputs : out1

Step2
Inputs : out1
Outputs : out2



Support of CWL Workflows

} Current limitations
} The tool is not generalized yet to build any kind of transformation

starting from CWL description

} The Body of the transformation is built from CWL description, while the
other attributes are not, i.e. Type, Group Size, InputDataQuery, etc.

} CWL functionalities not supported by our tool
} I/O of array type

} Sub workflows

} Conditional workflows

} Scattering workflows
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CWL for DIRAC productions? 

} We could imagine a CWL description where
} A CWL Workflow corresponds to a DIRAC production

} CWL sub-workflows correspond to DIRAC transformations

} In order to link the different transformations the Production
System uses their Input and Output Queries
} We could determine which sub-workflows are linked together based

on their I/IO

} For each sub-workflow we build a transformation where the
OutputQuery is built from the job parameters and the InputQuery is
built from the OutputQuery

-> However this looks quite specific to each users community
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