
Running productions 
with DIRAC

L. Arrabito1, F. Stagni2

1LUPM CNRS/IN2P3, France
2CERN

DIRAC & Rucio User Workshop 

16th – 20th October 2023, KEK



Running productions with DIRAC

2

} The DIRAC communities that need to manage massive
productions with complex workflows use the
Transformation System (see doc here) combined with a
higher level system built on top of the it, called
Production System

} Historically each of these communities has developed its
own Production System

} Since v7r0 DIRAC provides its own Production System
which is used by CTAO for now (see doc here)

} We present here how CTAO and LHCb run their
productions with DIRAC and LHCbDIRAC Production
Systems

https://dirac.readthedocs.io/en/latest/AdministratorGuide/Systems/Transformation/index.html
https://dirac.readthedocs.io/en/latest/AdministratorGuide/Systems/Transformation/index.html


DIRAC Production System

3

A Production

The Production System is a high-level system built on top of the Transformation
System.

It automatically instantiates the different transformations that compose a
Production.

Two transformations are connected if the output data of T1 intersects the input
data of T2. The workflows are data-driven.

OutputDataQuery InputDataQuery

Simple workflow example



CTAO processing workflow example

4



CTAO processing workflow example
(detailed view 1/2)

5

DL0 gamma-diff
Subset: energy training

DL0 gamma-diff
Subset: classifier training

DL0 gamma-diff
Subset: performance

DL0 proton
Subset: classifier training

DL0 proton
Subset: performance

DL0 gamma
Subset: performance

DL0 electron
Subset: performance

T1
ctapipe-process

T2
ctapipe-process

T4
ctapipe-process

T3
ctapipe-process

T5
ctapipe-process

T6
ctapipe-process

T7
ctapipe-process

DL1/2 gamma-diff
Subset: energy training

DL1/2 gamma-diff
Subset: classifier training

DL1/2 gamma-diff
Subset: performance

DL1/2 proton
Subset: classifier training

DL1/2 proton
Subset: performance

DL1/2 gamma
Subset: performance

DL1/2 electron
Subset: performance

T8
ctapipe-merge

T9
ctapipe-merge

T11
ctapipe-merge

T10
ctapipe-merge

T12
ctapipe-merge

T13
ctapipe-merge

T14
ctapipe-merge

DL1/2 gamma-diff 
Merged (intermediate)
Subset: energy training

DL1/2 gamma-diff 
Merged (intermediate)
Subset: classifier training

DL1/2 gamma-diff 
Merged (intermediate)
Subset: performance

DL1/2 proton 
Merged (intermediate)
Subset: classifier training

DL1/2 proton 
Merged (intermediate)
Subset: performance

DL1/2 gamma 
Merged (intermediate)
Subset: performance

DL1/2 electron 
Merged (intermediate)
Subset: performance

T15
ctapipe-merge

T16
ctapipe-merge

T18
ctapipe-merge

T17
ctapipe-merge

T19
ctapipe-merge

T20
ctapipe-merge

T21
ctapipe-merge

DL1/2 gamma-diff 
Merged (single file)
Subset: energy training

DL1/2 gamma-diff 
Merged (single file)
Subset: classifier training

DL1/2 gamma-diff
Merged (single file)
Subset: performance

DL1/2 proton
Merged (single file)
Subset: classifier training

DL1/2 proton
Merged (single file)
Subset: performance

DL1/2 gamma 
Merged (single file)
Subset: performance

DL1/2 electron 
Merged (single file)
Subset: performance

P1

P2



CTAO processing workflow example
(detailed view 2/2)

6

DL1/2 gamma-diff 
Merged (single file)
Subset: energy training

DL1/2 gamma-diff 
Merged (single file)
Subset: classifier training

DL1/2 proton
Merged (single file)
Subset: performance

DL1/2 gamma 
Merged (single file)
Subset: performance

DL1/2 electron 
Merged (single file)
Subset: performance

T22
ctapipe-train-energy-regressor

Energy Model 

T23
ctapipe-apply-models

DL1/2 gamma-diff  
Merged Energy Model applied
Subset: classifier training

T24
ctapipe-apply-models

DL1/2 proton
Merged Energy Model applied
Subset: classifier training

DL1/2 gamma-diff
Merged (single file)
Subset: performance

DL1/2 proton
Merged (single file)
Subset: classifier training

T25
ctapipe-train-particle-classifier

Classifier Model

T26
ctapipe-apply-models

T27
ctapipe-apply-models

DL2 gamma-diff
Subset: performance

DL2 proton
Subset: performance

T28
ctapipe-apply-models

DL2 gamma
Subset: performance

T29
ctapipe-apply-models

DL2 electron
Subset: performance

29 
transformations 
grouped in 
5 productions  

P3 P4 P5



User interface for the Production System

7

} The Production System user interface comprises a Python
API a limited CLI
-> Not very practical to configure and submit complex workflows

} For our convenience in CTADIRAC we have developed a
YAML-based user interface (A. Faure)

} Currently it’s specific to CTAO but it can be generalized
and port it to vanilla DIRAC



8

User interface for the Production 
System

cta-prod-submit <prodName> <workflow.yml>

Computing resources

Production System

CLI User InterfaceProduction description in YAML

Transformation System

WMS



9

User interface for the Production 
System

Step 1

Step 2

Step 3

Production description in YAML A production is described by 
several steps, i.e. 
transformations



10

User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query

Production description in YAML



11

User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query
• Job configuration

Production description in YAML



12

User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query
• Job configuration

An input data query can be 
specified :
• By a dataset

Production description in YAML



13

User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query
• Job configuration

An input data query can be 
specified :
• By a dataset
• By a parent step (i.e. a query 

on the metadata of the outputs 
of the parent)

Production description in YAML



14

User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query
• Job configuration

An input data query can be 
specified :
• By a dataset
• By a parent step (i.e. a query on 

the metadata of the outputs of 
the parent)

• By a set of meta-data key-values  

Production description in YAML

Another 
production 
example



15

User interface for the Production 
System

A production is described by 
several steps, i.e. 
transformations

Each step is described by :
• Input data query
• Job configuration

An input data query can be 
specified :
• By a dataset
• By a parent step (i.e. a query on 

the metadata of the outputs of 
the parent)

• By a set of meta-data key-values  

For each step, the metadata of 
the outputs are automatically 
built from input data and job 
configuration

Production description in YAML

Another 
production 
example



16

Monitoring productions

Luisa Arrabito LUPM

$ dirac-prod-get-trans 649

TransformationName Status F_Proc. F_Proc.(%) TransformationID
1 00000649_Step10_Merging Active 38 100.0 4468
2 00000649_Step11_Merging Active 9977 100.0 4469
3 00000649_Step12_Merging Active 139 100.0 4470
4 00000649_Step13_Merging Active 5 100.0 4471

Production System CLI : start, stop, complete, monitor productions, etc.

WebApp Transformation Monitor



Support of CWL for describing 
transformations 

17

} Initial support of transformations described in CWL (see
Alice’s talk at CHEP 2023)

Standard for 
describing workflows

Composed of several steps (command lines
/ expressions)

A CWL runner (e.g. cwltool) parses the steps
described in YAML and runs the workflow

https://indico.jlab.org/event/459/contributions/11491/


Support of CWL for describing 
transformations

18

} Motivations
} Use a common workflow language both for local execution
(e.g. by software developers for testing purpose) and
execution through DIRAC

} Advantages of using CWL
} Standard language

} Syntax validation

} Workflow graph automatically generated



Support of CWL for describing 
transformations

19

} In principle CWL could be used to describe workflows at
different levels :
} Job workflows : the different steps (executables) executed
within a job

} Production workflows : the different transformations
composing a production

In CTADIRAC we have developed a tool :
cta-prod-submit-from-cwl
to parse CWL descriptions at job level and to submit
transformations



trans = Transformation()
trans.setType("MCSimulation")
trans.setBody(job.workflow.toXML())
trans.addTransformation()

Support of CWL for describing 
transformations

20

cta-prod-submit-from-cwl
1. Parses a workflow description in CWL using cwltool functions to

extract the command lines and builds a DIRAC job (using DIRAC Job
API)

2. From the job description, it builds and submits a transformation

job.setExecutable(“env setup”)
job.setExecutable(“run application”)
Job.setExecutable(“data management”)

Input YAML file

CWL description
DIRAC jobTransformation



Perspectives on CWL support

21

} We want to generalize our tool to build any kind of
transformation

} We would like to explore the possibility to use CWL to
describe DIRAC productions

} Explore how to take benefit from CWL scatter/gather
functionality



22

Backup



Support of CWL for describing 
transformations 

} cta-prod-submit-from-cwl supports
} Workflows described using the CWL CommandLine class

} Workflow described using the CWL Workflow class

23



Support for CWL CommandLine

cta-prod-submit-from-cwl

} Uses cwltool functions to generate the command lines from CWL
description

} Builds DIRAC Jobs from the generated command lines

} Current limitations
} It doesn’t support Javascript expression
} All inputs needed for the execution must be present in the command line, e.g.

we don’t support initialWorkDirRequirement

24

job.setExecutable( “command-line-1”)
job.setExecutable( “ command-line-2”)
….



Support of CWL Workflows

} A CWL workflow is made of different steps
} The execution order depends on their I/O relations

} If 2 steps are indipendent cwltool executes them in parallel

cta-prod-submit-from-cwl

} Determines the execution order using the same logic as
cwltool and builds DIRAC jobs but with all steps in
sequence

25

job.setExecutable( “command-line-1”)
job.setExecutable( “ command-line-2”)
….

Step1
Inputs : in1, in2
Outputs : out1

Step2
Inputs : out1
Outputs : out2



Support of CWL Workflows

} Current limitations
} The tool is not generalized yet to build any kind of transformation

starting from CWL description

} The Body of the transformation is built from CWL description, while the
other attributes are not, i.e. Type, Group Size, InputDataQuery, etc.

} CWL functionalities not supported by our tool
} I/O of array type

} Sub workflows

} Conditional workflows

} Scattering workflows

26



CWL for DIRAC productions? 

} We could imagine a CWL description where
} A CWL Workflow corresponds to a DIRAC production

} CWL sub-workflows correspond to DIRAC transformations

} In order to link the different transformations the Production
System uses their Input and Output Queries
} We could determine which sub-workflows are linked together based

on their I/IO

} For each sub-workflow we build a transformation where the
OutputQuery is built from the job parameters and the InputQuery is
built from the OutputQuery

-> However this looks quite specific to each users community

27


